Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions
Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary “stress failure” that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endot...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-06, Vol.116 (26), p.12980-12985 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12985 |
---|---|
container_issue | 26 |
container_start_page | 12980 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Friedrich, Emily E. Hong, Zhigang Xiong, Shiqin Zhong, Ming Di, Anke Rehman, Jalees Komarova, Yulia A. Malik, Asrar B. |
description | Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary “stress failure” that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, β-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures. |
doi_str_mv | 10.1073/pnas.1902165116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26744131</jstor_id><sourcerecordid>26744131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-11dfdfa3bd57275315b3cc649b2474e74b96969f715fc14498dc59fcf8cd3f5d3</originalsourceid><addsrcrecordid>eNpdkUuLFDEUhYMoTju6dqUE3LipmdzKq2ojyDA-YEAXug6pPKbTVCdlUtXQ_npT9Ng-SCBw75fDPfcg9BLIFRBJr6eoyxX0pAXBAcQjtAHSQyNYTx6jDSGtbDrWsgv0rJQdIaTnHXmKLihAJyjvN-hwG22at24MesTGjSP-GtzPBHjvbNCzK3jKrpQluyZEuxhn8bjEe3zQxSyjznh7nFyud-_0EMYwH_EhaGxDycs0hxRx8ljbrcsuFrxbolmL5Tl64vVY3IuH9xJ9_3D77eZTc_fl4-eb93eN4aSfGwDrrdd0sFy2klPgAzWmuhtaJpmTbOhFPV4C9wYY6ztreO-N74ylnlt6id6ddKdlqI6Mi3PWo5py2Ot8VEkH9W8nhq26TwclRF2W6KvA2weBnH4srsxqH8q6Jx1dWopqWy4AKJOyom_-Q3dpybHaWylaQUq6Sl2fKJNTKdn58zBA1JqpWjNVfzKtP17_7eHM_w6xAq9OwK7MKZ_7rZCMAQX6C3qGqsU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253256308</pqid></control><display><type>article</type><title>Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Friedrich, Emily E. ; Hong, Zhigang ; Xiong, Shiqin ; Zhong, Ming ; Di, Anke ; Rehman, Jalees ; Komarova, Yulia A. ; Malik, Asrar B.</creator><creatorcontrib>Friedrich, Emily E. ; Hong, Zhigang ; Xiong, Shiqin ; Zhong, Ming ; Di, Anke ; Rehman, Jalees ; Komarova, Yulia A. ; Malik, Asrar B.</creatorcontrib><description>Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary “stress failure” that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, β-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1902165116</identifier><identifier>PMID: 31186359</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Activation ; Adherens junctions ; Adherens Junctions - pathology ; Adherens Junctions - ultrastructure ; Animals ; Antigens, CD - genetics ; Antigens, CD - metabolism ; Aorta ; Arterial Pressure - physiology ; Biological Sciences ; Blood Pressure - physiology ; Cadherins ; Cadherins - genetics ; Cadherins - metabolism ; Calcium ; Calpain ; Capillary Permeability - drug effects ; Capillary pressure ; Cells, Cultured ; Clonal deletion ; Congestive heart failure ; Degradation ; Disease Models, Animal ; Disruption ; Edema ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - pathology ; Endothelial Cells - ultrastructure ; Endothelium, Vascular - cytology ; Endothelium, Vascular - pathology ; Endothelium, Vascular - ultrastructure ; Female ; Gene Knock-In Techniques ; High altitude ; Humans ; Hydrostatic Pressure - adverse effects ; Injury prevention ; Intercellular Signaling Peptides and Proteins - pharmacology ; Internalization ; Ion channels ; Ion Channels - antagonists & inhibitors ; Ion Channels - genetics ; Ion Channels - metabolism ; Lung - blood supply ; Lungs ; Male ; Mechanical stimuli ; Mechanotransduction, Cellular ; Mice ; Mice, Knockout ; Microscopy, Electron, Transmission ; Microvessels - cytology ; Microvessels - drug effects ; Microvessels - pathology ; Pressure ; Primary Cell Culture ; Proteins ; Pulmonary Edema - etiology ; Pulmonary Edema - pathology ; Pulmonary Edema - physiopathology ; Respiratory Insufficiency - etiology ; Respiratory Insufficiency - pathology ; Respiratory Insufficiency - prevention & control ; Signal transduction ; Spider Venoms - pharmacology ; Stimuli ; Stress ; Trauma ; β-Catenin</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (26), p.12980-12985</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jun 25, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-11dfdfa3bd57275315b3cc649b2474e74b96969f715fc14498dc59fcf8cd3f5d3</citedby><cites>FETCH-LOGICAL-c509t-11dfdfa3bd57275315b3cc649b2474e74b96969f715fc14498dc59fcf8cd3f5d3</cites><orcidid>0000-0002-2787-9292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26744131$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26744131$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27906,27907,53773,53775,57999,58232</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31186359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Friedrich, Emily E.</creatorcontrib><creatorcontrib>Hong, Zhigang</creatorcontrib><creatorcontrib>Xiong, Shiqin</creatorcontrib><creatorcontrib>Zhong, Ming</creatorcontrib><creatorcontrib>Di, Anke</creatorcontrib><creatorcontrib>Rehman, Jalees</creatorcontrib><creatorcontrib>Komarova, Yulia A.</creatorcontrib><creatorcontrib>Malik, Asrar B.</creatorcontrib><title>Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary “stress failure” that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, β-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures.</description><subject>Activation</subject><subject>Adherens junctions</subject><subject>Adherens Junctions - pathology</subject><subject>Adherens Junctions - ultrastructure</subject><subject>Animals</subject><subject>Antigens, CD - genetics</subject><subject>Antigens, CD - metabolism</subject><subject>Aorta</subject><subject>Arterial Pressure - physiology</subject><subject>Biological Sciences</subject><subject>Blood Pressure - physiology</subject><subject>Cadherins</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Calcium</subject><subject>Calpain</subject><subject>Capillary Permeability - drug effects</subject><subject>Capillary pressure</subject><subject>Cells, Cultured</subject><subject>Clonal deletion</subject><subject>Congestive heart failure</subject><subject>Degradation</subject><subject>Disease Models, Animal</subject><subject>Disruption</subject><subject>Edema</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - pathology</subject><subject>Endothelial Cells - ultrastructure</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - pathology</subject><subject>Endothelium, Vascular - ultrastructure</subject><subject>Female</subject><subject>Gene Knock-In Techniques</subject><subject>High altitude</subject><subject>Humans</subject><subject>Hydrostatic Pressure - adverse effects</subject><subject>Injury prevention</subject><subject>Intercellular Signaling Peptides and Proteins - pharmacology</subject><subject>Internalization</subject><subject>Ion channels</subject><subject>Ion Channels - antagonists & inhibitors</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Lung - blood supply</subject><subject>Lungs</subject><subject>Male</subject><subject>Mechanical stimuli</subject><subject>Mechanotransduction, Cellular</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microscopy, Electron, Transmission</subject><subject>Microvessels - cytology</subject><subject>Microvessels - drug effects</subject><subject>Microvessels - pathology</subject><subject>Pressure</subject><subject>Primary Cell Culture</subject><subject>Proteins</subject><subject>Pulmonary Edema - etiology</subject><subject>Pulmonary Edema - pathology</subject><subject>Pulmonary Edema - physiopathology</subject><subject>Respiratory Insufficiency - etiology</subject><subject>Respiratory Insufficiency - pathology</subject><subject>Respiratory Insufficiency - prevention & control</subject><subject>Signal transduction</subject><subject>Spider Venoms - pharmacology</subject><subject>Stimuli</subject><subject>Stress</subject><subject>Trauma</subject><subject>β-Catenin</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUuLFDEUhYMoTju6dqUE3LipmdzKq2ojyDA-YEAXug6pPKbTVCdlUtXQ_npT9Ng-SCBw75fDPfcg9BLIFRBJr6eoyxX0pAXBAcQjtAHSQyNYTx6jDSGtbDrWsgv0rJQdIaTnHXmKLihAJyjvN-hwG22at24MesTGjSP-GtzPBHjvbNCzK3jKrpQluyZEuxhn8bjEe3zQxSyjznh7nFyud-_0EMYwH_EhaGxDycs0hxRx8ljbrcsuFrxbolmL5Tl64vVY3IuH9xJ9_3D77eZTc_fl4-eb93eN4aSfGwDrrdd0sFy2klPgAzWmuhtaJpmTbOhFPV4C9wYY6ztreO-N74ylnlt6id6ddKdlqI6Mi3PWo5py2Ot8VEkH9W8nhq26TwclRF2W6KvA2weBnH4srsxqH8q6Jx1dWopqWy4AKJOyom_-Q3dpybHaWylaQUq6Sl2fKJNTKdn58zBA1JqpWjNVfzKtP17_7eHM_w6xAq9OwK7MKZ_7rZCMAQX6C3qGqsU</recordid><startdate>20190625</startdate><enddate>20190625</enddate><creator>Friedrich, Emily E.</creator><creator>Hong, Zhigang</creator><creator>Xiong, Shiqin</creator><creator>Zhong, Ming</creator><creator>Di, Anke</creator><creator>Rehman, Jalees</creator><creator>Komarova, Yulia A.</creator><creator>Malik, Asrar B.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2787-9292</orcidid></search><sort><creationdate>20190625</creationdate><title>Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions</title><author>Friedrich, Emily E. ; Hong, Zhigang ; Xiong, Shiqin ; Zhong, Ming ; Di, Anke ; Rehman, Jalees ; Komarova, Yulia A. ; Malik, Asrar B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-11dfdfa3bd57275315b3cc649b2474e74b96969f715fc14498dc59fcf8cd3f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Adherens junctions</topic><topic>Adherens Junctions - pathology</topic><topic>Adherens Junctions - ultrastructure</topic><topic>Animals</topic><topic>Antigens, CD - genetics</topic><topic>Antigens, CD - metabolism</topic><topic>Aorta</topic><topic>Arterial Pressure - physiology</topic><topic>Biological Sciences</topic><topic>Blood Pressure - physiology</topic><topic>Cadherins</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Calcium</topic><topic>Calpain</topic><topic>Capillary Permeability - drug effects</topic><topic>Capillary pressure</topic><topic>Cells, Cultured</topic><topic>Clonal deletion</topic><topic>Congestive heart failure</topic><topic>Degradation</topic><topic>Disease Models, Animal</topic><topic>Disruption</topic><topic>Edema</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - pathology</topic><topic>Endothelial Cells - ultrastructure</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - pathology</topic><topic>Endothelium, Vascular - ultrastructure</topic><topic>Female</topic><topic>Gene Knock-In Techniques</topic><topic>High altitude</topic><topic>Humans</topic><topic>Hydrostatic Pressure - adverse effects</topic><topic>Injury prevention</topic><topic>Intercellular Signaling Peptides and Proteins - pharmacology</topic><topic>Internalization</topic><topic>Ion channels</topic><topic>Ion Channels - antagonists & inhibitors</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Lung - blood supply</topic><topic>Lungs</topic><topic>Male</topic><topic>Mechanical stimuli</topic><topic>Mechanotransduction, Cellular</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microscopy, Electron, Transmission</topic><topic>Microvessels - cytology</topic><topic>Microvessels - drug effects</topic><topic>Microvessels - pathology</topic><topic>Pressure</topic><topic>Primary Cell Culture</topic><topic>Proteins</topic><topic>Pulmonary Edema - etiology</topic><topic>Pulmonary Edema - pathology</topic><topic>Pulmonary Edema - physiopathology</topic><topic>Respiratory Insufficiency - etiology</topic><topic>Respiratory Insufficiency - pathology</topic><topic>Respiratory Insufficiency - prevention & control</topic><topic>Signal transduction</topic><topic>Spider Venoms - pharmacology</topic><topic>Stimuli</topic><topic>Stress</topic><topic>Trauma</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedrich, Emily E.</creatorcontrib><creatorcontrib>Hong, Zhigang</creatorcontrib><creatorcontrib>Xiong, Shiqin</creatorcontrib><creatorcontrib>Zhong, Ming</creatorcontrib><creatorcontrib>Di, Anke</creatorcontrib><creatorcontrib>Rehman, Jalees</creatorcontrib><creatorcontrib>Komarova, Yulia A.</creatorcontrib><creatorcontrib>Malik, Asrar B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedrich, Emily E.</au><au>Hong, Zhigang</au><au>Xiong, Shiqin</au><au>Zhong, Ming</au><au>Di, Anke</au><au>Rehman, Jalees</au><au>Komarova, Yulia A.</au><au>Malik, Asrar B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-06-25</date><risdate>2019</risdate><volume>116</volume><issue>26</issue><spage>12980</spage><epage>12985</epage><pages>12980-12985</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary “stress failure” that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, β-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31186359</pmid><doi>10.1073/pnas.1902165116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2787-9292</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (26), p.12980-12985 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600969 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Activation Adherens junctions Adherens Junctions - pathology Adherens Junctions - ultrastructure Animals Antigens, CD - genetics Antigens, CD - metabolism Aorta Arterial Pressure - physiology Biological Sciences Blood Pressure - physiology Cadherins Cadherins - genetics Cadherins - metabolism Calcium Calpain Capillary Permeability - drug effects Capillary pressure Cells, Cultured Clonal deletion Congestive heart failure Degradation Disease Models, Animal Disruption Edema Endothelial cells Endothelial Cells - cytology Endothelial Cells - pathology Endothelial Cells - ultrastructure Endothelium, Vascular - cytology Endothelium, Vascular - pathology Endothelium, Vascular - ultrastructure Female Gene Knock-In Techniques High altitude Humans Hydrostatic Pressure - adverse effects Injury prevention Intercellular Signaling Peptides and Proteins - pharmacology Internalization Ion channels Ion Channels - antagonists & inhibitors Ion Channels - genetics Ion Channels - metabolism Lung - blood supply Lungs Male Mechanical stimuli Mechanotransduction, Cellular Mice Mice, Knockout Microscopy, Electron, Transmission Microvessels - cytology Microvessels - drug effects Microvessels - pathology Pressure Primary Cell Culture Proteins Pulmonary Edema - etiology Pulmonary Edema - pathology Pulmonary Edema - physiopathology Respiratory Insufficiency - etiology Respiratory Insufficiency - pathology Respiratory Insufficiency - prevention & control Signal transduction Spider Venoms - pharmacology Stimuli Stress Trauma β-Catenin |
title | Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endothelial%20cell%20Piezo1%20mediates%20pressure-induced%20lung%20vascular%20hyperpermeability%20via%20disruption%20of%20adherens%20junctions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Friedrich,%20Emily%20E.&rft.date=2019-06-25&rft.volume=116&rft.issue=26&rft.spage=12980&rft.epage=12985&rft.pages=12980-12985&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1902165116&rft_dat=%3Cjstor_pubme%3E26744131%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253256308&rft_id=info:pmid/31186359&rft_jstor_id=26744131&rfr_iscdi=true |