Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs
Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. L...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-06, Vol.116 (26), p.13006-13015 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13015 |
---|---|
container_issue | 26 |
container_start_page | 13006 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Wang, Wang Shen, Mengcheng Fischer, Conrad Basu, Ratnadeep Hazra, Saugata Couvineau, Pierre Paul, Manish Wang, Faqi Toth, Sandra Mix, Doran S. Poglitsch, Marko Gerard, Norma P. Bouvier, Michel Vederas, John C. Penninger, Josef M. Kassiri, Zamaneh Oudit, Gavin Y. |
description | Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. Loss of APLN potentiated angiotensin II (Ang II)-induced AAA formation, aortic rupture, and reduced survival. Formation of AAA was driven by increased smooth muscle cell (SMC) apoptosis and oxidative stress in Apln
−/y aorta and in APLN-deficient cultured murine and human aortic SMCs. Ang II-induced myogenic response and hypertension were greater in Apln
−/y mice, however, an equivalent hypertension induced by phenylephrine, an α-adrenergic agonist, did not cause AAA or rupture in Apln
−/y mice. We further identified Ang converting enzyme 2 (ACE2), the major negative regulator of the renin-Ang system (RAS), as an important target of APLN action in the vasculature. Using a combination of genetic, pharmacological, and modeling approaches, we identified neutral endopeptidase (NEP) that is up-regulated in human AAA tissue as a major enzyme that metabolizes and inactivates APLN-17 peptide. We designed and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2, that is resistant to NEP cleavage. This stable APLN analog ameliorated Ang II-mediated adverse aortic remodeling and AAA formation in an established model of AAA, high-fat diet (HFD) in Ldlr
−/− mice. Our findings define a critical role of APLN in AAA formation through induction of ACE2 and protection of vascular SMCs, whereas stable APLN analogs provide an effective therapy for vascular diseases. |
doi_str_mv | 10.1073/pnas.1900152116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26744134</jstor_id><sourcerecordid>26744134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-7deaed2d1312f6d6278baeba6799686c178475a7f058ba8e1352ad07920810863</originalsourceid><addsrcrecordid>eNpVkc2LFDEQxYMo7rh69qQEPPduJd2ddC7CsvgFC170HGo61bMZZpI2SQsL_vGmmXVUSEjg_epVJY-x1wKuBOj2eg6Yr4QBEL0UQj1hGwFGNKoz8JRtAKRuhk52F-xFznsAMP0Az9lFK8RgetNv2K-bmQ4-8DnFQmPJHHfoQy4cty4efcADx5iKHzkGWtJDPtaL4-We1p1wpmUVUzwQjxOvTEm1hoKLM83FO8zEE2WfC4bqeuqG1Tfu8kv2bMJDpleP5yX7_vHDt9vPzd3XT19ub-6asRNQGu0IyUknWiEn5ZTUwxZpi0obowY1Cj10ukc9QV-FgUTbS3SgjYRBwKDaS_b-5Dsv2yO5kcI6pJ2TP2J6sBG9_V8J_t7u4k-r1Pplq8G7R4MUfyyUi93HJdVHZCtl39ZlpKnU9YkaU8w50XTuIMCucdk1Lvs3rlrx9t_BzvyffCrw5gTsc4nprEulu060XfsbudOeOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253253929</pqid></control><display><type>article</type><title>Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Wang ; Shen, Mengcheng ; Fischer, Conrad ; Basu, Ratnadeep ; Hazra, Saugata ; Couvineau, Pierre ; Paul, Manish ; Wang, Faqi ; Toth, Sandra ; Mix, Doran S. ; Poglitsch, Marko ; Gerard, Norma P. ; Bouvier, Michel ; Vederas, John C. ; Penninger, Josef M. ; Kassiri, Zamaneh ; Oudit, Gavin Y.</creator><creatorcontrib>Wang, Wang ; Shen, Mengcheng ; Fischer, Conrad ; Basu, Ratnadeep ; Hazra, Saugata ; Couvineau, Pierre ; Paul, Manish ; Wang, Faqi ; Toth, Sandra ; Mix, Doran S. ; Poglitsch, Marko ; Gerard, Norma P. ; Bouvier, Michel ; Vederas, John C. ; Penninger, Josef M. ; Kassiri, Zamaneh ; Oudit, Gavin Y.</creatorcontrib><description>Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. Loss of APLN potentiated angiotensin II (Ang II)-induced AAA formation, aortic rupture, and reduced survival. Formation of AAA was driven by increased smooth muscle cell (SMC) apoptosis and oxidative stress in Apln
−/y aorta and in APLN-deficient cultured murine and human aortic SMCs. Ang II-induced myogenic response and hypertension were greater in Apln
−/y mice, however, an equivalent hypertension induced by phenylephrine, an α-adrenergic agonist, did not cause AAA or rupture in Apln
−/y mice. We further identified Ang converting enzyme 2 (ACE2), the major negative regulator of the renin-Ang system (RAS), as an important target of APLN action in the vasculature. Using a combination of genetic, pharmacological, and modeling approaches, we identified neutral endopeptidase (NEP) that is up-regulated in human AAA tissue as a major enzyme that metabolizes and inactivates APLN-17 peptide. We designed and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2, that is resistant to NEP cleavage. This stable APLN analog ameliorated Ang II-mediated adverse aortic remodeling and AAA formation in an established model of AAA, high-fat diet (HFD) in Ldlr
−/− mice. Our findings define a critical role of APLN in AAA formation through induction of ACE2 and protection of vascular SMCs, whereas stable APLN analogs provide an effective therapy for vascular diseases.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1900152116</identifier><identifier>PMID: 31189595</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>ACE2 ; Aged ; Aged, 80 and over ; Analogs ; Aneurysms ; Angiotensin ; Angiotensin II ; Angiotensin II - administration & dosage ; Angiotensin-converting enzyme 2 ; Animals ; Aorta ; Aorta, Abdominal - cytology ; Aorta, Abdominal - pathology ; Aortic Aneurysm, Abdominal - drug therapy ; Aortic Aneurysm, Abdominal - etiology ; Aortic Aneurysm, Abdominal - pathology ; Aortic aneurysms ; Apelin - genetics ; Apelin - metabolism ; Apoptosis ; Apoptosis - drug effects ; Apoptosis - genetics ; Biological Sciences ; Cardiovascular Agents - chemistry ; Cardiovascular Agents - pharmacology ; Cardiovascular Agents - therapeutic use ; Diet, High-Fat - adverse effects ; Disease Models, Animal ; Endopeptidases ; Enzymes ; Female ; Gene Knockdown Techniques ; High fat diet ; Humans ; Hypertension ; Male ; Mice, Transgenic ; Middle Aged ; Muscles ; Myocytes, Smooth Muscle ; Neprilysin ; Neprilysin - genetics ; Neprilysin - metabolism ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidative Stress - genetics ; Peptidyl-Dipeptidase A - metabolism ; Pharmacology ; Phenylephrine ; Phenylephrine - administration & dosage ; PNAS Plus ; Primary Cell Culture ; Proteolysis - drug effects ; Receptors, LDL - genetics ; Receptors, LDL - metabolism ; Renin ; RNA, Small Interfering - metabolism ; Rupture ; Rupturing ; Smooth muscle ; Sympathomimetics ; Therapy ; Vascular diseases ; Vascular Remodeling - drug effects ; Vascular Remodeling - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (26), p.13006-13015</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jun 25, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-7deaed2d1312f6d6278baeba6799686c178475a7f058ba8e1352ad07920810863</citedby><cites>FETCH-LOGICAL-c410t-7deaed2d1312f6d6278baeba6799686c178475a7f058ba8e1352ad07920810863</cites><orcidid>0000-0003-1128-0100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26744134$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26744134$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31189595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wang</creatorcontrib><creatorcontrib>Shen, Mengcheng</creatorcontrib><creatorcontrib>Fischer, Conrad</creatorcontrib><creatorcontrib>Basu, Ratnadeep</creatorcontrib><creatorcontrib>Hazra, Saugata</creatorcontrib><creatorcontrib>Couvineau, Pierre</creatorcontrib><creatorcontrib>Paul, Manish</creatorcontrib><creatorcontrib>Wang, Faqi</creatorcontrib><creatorcontrib>Toth, Sandra</creatorcontrib><creatorcontrib>Mix, Doran S.</creatorcontrib><creatorcontrib>Poglitsch, Marko</creatorcontrib><creatorcontrib>Gerard, Norma P.</creatorcontrib><creatorcontrib>Bouvier, Michel</creatorcontrib><creatorcontrib>Vederas, John C.</creatorcontrib><creatorcontrib>Penninger, Josef M.</creatorcontrib><creatorcontrib>Kassiri, Zamaneh</creatorcontrib><creatorcontrib>Oudit, Gavin Y.</creatorcontrib><title>Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. Loss of APLN potentiated angiotensin II (Ang II)-induced AAA formation, aortic rupture, and reduced survival. Formation of AAA was driven by increased smooth muscle cell (SMC) apoptosis and oxidative stress in Apln
−/y aorta and in APLN-deficient cultured murine and human aortic SMCs. Ang II-induced myogenic response and hypertension were greater in Apln
−/y mice, however, an equivalent hypertension induced by phenylephrine, an α-adrenergic agonist, did not cause AAA or rupture in Apln
−/y mice. We further identified Ang converting enzyme 2 (ACE2), the major negative regulator of the renin-Ang system (RAS), as an important target of APLN action in the vasculature. Using a combination of genetic, pharmacological, and modeling approaches, we identified neutral endopeptidase (NEP) that is up-regulated in human AAA tissue as a major enzyme that metabolizes and inactivates APLN-17 peptide. We designed and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2, that is resistant to NEP cleavage. This stable APLN analog ameliorated Ang II-mediated adverse aortic remodeling and AAA formation in an established model of AAA, high-fat diet (HFD) in Ldlr
−/− mice. Our findings define a critical role of APLN in AAA formation through induction of ACE2 and protection of vascular SMCs, whereas stable APLN analogs provide an effective therapy for vascular diseases.</description><subject>ACE2</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Analogs</subject><subject>Aneurysms</subject><subject>Angiotensin</subject><subject>Angiotensin II</subject><subject>Angiotensin II - administration & dosage</subject><subject>Angiotensin-converting enzyme 2</subject><subject>Animals</subject><subject>Aorta</subject><subject>Aorta, Abdominal - cytology</subject><subject>Aorta, Abdominal - pathology</subject><subject>Aortic Aneurysm, Abdominal - drug therapy</subject><subject>Aortic Aneurysm, Abdominal - etiology</subject><subject>Aortic Aneurysm, Abdominal - pathology</subject><subject>Aortic aneurysms</subject><subject>Apelin - genetics</subject><subject>Apelin - metabolism</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - genetics</subject><subject>Biological Sciences</subject><subject>Cardiovascular Agents - chemistry</subject><subject>Cardiovascular Agents - pharmacology</subject><subject>Cardiovascular Agents - therapeutic use</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Disease Models, Animal</subject><subject>Endopeptidases</subject><subject>Enzymes</subject><subject>Female</subject><subject>Gene Knockdown Techniques</subject><subject>High fat diet</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Male</subject><subject>Mice, Transgenic</subject><subject>Middle Aged</subject><subject>Muscles</subject><subject>Myocytes, Smooth Muscle</subject><subject>Neprilysin</subject><subject>Neprilysin - genetics</subject><subject>Neprilysin - metabolism</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - genetics</subject><subject>Peptidyl-Dipeptidase A - metabolism</subject><subject>Pharmacology</subject><subject>Phenylephrine</subject><subject>Phenylephrine - administration & dosage</subject><subject>PNAS Plus</subject><subject>Primary Cell Culture</subject><subject>Proteolysis - drug effects</subject><subject>Receptors, LDL - genetics</subject><subject>Receptors, LDL - metabolism</subject><subject>Renin</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Rupture</subject><subject>Rupturing</subject><subject>Smooth muscle</subject><subject>Sympathomimetics</subject><subject>Therapy</subject><subject>Vascular diseases</subject><subject>Vascular Remodeling - drug effects</subject><subject>Vascular Remodeling - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc2LFDEQxYMo7rh69qQEPPduJd2ddC7CsvgFC170HGo61bMZZpI2SQsL_vGmmXVUSEjg_epVJY-x1wKuBOj2eg6Yr4QBEL0UQj1hGwFGNKoz8JRtAKRuhk52F-xFznsAMP0Az9lFK8RgetNv2K-bmQ4-8DnFQmPJHHfoQy4cty4efcADx5iKHzkGWtJDPtaL4-We1p1wpmUVUzwQjxOvTEm1hoKLM83FO8zEE2WfC4bqeuqG1Tfu8kv2bMJDpleP5yX7_vHDt9vPzd3XT19ub-6asRNQGu0IyUknWiEn5ZTUwxZpi0obowY1Cj10ukc9QV-FgUTbS3SgjYRBwKDaS_b-5Dsv2yO5kcI6pJ2TP2J6sBG9_V8J_t7u4k-r1Pplq8G7R4MUfyyUi93HJdVHZCtl39ZlpKnU9YkaU8w50XTuIMCucdk1Lvs3rlrx9t_BzvyffCrw5gTsc4nprEulu060XfsbudOeOw</recordid><startdate>20190625</startdate><enddate>20190625</enddate><creator>Wang, Wang</creator><creator>Shen, Mengcheng</creator><creator>Fischer, Conrad</creator><creator>Basu, Ratnadeep</creator><creator>Hazra, Saugata</creator><creator>Couvineau, Pierre</creator><creator>Paul, Manish</creator><creator>Wang, Faqi</creator><creator>Toth, Sandra</creator><creator>Mix, Doran S.</creator><creator>Poglitsch, Marko</creator><creator>Gerard, Norma P.</creator><creator>Bouvier, Michel</creator><creator>Vederas, John C.</creator><creator>Penninger, Josef M.</creator><creator>Kassiri, Zamaneh</creator><creator>Oudit, Gavin Y.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1128-0100</orcidid></search><sort><creationdate>20190625</creationdate><title>Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs</title><author>Wang, Wang ; Shen, Mengcheng ; Fischer, Conrad ; Basu, Ratnadeep ; Hazra, Saugata ; Couvineau, Pierre ; Paul, Manish ; Wang, Faqi ; Toth, Sandra ; Mix, Doran S. ; Poglitsch, Marko ; Gerard, Norma P. ; Bouvier, Michel ; Vederas, John C. ; Penninger, Josef M. ; Kassiri, Zamaneh ; Oudit, Gavin Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-7deaed2d1312f6d6278baeba6799686c178475a7f058ba8e1352ad07920810863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ACE2</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Analogs</topic><topic>Aneurysms</topic><topic>Angiotensin</topic><topic>Angiotensin II</topic><topic>Angiotensin II - administration & dosage</topic><topic>Angiotensin-converting enzyme 2</topic><topic>Animals</topic><topic>Aorta</topic><topic>Aorta, Abdominal - cytology</topic><topic>Aorta, Abdominal - pathology</topic><topic>Aortic Aneurysm, Abdominal - drug therapy</topic><topic>Aortic Aneurysm, Abdominal - etiology</topic><topic>Aortic Aneurysm, Abdominal - pathology</topic><topic>Aortic aneurysms</topic><topic>Apelin - genetics</topic><topic>Apelin - metabolism</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - genetics</topic><topic>Biological Sciences</topic><topic>Cardiovascular Agents - chemistry</topic><topic>Cardiovascular Agents - pharmacology</topic><topic>Cardiovascular Agents - therapeutic use</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Disease Models, Animal</topic><topic>Endopeptidases</topic><topic>Enzymes</topic><topic>Female</topic><topic>Gene Knockdown Techniques</topic><topic>High fat diet</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Male</topic><topic>Mice, Transgenic</topic><topic>Middle Aged</topic><topic>Muscles</topic><topic>Myocytes, Smooth Muscle</topic><topic>Neprilysin</topic><topic>Neprilysin - genetics</topic><topic>Neprilysin - metabolism</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - genetics</topic><topic>Peptidyl-Dipeptidase A - metabolism</topic><topic>Pharmacology</topic><topic>Phenylephrine</topic><topic>Phenylephrine - administration & dosage</topic><topic>PNAS Plus</topic><topic>Primary Cell Culture</topic><topic>Proteolysis - drug effects</topic><topic>Receptors, LDL - genetics</topic><topic>Receptors, LDL - metabolism</topic><topic>Renin</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Rupture</topic><topic>Rupturing</topic><topic>Smooth muscle</topic><topic>Sympathomimetics</topic><topic>Therapy</topic><topic>Vascular diseases</topic><topic>Vascular Remodeling - drug effects</topic><topic>Vascular Remodeling - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wang</creatorcontrib><creatorcontrib>Shen, Mengcheng</creatorcontrib><creatorcontrib>Fischer, Conrad</creatorcontrib><creatorcontrib>Basu, Ratnadeep</creatorcontrib><creatorcontrib>Hazra, Saugata</creatorcontrib><creatorcontrib>Couvineau, Pierre</creatorcontrib><creatorcontrib>Paul, Manish</creatorcontrib><creatorcontrib>Wang, Faqi</creatorcontrib><creatorcontrib>Toth, Sandra</creatorcontrib><creatorcontrib>Mix, Doran S.</creatorcontrib><creatorcontrib>Poglitsch, Marko</creatorcontrib><creatorcontrib>Gerard, Norma P.</creatorcontrib><creatorcontrib>Bouvier, Michel</creatorcontrib><creatorcontrib>Vederas, John C.</creatorcontrib><creatorcontrib>Penninger, Josef M.</creatorcontrib><creatorcontrib>Kassiri, Zamaneh</creatorcontrib><creatorcontrib>Oudit, Gavin Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wang</au><au>Shen, Mengcheng</au><au>Fischer, Conrad</au><au>Basu, Ratnadeep</au><au>Hazra, Saugata</au><au>Couvineau, Pierre</au><au>Paul, Manish</au><au>Wang, Faqi</au><au>Toth, Sandra</au><au>Mix, Doran S.</au><au>Poglitsch, Marko</au><au>Gerard, Norma P.</au><au>Bouvier, Michel</au><au>Vederas, John C.</au><au>Penninger, Josef M.</au><au>Kassiri, Zamaneh</au><au>Oudit, Gavin Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-06-25</date><risdate>2019</risdate><volume>116</volume><issue>26</issue><spage>13006</spage><epage>13015</epage><pages>13006-13015</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. Loss of APLN potentiated angiotensin II (Ang II)-induced AAA formation, aortic rupture, and reduced survival. Formation of AAA was driven by increased smooth muscle cell (SMC) apoptosis and oxidative stress in Apln
−/y aorta and in APLN-deficient cultured murine and human aortic SMCs. Ang II-induced myogenic response and hypertension were greater in Apln
−/y mice, however, an equivalent hypertension induced by phenylephrine, an α-adrenergic agonist, did not cause AAA or rupture in Apln
−/y mice. We further identified Ang converting enzyme 2 (ACE2), the major negative regulator of the renin-Ang system (RAS), as an important target of APLN action in the vasculature. Using a combination of genetic, pharmacological, and modeling approaches, we identified neutral endopeptidase (NEP) that is up-regulated in human AAA tissue as a major enzyme that metabolizes and inactivates APLN-17 peptide. We designed and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2, that is resistant to NEP cleavage. This stable APLN analog ameliorated Ang II-mediated adverse aortic remodeling and AAA formation in an established model of AAA, high-fat diet (HFD) in Ldlr
−/− mice. Our findings define a critical role of APLN in AAA formation through induction of ACE2 and protection of vascular SMCs, whereas stable APLN analogs provide an effective therapy for vascular diseases.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31189595</pmid><doi>10.1073/pnas.1900152116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1128-0100</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (26), p.13006-13015 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600956 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | ACE2 Aged Aged, 80 and over Analogs Aneurysms Angiotensin Angiotensin II Angiotensin II - administration & dosage Angiotensin-converting enzyme 2 Animals Aorta Aorta, Abdominal - cytology Aorta, Abdominal - pathology Aortic Aneurysm, Abdominal - drug therapy Aortic Aneurysm, Abdominal - etiology Aortic Aneurysm, Abdominal - pathology Aortic aneurysms Apelin - genetics Apelin - metabolism Apoptosis Apoptosis - drug effects Apoptosis - genetics Biological Sciences Cardiovascular Agents - chemistry Cardiovascular Agents - pharmacology Cardiovascular Agents - therapeutic use Diet, High-Fat - adverse effects Disease Models, Animal Endopeptidases Enzymes Female Gene Knockdown Techniques High fat diet Humans Hypertension Male Mice, Transgenic Middle Aged Muscles Myocytes, Smooth Muscle Neprilysin Neprilysin - genetics Neprilysin - metabolism Oxidative stress Oxidative Stress - drug effects Oxidative Stress - genetics Peptidyl-Dipeptidase A - metabolism Pharmacology Phenylephrine Phenylephrine - administration & dosage PNAS Plus Primary Cell Culture Proteolysis - drug effects Receptors, LDL - genetics Receptors, LDL - metabolism Renin RNA, Small Interfering - metabolism Rupture Rupturing Smooth muscle Sympathomimetics Therapy Vascular diseases Vascular Remodeling - drug effects Vascular Remodeling - genetics |
title | Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apelin%20protects%20against%20abdominal%20aortic%20aneurysm%20and%20the%20therapeutic%20role%20of%20neutral%20endopeptidase%20resistant%20apelin%20analogs&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Wang&rft.date=2019-06-25&rft.volume=116&rft.issue=26&rft.spage=13006&rft.epage=13015&rft.pages=13006-13015&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1900152116&rft_dat=%3Cjstor_pubme%3E26744134%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253253929&rft_id=info:pmid/31189595&rft_jstor_id=26744134&rfr_iscdi=true |