Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins
Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformationa...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-06, Vol.116 (26), p.12839-12844 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12844 |
---|---|
container_issue | 26 |
container_start_page | 12839 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Ponmalar, Ilanila I Cheerla, Ramesh Ayappa, K Ganapathy Basu, Jaydeep K |
description | Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformational changes on the bilayer, the connection between intermediate oligomeric states and lipid reorganization during pore formation is largely unexplored. Cholesterol-dependent cytolysins (CDCs) are a subclass of PFTs widely implicated in food poisoning and other related infections. Using a prototypical CDC, listeriolysin O (LLO), we provide a microscopic connection between pore formation, lipid dynamics, and leakage kinetics by using a combination of Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) measurements on single giant unilamellar vesicles (GUVs). Upon exposure to LLO, two distinct populations of GUVs with widely different leakage kinetics emerge. We attribute these differences to the existence of oligomeric intermediates, sampling various membrane-bound conformational states of the protein, and their intimate coupling to lipid rearrangement and dynamics. Molecular dynamics simulations capture the influence of various membrane-bound conformational states on the lipid and cholesterol dynamics, providing molecular interpretations to the FRET and FCS experiments. Our study establishes a microscopic connection between membrane binding and conformational changes and their influence on lipid reorganization during PFT-mediated cell lysis. Additionally, our study provides insights into membrane-mediated protein interactions widely implicated in cell signaling, fusion, folding, and other biomolecular processes. |
doi_str_mv | 10.1073/pnas.1821897116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253255048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-56d46710669b8a5754d7a4afacd33446086ecd18728bc132314c1fdcbf9fbe063</originalsourceid><addsrcrecordid>eNpVUU1P3DAQtaqiskDPvVWWeg6MP-I4l0poBRQJqRc4WxPb2YZu7NT2Ivbfk4gtpaeR5n3M6D1CvjA4Z9CIiylgPmeaM902jKkPZMWgZZWSLXwkKwDeVFpyeUxOcn4EgLbW8IkcCzYLFMCK2HVMyW-xeEenFIsfArUx9DGNWIYYcEtzmdFMMTg6-rFLGDx1-4DjYDN1uzSEDcVS0P6m3Z5OMflqkS_rEp-HkM_IUY_b7D8f5il5uL66X_-o7n7e3K4v7yorOStVrZxUDQOl2k5j3dTSNSixR-uEkFKBVt46phuuO8sEF0xa1jvb9W3feVDilHx_9Z123eid9aEk3JopDSOmvYk4mP-RMPwym_hk1BxF2ywG3w4GKf7Z-VzMY9ylOYNsOK8Fr2uQemZdvLJsijkn379dYGCWVszSivnXyqz4-v6xN_7fGsQLj9GLwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253255048</pqid></control><display><type>article</type><title>Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Ponmalar, Ilanila I ; Cheerla, Ramesh ; Ayappa, K Ganapathy ; Basu, Jaydeep K</creator><creatorcontrib>Ponmalar, Ilanila I ; Cheerla, Ramesh ; Ayappa, K Ganapathy ; Basu, Jaydeep K</creatorcontrib><description>Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformational changes on the bilayer, the connection between intermediate oligomeric states and lipid reorganization during pore formation is largely unexplored. Cholesterol-dependent cytolysins (CDCs) are a subclass of PFTs widely implicated in food poisoning and other related infections. Using a prototypical CDC, listeriolysin O (LLO), we provide a microscopic connection between pore formation, lipid dynamics, and leakage kinetics by using a combination of Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) measurements on single giant unilamellar vesicles (GUVs). Upon exposure to LLO, two distinct populations of GUVs with widely different leakage kinetics emerge. We attribute these differences to the existence of oligomeric intermediates, sampling various membrane-bound conformational states of the protein, and their intimate coupling to lipid rearrangement and dynamics. Molecular dynamics simulations capture the influence of various membrane-bound conformational states on the lipid and cholesterol dynamics, providing molecular interpretations to the FRET and FCS experiments. Our study establishes a microscopic connection between membrane binding and conformational changes and their influence on lipid reorganization during PFT-mediated cell lysis. Additionally, our study provides insights into membrane-mediated protein interactions widely implicated in cell signaling, fusion, folding, and other biomolecular processes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1821897116</identifier><identifier>PMID: 31189600</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacterial diseases ; Bacterial Toxins - chemistry ; Bacterial Toxins - pharmacology ; Biological Sciences ; Cell fusion ; Cell Membrane - chemistry ; Cell Membrane - drug effects ; Cholesterol ; Correlation analysis ; Coupling (molecular) ; Cytolysins ; Energy transfer ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Fluorescence spectroscopy ; Food contamination ; Food poisoning ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - pharmacology ; Hemolysin Proteins - chemistry ; Hemolysin Proteins - pharmacology ; Intermediates ; Kinetics ; Leakage ; Lipids ; Listeriolysin O ; Lysis ; Membrane proteins ; Membranes ; Molecular dynamics ; Molecular Dynamics Simulation ; Oligomerization ; Pore formation ; Protein Conformation ; Protein folding ; Protein interaction ; Proteins ; Toxins ; Unilamellar Liposomes - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (26), p.12839-12844</ispartof><rights>Copyright National Academy of Sciences Jun 25, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-56d46710669b8a5754d7a4afacd33446086ecd18728bc132314c1fdcbf9fbe063</citedby><cites>FETCH-LOGICAL-c421t-56d46710669b8a5754d7a4afacd33446086ecd18728bc132314c1fdcbf9fbe063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600976/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600976/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31189600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ponmalar, Ilanila I</creatorcontrib><creatorcontrib>Cheerla, Ramesh</creatorcontrib><creatorcontrib>Ayappa, K Ganapathy</creatorcontrib><creatorcontrib>Basu, Jaydeep K</creatorcontrib><title>Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformational changes on the bilayer, the connection between intermediate oligomeric states and lipid reorganization during pore formation is largely unexplored. Cholesterol-dependent cytolysins (CDCs) are a subclass of PFTs widely implicated in food poisoning and other related infections. Using a prototypical CDC, listeriolysin O (LLO), we provide a microscopic connection between pore formation, lipid dynamics, and leakage kinetics by using a combination of Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) measurements on single giant unilamellar vesicles (GUVs). Upon exposure to LLO, two distinct populations of GUVs with widely different leakage kinetics emerge. We attribute these differences to the existence of oligomeric intermediates, sampling various membrane-bound conformational states of the protein, and their intimate coupling to lipid rearrangement and dynamics. Molecular dynamics simulations capture the influence of various membrane-bound conformational states on the lipid and cholesterol dynamics, providing molecular interpretations to the FRET and FCS experiments. Our study establishes a microscopic connection between membrane binding and conformational changes and their influence on lipid reorganization during PFT-mediated cell lysis. Additionally, our study provides insights into membrane-mediated protein interactions widely implicated in cell signaling, fusion, folding, and other biomolecular processes.</description><subject>Bacterial diseases</subject><subject>Bacterial Toxins - chemistry</subject><subject>Bacterial Toxins - pharmacology</subject><subject>Biological Sciences</subject><subject>Cell fusion</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - drug effects</subject><subject>Cholesterol</subject><subject>Correlation analysis</subject><subject>Coupling (molecular)</subject><subject>Cytolysins</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fluorescence spectroscopy</subject><subject>Food contamination</subject><subject>Food poisoning</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - pharmacology</subject><subject>Hemolysin Proteins - chemistry</subject><subject>Hemolysin Proteins - pharmacology</subject><subject>Intermediates</subject><subject>Kinetics</subject><subject>Leakage</subject><subject>Lipids</subject><subject>Listeriolysin O</subject><subject>Lysis</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Oligomerization</subject><subject>Pore formation</subject><subject>Protein Conformation</subject><subject>Protein folding</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Toxins</subject><subject>Unilamellar Liposomes - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1P3DAQtaqiskDPvVWWeg6MP-I4l0poBRQJqRc4WxPb2YZu7NT2Ivbfk4gtpaeR5n3M6D1CvjA4Z9CIiylgPmeaM902jKkPZMWgZZWSLXwkKwDeVFpyeUxOcn4EgLbW8IkcCzYLFMCK2HVMyW-xeEenFIsfArUx9DGNWIYYcEtzmdFMMTg6-rFLGDx1-4DjYDN1uzSEDcVS0P6m3Z5OMflqkS_rEp-HkM_IUY_b7D8f5il5uL66X_-o7n7e3K4v7yorOStVrZxUDQOl2k5j3dTSNSixR-uEkFKBVt46phuuO8sEF0xa1jvb9W3feVDilHx_9Z123eid9aEk3JopDSOmvYk4mP-RMPwym_hk1BxF2ywG3w4GKf7Z-VzMY9ylOYNsOK8Fr2uQemZdvLJsijkn379dYGCWVszSivnXyqz4-v6xN_7fGsQLj9GLwA</recordid><startdate>20190625</startdate><enddate>20190625</enddate><creator>Ponmalar, Ilanila I</creator><creator>Cheerla, Ramesh</creator><creator>Ayappa, K Ganapathy</creator><creator>Basu, Jaydeep K</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20190625</creationdate><title>Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins</title><author>Ponmalar, Ilanila I ; Cheerla, Ramesh ; Ayappa, K Ganapathy ; Basu, Jaydeep K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-56d46710669b8a5754d7a4afacd33446086ecd18728bc132314c1fdcbf9fbe063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacterial diseases</topic><topic>Bacterial Toxins - chemistry</topic><topic>Bacterial Toxins - pharmacology</topic><topic>Biological Sciences</topic><topic>Cell fusion</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - drug effects</topic><topic>Cholesterol</topic><topic>Correlation analysis</topic><topic>Coupling (molecular)</topic><topic>Cytolysins</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fluorescence spectroscopy</topic><topic>Food contamination</topic><topic>Food poisoning</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - pharmacology</topic><topic>Hemolysin Proteins - chemistry</topic><topic>Hemolysin Proteins - pharmacology</topic><topic>Intermediates</topic><topic>Kinetics</topic><topic>Leakage</topic><topic>Lipids</topic><topic>Listeriolysin O</topic><topic>Lysis</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Oligomerization</topic><topic>Pore formation</topic><topic>Protein Conformation</topic><topic>Protein folding</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Toxins</topic><topic>Unilamellar Liposomes - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponmalar, Ilanila I</creatorcontrib><creatorcontrib>Cheerla, Ramesh</creatorcontrib><creatorcontrib>Ayappa, K Ganapathy</creatorcontrib><creatorcontrib>Basu, Jaydeep K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponmalar, Ilanila I</au><au>Cheerla, Ramesh</au><au>Ayappa, K Ganapathy</au><au>Basu, Jaydeep K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-06-25</date><risdate>2019</risdate><volume>116</volume><issue>26</issue><spage>12839</spage><epage>12844</epage><pages>12839-12844</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformational changes on the bilayer, the connection between intermediate oligomeric states and lipid reorganization during pore formation is largely unexplored. Cholesterol-dependent cytolysins (CDCs) are a subclass of PFTs widely implicated in food poisoning and other related infections. Using a prototypical CDC, listeriolysin O (LLO), we provide a microscopic connection between pore formation, lipid dynamics, and leakage kinetics by using a combination of Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) measurements on single giant unilamellar vesicles (GUVs). Upon exposure to LLO, two distinct populations of GUVs with widely different leakage kinetics emerge. We attribute these differences to the existence of oligomeric intermediates, sampling various membrane-bound conformational states of the protein, and their intimate coupling to lipid rearrangement and dynamics. Molecular dynamics simulations capture the influence of various membrane-bound conformational states on the lipid and cholesterol dynamics, providing molecular interpretations to the FRET and FCS experiments. Our study establishes a microscopic connection between membrane binding and conformational changes and their influence on lipid reorganization during PFT-mediated cell lysis. Additionally, our study provides insights into membrane-mediated protein interactions widely implicated in cell signaling, fusion, folding, and other biomolecular processes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31189600</pmid><doi>10.1073/pnas.1821897116</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (26), p.12839-12844 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600976 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Bacterial diseases Bacterial Toxins - chemistry Bacterial Toxins - pharmacology Biological Sciences Cell fusion Cell Membrane - chemistry Cell Membrane - drug effects Cholesterol Correlation analysis Coupling (molecular) Cytolysins Energy transfer Fluorescence Fluorescence Resonance Energy Transfer Fluorescence spectroscopy Food contamination Food poisoning Heat-Shock Proteins - chemistry Heat-Shock Proteins - pharmacology Hemolysin Proteins - chemistry Hemolysin Proteins - pharmacology Intermediates Kinetics Leakage Lipids Listeriolysin O Lysis Membrane proteins Membranes Molecular dynamics Molecular Dynamics Simulation Oligomerization Pore formation Protein Conformation Protein folding Protein interaction Proteins Toxins Unilamellar Liposomes - chemistry |
title | Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlated%20protein%20conformational%20states%20and%20membrane%20dynamics%20during%20attack%20by%20pore-forming%20toxins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ponmalar,%20Ilanila%20I&rft.date=2019-06-25&rft.volume=116&rft.issue=26&rft.spage=12839&rft.epage=12844&rft.pages=12839-12844&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1821897116&rft_dat=%3Cproquest_pubme%3E2253255048%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253255048&rft_id=info:pmid/31189600&rfr_iscdi=true |