Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins

Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformationa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-06, Vol.116 (26), p.12839-12844
Hauptverfasser: Ponmalar, Ilanila I, Cheerla, Ramesh, Ayappa, K Ganapathy, Basu, Jaydeep K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12844
container_issue 26
container_start_page 12839
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Ponmalar, Ilanila I
Cheerla, Ramesh
Ayappa, K Ganapathy
Basu, Jaydeep K
description Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformational changes on the bilayer, the connection between intermediate oligomeric states and lipid reorganization during pore formation is largely unexplored. Cholesterol-dependent cytolysins (CDCs) are a subclass of PFTs widely implicated in food poisoning and other related infections. Using a prototypical CDC, listeriolysin O (LLO), we provide a microscopic connection between pore formation, lipid dynamics, and leakage kinetics by using a combination of Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) measurements on single giant unilamellar vesicles (GUVs). Upon exposure to LLO, two distinct populations of GUVs with widely different leakage kinetics emerge. We attribute these differences to the existence of oligomeric intermediates, sampling various membrane-bound conformational states of the protein, and their intimate coupling to lipid rearrangement and dynamics. Molecular dynamics simulations capture the influence of various membrane-bound conformational states on the lipid and cholesterol dynamics, providing molecular interpretations to the FRET and FCS experiments. Our study establishes a microscopic connection between membrane binding and conformational changes and their influence on lipid reorganization during PFT-mediated cell lysis. Additionally, our study provides insights into membrane-mediated protein interactions widely implicated in cell signaling, fusion, folding, and other biomolecular processes.
doi_str_mv 10.1073/pnas.1821897116
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253255048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-56d46710669b8a5754d7a4afacd33446086ecd18728bc132314c1fdcbf9fbe063</originalsourceid><addsrcrecordid>eNpVUU1P3DAQtaqiskDPvVWWeg6MP-I4l0poBRQJqRc4WxPb2YZu7NT2Ivbfk4gtpaeR5n3M6D1CvjA4Z9CIiylgPmeaM902jKkPZMWgZZWSLXwkKwDeVFpyeUxOcn4EgLbW8IkcCzYLFMCK2HVMyW-xeEenFIsfArUx9DGNWIYYcEtzmdFMMTg6-rFLGDx1-4DjYDN1uzSEDcVS0P6m3Z5OMflqkS_rEp-HkM_IUY_b7D8f5il5uL66X_-o7n7e3K4v7yorOStVrZxUDQOl2k5j3dTSNSixR-uEkFKBVt46phuuO8sEF0xa1jvb9W3feVDilHx_9Z123eid9aEk3JopDSOmvYk4mP-RMPwym_hk1BxF2ywG3w4GKf7Z-VzMY9ylOYNsOK8Fr2uQemZdvLJsijkn379dYGCWVszSivnXyqz4-v6xN_7fGsQLj9GLwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253255048</pqid></control><display><type>article</type><title>Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Ponmalar, Ilanila I ; Cheerla, Ramesh ; Ayappa, K Ganapathy ; Basu, Jaydeep K</creator><creatorcontrib>Ponmalar, Ilanila I ; Cheerla, Ramesh ; Ayappa, K Ganapathy ; Basu, Jaydeep K</creatorcontrib><description>Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformational changes on the bilayer, the connection between intermediate oligomeric states and lipid reorganization during pore formation is largely unexplored. Cholesterol-dependent cytolysins (CDCs) are a subclass of PFTs widely implicated in food poisoning and other related infections. Using a prototypical CDC, listeriolysin O (LLO), we provide a microscopic connection between pore formation, lipid dynamics, and leakage kinetics by using a combination of Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) measurements on single giant unilamellar vesicles (GUVs). Upon exposure to LLO, two distinct populations of GUVs with widely different leakage kinetics emerge. We attribute these differences to the existence of oligomeric intermediates, sampling various membrane-bound conformational states of the protein, and their intimate coupling to lipid rearrangement and dynamics. Molecular dynamics simulations capture the influence of various membrane-bound conformational states on the lipid and cholesterol dynamics, providing molecular interpretations to the FRET and FCS experiments. Our study establishes a microscopic connection between membrane binding and conformational changes and their influence on lipid reorganization during PFT-mediated cell lysis. Additionally, our study provides insights into membrane-mediated protein interactions widely implicated in cell signaling, fusion, folding, and other biomolecular processes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1821897116</identifier><identifier>PMID: 31189600</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacterial diseases ; Bacterial Toxins - chemistry ; Bacterial Toxins - pharmacology ; Biological Sciences ; Cell fusion ; Cell Membrane - chemistry ; Cell Membrane - drug effects ; Cholesterol ; Correlation analysis ; Coupling (molecular) ; Cytolysins ; Energy transfer ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Fluorescence spectroscopy ; Food contamination ; Food poisoning ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - pharmacology ; Hemolysin Proteins - chemistry ; Hemolysin Proteins - pharmacology ; Intermediates ; Kinetics ; Leakage ; Lipids ; Listeriolysin O ; Lysis ; Membrane proteins ; Membranes ; Molecular dynamics ; Molecular Dynamics Simulation ; Oligomerization ; Pore formation ; Protein Conformation ; Protein folding ; Protein interaction ; Proteins ; Toxins ; Unilamellar Liposomes - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (26), p.12839-12844</ispartof><rights>Copyright National Academy of Sciences Jun 25, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-56d46710669b8a5754d7a4afacd33446086ecd18728bc132314c1fdcbf9fbe063</citedby><cites>FETCH-LOGICAL-c421t-56d46710669b8a5754d7a4afacd33446086ecd18728bc132314c1fdcbf9fbe063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600976/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600976/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31189600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ponmalar, Ilanila I</creatorcontrib><creatorcontrib>Cheerla, Ramesh</creatorcontrib><creatorcontrib>Ayappa, K Ganapathy</creatorcontrib><creatorcontrib>Basu, Jaydeep K</creatorcontrib><title>Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformational changes on the bilayer, the connection between intermediate oligomeric states and lipid reorganization during pore formation is largely unexplored. Cholesterol-dependent cytolysins (CDCs) are a subclass of PFTs widely implicated in food poisoning and other related infections. Using a prototypical CDC, listeriolysin O (LLO), we provide a microscopic connection between pore formation, lipid dynamics, and leakage kinetics by using a combination of Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) measurements on single giant unilamellar vesicles (GUVs). Upon exposure to LLO, two distinct populations of GUVs with widely different leakage kinetics emerge. We attribute these differences to the existence of oligomeric intermediates, sampling various membrane-bound conformational states of the protein, and their intimate coupling to lipid rearrangement and dynamics. Molecular dynamics simulations capture the influence of various membrane-bound conformational states on the lipid and cholesterol dynamics, providing molecular interpretations to the FRET and FCS experiments. Our study establishes a microscopic connection between membrane binding and conformational changes and their influence on lipid reorganization during PFT-mediated cell lysis. Additionally, our study provides insights into membrane-mediated protein interactions widely implicated in cell signaling, fusion, folding, and other biomolecular processes.</description><subject>Bacterial diseases</subject><subject>Bacterial Toxins - chemistry</subject><subject>Bacterial Toxins - pharmacology</subject><subject>Biological Sciences</subject><subject>Cell fusion</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - drug effects</subject><subject>Cholesterol</subject><subject>Correlation analysis</subject><subject>Coupling (molecular)</subject><subject>Cytolysins</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fluorescence spectroscopy</subject><subject>Food contamination</subject><subject>Food poisoning</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - pharmacology</subject><subject>Hemolysin Proteins - chemistry</subject><subject>Hemolysin Proteins - pharmacology</subject><subject>Intermediates</subject><subject>Kinetics</subject><subject>Leakage</subject><subject>Lipids</subject><subject>Listeriolysin O</subject><subject>Lysis</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Oligomerization</subject><subject>Pore formation</subject><subject>Protein Conformation</subject><subject>Protein folding</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Toxins</subject><subject>Unilamellar Liposomes - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1P3DAQtaqiskDPvVWWeg6MP-I4l0poBRQJqRc4WxPb2YZu7NT2Ivbfk4gtpaeR5n3M6D1CvjA4Z9CIiylgPmeaM902jKkPZMWgZZWSLXwkKwDeVFpyeUxOcn4EgLbW8IkcCzYLFMCK2HVMyW-xeEenFIsfArUx9DGNWIYYcEtzmdFMMTg6-rFLGDx1-4DjYDN1uzSEDcVS0P6m3Z5OMflqkS_rEp-HkM_IUY_b7D8f5il5uL66X_-o7n7e3K4v7yorOStVrZxUDQOl2k5j3dTSNSixR-uEkFKBVt46phuuO8sEF0xa1jvb9W3feVDilHx_9Z123eid9aEk3JopDSOmvYk4mP-RMPwym_hk1BxF2ywG3w4GKf7Z-VzMY9ylOYNsOK8Fr2uQemZdvLJsijkn379dYGCWVszSivnXyqz4-v6xN_7fGsQLj9GLwA</recordid><startdate>20190625</startdate><enddate>20190625</enddate><creator>Ponmalar, Ilanila I</creator><creator>Cheerla, Ramesh</creator><creator>Ayappa, K Ganapathy</creator><creator>Basu, Jaydeep K</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20190625</creationdate><title>Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins</title><author>Ponmalar, Ilanila I ; Cheerla, Ramesh ; Ayappa, K Ganapathy ; Basu, Jaydeep K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-56d46710669b8a5754d7a4afacd33446086ecd18728bc132314c1fdcbf9fbe063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacterial diseases</topic><topic>Bacterial Toxins - chemistry</topic><topic>Bacterial Toxins - pharmacology</topic><topic>Biological Sciences</topic><topic>Cell fusion</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - drug effects</topic><topic>Cholesterol</topic><topic>Correlation analysis</topic><topic>Coupling (molecular)</topic><topic>Cytolysins</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fluorescence spectroscopy</topic><topic>Food contamination</topic><topic>Food poisoning</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - pharmacology</topic><topic>Hemolysin Proteins - chemistry</topic><topic>Hemolysin Proteins - pharmacology</topic><topic>Intermediates</topic><topic>Kinetics</topic><topic>Leakage</topic><topic>Lipids</topic><topic>Listeriolysin O</topic><topic>Lysis</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Oligomerization</topic><topic>Pore formation</topic><topic>Protein Conformation</topic><topic>Protein folding</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Toxins</topic><topic>Unilamellar Liposomes - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponmalar, Ilanila I</creatorcontrib><creatorcontrib>Cheerla, Ramesh</creatorcontrib><creatorcontrib>Ayappa, K Ganapathy</creatorcontrib><creatorcontrib>Basu, Jaydeep K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponmalar, Ilanila I</au><au>Cheerla, Ramesh</au><au>Ayappa, K Ganapathy</au><au>Basu, Jaydeep K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-06-25</date><risdate>2019</risdate><volume>116</volume><issue>26</issue><spage>12839</spage><epage>12844</epage><pages>12839-12844</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformational changes on the bilayer, the connection between intermediate oligomeric states and lipid reorganization during pore formation is largely unexplored. Cholesterol-dependent cytolysins (CDCs) are a subclass of PFTs widely implicated in food poisoning and other related infections. Using a prototypical CDC, listeriolysin O (LLO), we provide a microscopic connection between pore formation, lipid dynamics, and leakage kinetics by using a combination of Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) measurements on single giant unilamellar vesicles (GUVs). Upon exposure to LLO, two distinct populations of GUVs with widely different leakage kinetics emerge. We attribute these differences to the existence of oligomeric intermediates, sampling various membrane-bound conformational states of the protein, and their intimate coupling to lipid rearrangement and dynamics. Molecular dynamics simulations capture the influence of various membrane-bound conformational states on the lipid and cholesterol dynamics, providing molecular interpretations to the FRET and FCS experiments. Our study establishes a microscopic connection between membrane binding and conformational changes and their influence on lipid reorganization during PFT-mediated cell lysis. Additionally, our study provides insights into membrane-mediated protein interactions widely implicated in cell signaling, fusion, folding, and other biomolecular processes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31189600</pmid><doi>10.1073/pnas.1821897116</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (26), p.12839-12844
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600976
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Bacterial diseases
Bacterial Toxins - chemistry
Bacterial Toxins - pharmacology
Biological Sciences
Cell fusion
Cell Membrane - chemistry
Cell Membrane - drug effects
Cholesterol
Correlation analysis
Coupling (molecular)
Cytolysins
Energy transfer
Fluorescence
Fluorescence Resonance Energy Transfer
Fluorescence spectroscopy
Food contamination
Food poisoning
Heat-Shock Proteins - chemistry
Heat-Shock Proteins - pharmacology
Hemolysin Proteins - chemistry
Hemolysin Proteins - pharmacology
Intermediates
Kinetics
Leakage
Lipids
Listeriolysin O
Lysis
Membrane proteins
Membranes
Molecular dynamics
Molecular Dynamics Simulation
Oligomerization
Pore formation
Protein Conformation
Protein folding
Protein interaction
Proteins
Toxins
Unilamellar Liposomes - chemistry
title Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlated%20protein%20conformational%20states%20and%20membrane%20dynamics%20during%20attack%20by%20pore-forming%20toxins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ponmalar,%20Ilanila%20I&rft.date=2019-06-25&rft.volume=116&rft.issue=26&rft.spage=12839&rft.epage=12844&rft.pages=12839-12844&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1821897116&rft_dat=%3Cproquest_pubme%3E2253255048%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253255048&rft_id=info:pmid/31189600&rfr_iscdi=true