Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions

Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary “stress failure” that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-06, Vol.116 (26), p.12980-12985
Hauptverfasser: Friedrich, Emily E., Hong, Zhigang, Xiong, Shiqin, Zhong, Ming, Di, Anke, Rehman, Jalees, Komarova, Yulia A., Malik, Asrar B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12985
container_issue 26
container_start_page 12980
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Friedrich, Emily E.
Hong, Zhigang
Xiong, Shiqin
Zhong, Ming
Di, Anke
Rehman, Jalees
Komarova, Yulia A.
Malik, Asrar B.
description Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary “stress failure” that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, β-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures.
doi_str_mv 10.1073/pnas.1902165116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26744131</jstor_id><sourcerecordid>26744131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-11dfdfa3bd57275315b3cc649b2474e74b96969f715fc14498dc59fcf8cd3f5d3</originalsourceid><addsrcrecordid>eNpdkUuLFDEUhYMoTju6dqUE3LipmdzKq2ojyDA-YEAXug6pPKbTVCdlUtXQ_npT9Ng-SCBw75fDPfcg9BLIFRBJr6eoyxX0pAXBAcQjtAHSQyNYTx6jDSGtbDrWsgv0rJQdIaTnHXmKLihAJyjvN-hwG22at24MesTGjSP-GtzPBHjvbNCzK3jKrpQluyZEuxhn8bjEe3zQxSyjznh7nFyud-_0EMYwH_EhaGxDycs0hxRx8ljbrcsuFrxbolmL5Tl64vVY3IuH9xJ9_3D77eZTc_fl4-eb93eN4aSfGwDrrdd0sFy2klPgAzWmuhtaJpmTbOhFPV4C9wYY6ztreO-N74ylnlt6id6ddKdlqI6Mi3PWo5py2Ot8VEkH9W8nhq26TwclRF2W6KvA2weBnH4srsxqH8q6Jx1dWopqWy4AKJOyom_-Q3dpybHaWylaQUq6Sl2fKJNTKdn58zBA1JqpWjNVfzKtP17_7eHM_w6xAq9OwK7MKZ_7rZCMAQX6C3qGqsU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253256308</pqid></control><display><type>article</type><title>Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Friedrich, Emily E. ; Hong, Zhigang ; Xiong, Shiqin ; Zhong, Ming ; Di, Anke ; Rehman, Jalees ; Komarova, Yulia A. ; Malik, Asrar B.</creator><creatorcontrib>Friedrich, Emily E. ; Hong, Zhigang ; Xiong, Shiqin ; Zhong, Ming ; Di, Anke ; Rehman, Jalees ; Komarova, Yulia A. ; Malik, Asrar B.</creatorcontrib><description>Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary “stress failure” that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, β-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1902165116</identifier><identifier>PMID: 31186359</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Activation ; Adherens junctions ; Adherens Junctions - pathology ; Adherens Junctions - ultrastructure ; Animals ; Antigens, CD - genetics ; Antigens, CD - metabolism ; Aorta ; Arterial Pressure - physiology ; Biological Sciences ; Blood Pressure - physiology ; Cadherins ; Cadherins - genetics ; Cadherins - metabolism ; Calcium ; Calpain ; Capillary Permeability - drug effects ; Capillary pressure ; Cells, Cultured ; Clonal deletion ; Congestive heart failure ; Degradation ; Disease Models, Animal ; Disruption ; Edema ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - pathology ; Endothelial Cells - ultrastructure ; Endothelium, Vascular - cytology ; Endothelium, Vascular - pathology ; Endothelium, Vascular - ultrastructure ; Female ; Gene Knock-In Techniques ; High altitude ; Humans ; Hydrostatic Pressure - adverse effects ; Injury prevention ; Intercellular Signaling Peptides and Proteins - pharmacology ; Internalization ; Ion channels ; Ion Channels - antagonists &amp; inhibitors ; Ion Channels - genetics ; Ion Channels - metabolism ; Lung - blood supply ; Lungs ; Male ; Mechanical stimuli ; Mechanotransduction, Cellular ; Mice ; Mice, Knockout ; Microscopy, Electron, Transmission ; Microvessels - cytology ; Microvessels - drug effects ; Microvessels - pathology ; Pressure ; Primary Cell Culture ; Proteins ; Pulmonary Edema - etiology ; Pulmonary Edema - pathology ; Pulmonary Edema - physiopathology ; Respiratory Insufficiency - etiology ; Respiratory Insufficiency - pathology ; Respiratory Insufficiency - prevention &amp; control ; Signal transduction ; Spider Venoms - pharmacology ; Stimuli ; Stress ; Trauma ; β-Catenin</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (26), p.12980-12985</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jun 25, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-11dfdfa3bd57275315b3cc649b2474e74b96969f715fc14498dc59fcf8cd3f5d3</citedby><cites>FETCH-LOGICAL-c509t-11dfdfa3bd57275315b3cc649b2474e74b96969f715fc14498dc59fcf8cd3f5d3</cites><orcidid>0000-0002-2787-9292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26744131$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26744131$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27906,27907,53773,53775,57999,58232</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31186359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Friedrich, Emily E.</creatorcontrib><creatorcontrib>Hong, Zhigang</creatorcontrib><creatorcontrib>Xiong, Shiqin</creatorcontrib><creatorcontrib>Zhong, Ming</creatorcontrib><creatorcontrib>Di, Anke</creatorcontrib><creatorcontrib>Rehman, Jalees</creatorcontrib><creatorcontrib>Komarova, Yulia A.</creatorcontrib><creatorcontrib>Malik, Asrar B.</creatorcontrib><title>Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary “stress failure” that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, β-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures.</description><subject>Activation</subject><subject>Adherens junctions</subject><subject>Adherens Junctions - pathology</subject><subject>Adherens Junctions - ultrastructure</subject><subject>Animals</subject><subject>Antigens, CD - genetics</subject><subject>Antigens, CD - metabolism</subject><subject>Aorta</subject><subject>Arterial Pressure - physiology</subject><subject>Biological Sciences</subject><subject>Blood Pressure - physiology</subject><subject>Cadherins</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Calcium</subject><subject>Calpain</subject><subject>Capillary Permeability - drug effects</subject><subject>Capillary pressure</subject><subject>Cells, Cultured</subject><subject>Clonal deletion</subject><subject>Congestive heart failure</subject><subject>Degradation</subject><subject>Disease Models, Animal</subject><subject>Disruption</subject><subject>Edema</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - pathology</subject><subject>Endothelial Cells - ultrastructure</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - pathology</subject><subject>Endothelium, Vascular - ultrastructure</subject><subject>Female</subject><subject>Gene Knock-In Techniques</subject><subject>High altitude</subject><subject>Humans</subject><subject>Hydrostatic Pressure - adverse effects</subject><subject>Injury prevention</subject><subject>Intercellular Signaling Peptides and Proteins - pharmacology</subject><subject>Internalization</subject><subject>Ion channels</subject><subject>Ion Channels - antagonists &amp; inhibitors</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Lung - blood supply</subject><subject>Lungs</subject><subject>Male</subject><subject>Mechanical stimuli</subject><subject>Mechanotransduction, Cellular</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microscopy, Electron, Transmission</subject><subject>Microvessels - cytology</subject><subject>Microvessels - drug effects</subject><subject>Microvessels - pathology</subject><subject>Pressure</subject><subject>Primary Cell Culture</subject><subject>Proteins</subject><subject>Pulmonary Edema - etiology</subject><subject>Pulmonary Edema - pathology</subject><subject>Pulmonary Edema - physiopathology</subject><subject>Respiratory Insufficiency - etiology</subject><subject>Respiratory Insufficiency - pathology</subject><subject>Respiratory Insufficiency - prevention &amp; control</subject><subject>Signal transduction</subject><subject>Spider Venoms - pharmacology</subject><subject>Stimuli</subject><subject>Stress</subject><subject>Trauma</subject><subject>β-Catenin</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUuLFDEUhYMoTju6dqUE3LipmdzKq2ojyDA-YEAXug6pPKbTVCdlUtXQ_npT9Ng-SCBw75fDPfcg9BLIFRBJr6eoyxX0pAXBAcQjtAHSQyNYTx6jDSGtbDrWsgv0rJQdIaTnHXmKLihAJyjvN-hwG22at24MesTGjSP-GtzPBHjvbNCzK3jKrpQluyZEuxhn8bjEe3zQxSyjznh7nFyud-_0EMYwH_EhaGxDycs0hxRx8ljbrcsuFrxbolmL5Tl64vVY3IuH9xJ9_3D77eZTc_fl4-eb93eN4aSfGwDrrdd0sFy2klPgAzWmuhtaJpmTbOhFPV4C9wYY6ztreO-N74ylnlt6id6ddKdlqI6Mi3PWo5py2Ot8VEkH9W8nhq26TwclRF2W6KvA2weBnH4srsxqH8q6Jx1dWopqWy4AKJOyom_-Q3dpybHaWylaQUq6Sl2fKJNTKdn58zBA1JqpWjNVfzKtP17_7eHM_w6xAq9OwK7MKZ_7rZCMAQX6C3qGqsU</recordid><startdate>20190625</startdate><enddate>20190625</enddate><creator>Friedrich, Emily E.</creator><creator>Hong, Zhigang</creator><creator>Xiong, Shiqin</creator><creator>Zhong, Ming</creator><creator>Di, Anke</creator><creator>Rehman, Jalees</creator><creator>Komarova, Yulia A.</creator><creator>Malik, Asrar B.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2787-9292</orcidid></search><sort><creationdate>20190625</creationdate><title>Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions</title><author>Friedrich, Emily E. ; Hong, Zhigang ; Xiong, Shiqin ; Zhong, Ming ; Di, Anke ; Rehman, Jalees ; Komarova, Yulia A. ; Malik, Asrar B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-11dfdfa3bd57275315b3cc649b2474e74b96969f715fc14498dc59fcf8cd3f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Adherens junctions</topic><topic>Adherens Junctions - pathology</topic><topic>Adherens Junctions - ultrastructure</topic><topic>Animals</topic><topic>Antigens, CD - genetics</topic><topic>Antigens, CD - metabolism</topic><topic>Aorta</topic><topic>Arterial Pressure - physiology</topic><topic>Biological Sciences</topic><topic>Blood Pressure - physiology</topic><topic>Cadherins</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Calcium</topic><topic>Calpain</topic><topic>Capillary Permeability - drug effects</topic><topic>Capillary pressure</topic><topic>Cells, Cultured</topic><topic>Clonal deletion</topic><topic>Congestive heart failure</topic><topic>Degradation</topic><topic>Disease Models, Animal</topic><topic>Disruption</topic><topic>Edema</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - pathology</topic><topic>Endothelial Cells - ultrastructure</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - pathology</topic><topic>Endothelium, Vascular - ultrastructure</topic><topic>Female</topic><topic>Gene Knock-In Techniques</topic><topic>High altitude</topic><topic>Humans</topic><topic>Hydrostatic Pressure - adverse effects</topic><topic>Injury prevention</topic><topic>Intercellular Signaling Peptides and Proteins - pharmacology</topic><topic>Internalization</topic><topic>Ion channels</topic><topic>Ion Channels - antagonists &amp; inhibitors</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Lung - blood supply</topic><topic>Lungs</topic><topic>Male</topic><topic>Mechanical stimuli</topic><topic>Mechanotransduction, Cellular</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microscopy, Electron, Transmission</topic><topic>Microvessels - cytology</topic><topic>Microvessels - drug effects</topic><topic>Microvessels - pathology</topic><topic>Pressure</topic><topic>Primary Cell Culture</topic><topic>Proteins</topic><topic>Pulmonary Edema - etiology</topic><topic>Pulmonary Edema - pathology</topic><topic>Pulmonary Edema - physiopathology</topic><topic>Respiratory Insufficiency - etiology</topic><topic>Respiratory Insufficiency - pathology</topic><topic>Respiratory Insufficiency - prevention &amp; control</topic><topic>Signal transduction</topic><topic>Spider Venoms - pharmacology</topic><topic>Stimuli</topic><topic>Stress</topic><topic>Trauma</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedrich, Emily E.</creatorcontrib><creatorcontrib>Hong, Zhigang</creatorcontrib><creatorcontrib>Xiong, Shiqin</creatorcontrib><creatorcontrib>Zhong, Ming</creatorcontrib><creatorcontrib>Di, Anke</creatorcontrib><creatorcontrib>Rehman, Jalees</creatorcontrib><creatorcontrib>Komarova, Yulia A.</creatorcontrib><creatorcontrib>Malik, Asrar B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedrich, Emily E.</au><au>Hong, Zhigang</au><au>Xiong, Shiqin</au><au>Zhong, Ming</au><au>Di, Anke</au><au>Rehman, Jalees</au><au>Komarova, Yulia A.</au><au>Malik, Asrar B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-06-25</date><risdate>2019</risdate><volume>116</volume><issue>26</issue><spage>12980</spage><epage>12985</epage><pages>12980-12985</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary “stress failure” that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, β-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31186359</pmid><doi>10.1073/pnas.1902165116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2787-9292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (26), p.12980-12985
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600969
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Activation
Adherens junctions
Adherens Junctions - pathology
Adherens Junctions - ultrastructure
Animals
Antigens, CD - genetics
Antigens, CD - metabolism
Aorta
Arterial Pressure - physiology
Biological Sciences
Blood Pressure - physiology
Cadherins
Cadherins - genetics
Cadherins - metabolism
Calcium
Calpain
Capillary Permeability - drug effects
Capillary pressure
Cells, Cultured
Clonal deletion
Congestive heart failure
Degradation
Disease Models, Animal
Disruption
Edema
Endothelial cells
Endothelial Cells - cytology
Endothelial Cells - pathology
Endothelial Cells - ultrastructure
Endothelium, Vascular - cytology
Endothelium, Vascular - pathology
Endothelium, Vascular - ultrastructure
Female
Gene Knock-In Techniques
High altitude
Humans
Hydrostatic Pressure - adverse effects
Injury prevention
Intercellular Signaling Peptides and Proteins - pharmacology
Internalization
Ion channels
Ion Channels - antagonists & inhibitors
Ion Channels - genetics
Ion Channels - metabolism
Lung - blood supply
Lungs
Male
Mechanical stimuli
Mechanotransduction, Cellular
Mice
Mice, Knockout
Microscopy, Electron, Transmission
Microvessels - cytology
Microvessels - drug effects
Microvessels - pathology
Pressure
Primary Cell Culture
Proteins
Pulmonary Edema - etiology
Pulmonary Edema - pathology
Pulmonary Edema - physiopathology
Respiratory Insufficiency - etiology
Respiratory Insufficiency - pathology
Respiratory Insufficiency - prevention & control
Signal transduction
Spider Venoms - pharmacology
Stimuli
Stress
Trauma
β-Catenin
title Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endothelial%20cell%20Piezo1%20mediates%20pressure-induced%20lung%20vascular%20hyperpermeability%20via%20disruption%20of%20adherens%20junctions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Friedrich,%20Emily%20E.&rft.date=2019-06-25&rft.volume=116&rft.issue=26&rft.spage=12980&rft.epage=12985&rft.pages=12980-12985&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1902165116&rft_dat=%3Cjstor_pubme%3E26744131%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253256308&rft_id=info:pmid/31186359&rft_jstor_id=26744131&rfr_iscdi=true