Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs

Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-06, Vol.116 (26), p.13006-13015
Hauptverfasser: Wang, Wang, Shen, Mengcheng, Fischer, Conrad, Basu, Ratnadeep, Hazra, Saugata, Couvineau, Pierre, Paul, Manish, Wang, Faqi, Toth, Sandra, Mix, Doran S., Poglitsch, Marko, Gerard, Norma P., Bouvier, Michel, Vederas, John C., Penninger, Josef M., Kassiri, Zamaneh, Oudit, Gavin Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13015
container_issue 26
container_start_page 13006
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Wang, Wang
Shen, Mengcheng
Fischer, Conrad
Basu, Ratnadeep
Hazra, Saugata
Couvineau, Pierre
Paul, Manish
Wang, Faqi
Toth, Sandra
Mix, Doran S.
Poglitsch, Marko
Gerard, Norma P.
Bouvier, Michel
Vederas, John C.
Penninger, Josef M.
Kassiri, Zamaneh
Oudit, Gavin Y.
description Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. Loss of APLN potentiated angiotensin II (Ang II)-induced AAA formation, aortic rupture, and reduced survival. Formation of AAA was driven by increased smooth muscle cell (SMC) apoptosis and oxidative stress in Apln −/y aorta and in APLN-deficient cultured murine and human aortic SMCs. Ang II-induced myogenic response and hypertension were greater in Apln −/y mice, however, an equivalent hypertension induced by phenylephrine, an α-adrenergic agonist, did not cause AAA or rupture in Apln −/y mice. We further identified Ang converting enzyme 2 (ACE2), the major negative regulator of the renin-Ang system (RAS), as an important target of APLN action in the vasculature. Using a combination of genetic, pharmacological, and modeling approaches, we identified neutral endopeptidase (NEP) that is up-regulated in human AAA tissue as a major enzyme that metabolizes and inactivates APLN-17 peptide. We designed and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2, that is resistant to NEP cleavage. This stable APLN analog ameliorated Ang II-mediated adverse aortic remodeling and AAA formation in an established model of AAA, high-fat diet (HFD) in Ldlr −/− mice. Our findings define a critical role of APLN in AAA formation through induction of ACE2 and protection of vascular SMCs, whereas stable APLN analogs provide an effective therapy for vascular diseases.
doi_str_mv 10.1073/pnas.1900152116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26744134</jstor_id><sourcerecordid>26744134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-7deaed2d1312f6d6278baeba6799686c178475a7f058ba8e1352ad07920810863</originalsourceid><addsrcrecordid>eNpVkc2LFDEQxYMo7rh69qQEPPduJd2ddC7CsvgFC170HGo61bMZZpI2SQsL_vGmmXVUSEjg_epVJY-x1wKuBOj2eg6Yr4QBEL0UQj1hGwFGNKoz8JRtAKRuhk52F-xFznsAMP0Az9lFK8RgetNv2K-bmQ4-8DnFQmPJHHfoQy4cty4efcADx5iKHzkGWtJDPtaL4-We1p1wpmUVUzwQjxOvTEm1hoKLM83FO8zEE2WfC4bqeuqG1Tfu8kv2bMJDpleP5yX7_vHDt9vPzd3XT19ub-6asRNQGu0IyUknWiEn5ZTUwxZpi0obowY1Cj10ukc9QV-FgUTbS3SgjYRBwKDaS_b-5Dsv2yO5kcI6pJ2TP2J6sBG9_V8J_t7u4k-r1Pplq8G7R4MUfyyUi93HJdVHZCtl39ZlpKnU9YkaU8w50XTuIMCucdk1Lvs3rlrx9t_BzvyffCrw5gTsc4nprEulu060XfsbudOeOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253253929</pqid></control><display><type>article</type><title>Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Wang ; Shen, Mengcheng ; Fischer, Conrad ; Basu, Ratnadeep ; Hazra, Saugata ; Couvineau, Pierre ; Paul, Manish ; Wang, Faqi ; Toth, Sandra ; Mix, Doran S. ; Poglitsch, Marko ; Gerard, Norma P. ; Bouvier, Michel ; Vederas, John C. ; Penninger, Josef M. ; Kassiri, Zamaneh ; Oudit, Gavin Y.</creator><creatorcontrib>Wang, Wang ; Shen, Mengcheng ; Fischer, Conrad ; Basu, Ratnadeep ; Hazra, Saugata ; Couvineau, Pierre ; Paul, Manish ; Wang, Faqi ; Toth, Sandra ; Mix, Doran S. ; Poglitsch, Marko ; Gerard, Norma P. ; Bouvier, Michel ; Vederas, John C. ; Penninger, Josef M. ; Kassiri, Zamaneh ; Oudit, Gavin Y.</creatorcontrib><description>Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. Loss of APLN potentiated angiotensin II (Ang II)-induced AAA formation, aortic rupture, and reduced survival. Formation of AAA was driven by increased smooth muscle cell (SMC) apoptosis and oxidative stress in Apln −/y aorta and in APLN-deficient cultured murine and human aortic SMCs. Ang II-induced myogenic response and hypertension were greater in Apln −/y mice, however, an equivalent hypertension induced by phenylephrine, an α-adrenergic agonist, did not cause AAA or rupture in Apln −/y mice. We further identified Ang converting enzyme 2 (ACE2), the major negative regulator of the renin-Ang system (RAS), as an important target of APLN action in the vasculature. Using a combination of genetic, pharmacological, and modeling approaches, we identified neutral endopeptidase (NEP) that is up-regulated in human AAA tissue as a major enzyme that metabolizes and inactivates APLN-17 peptide. We designed and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2, that is resistant to NEP cleavage. This stable APLN analog ameliorated Ang II-mediated adverse aortic remodeling and AAA formation in an established model of AAA, high-fat diet (HFD) in Ldlr −/− mice. Our findings define a critical role of APLN in AAA formation through induction of ACE2 and protection of vascular SMCs, whereas stable APLN analogs provide an effective therapy for vascular diseases.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1900152116</identifier><identifier>PMID: 31189595</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>ACE2 ; Aged ; Aged, 80 and over ; Analogs ; Aneurysms ; Angiotensin ; Angiotensin II ; Angiotensin II - administration &amp; dosage ; Angiotensin-converting enzyme 2 ; Animals ; Aorta ; Aorta, Abdominal - cytology ; Aorta, Abdominal - pathology ; Aortic Aneurysm, Abdominal - drug therapy ; Aortic Aneurysm, Abdominal - etiology ; Aortic Aneurysm, Abdominal - pathology ; Aortic aneurysms ; Apelin - genetics ; Apelin - metabolism ; Apoptosis ; Apoptosis - drug effects ; Apoptosis - genetics ; Biological Sciences ; Cardiovascular Agents - chemistry ; Cardiovascular Agents - pharmacology ; Cardiovascular Agents - therapeutic use ; Diet, High-Fat - adverse effects ; Disease Models, Animal ; Endopeptidases ; Enzymes ; Female ; Gene Knockdown Techniques ; High fat diet ; Humans ; Hypertension ; Male ; Mice, Transgenic ; Middle Aged ; Muscles ; Myocytes, Smooth Muscle ; Neprilysin ; Neprilysin - genetics ; Neprilysin - metabolism ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidative Stress - genetics ; Peptidyl-Dipeptidase A - metabolism ; Pharmacology ; Phenylephrine ; Phenylephrine - administration &amp; dosage ; PNAS Plus ; Primary Cell Culture ; Proteolysis - drug effects ; Receptors, LDL - genetics ; Receptors, LDL - metabolism ; Renin ; RNA, Small Interfering - metabolism ; Rupture ; Rupturing ; Smooth muscle ; Sympathomimetics ; Therapy ; Vascular diseases ; Vascular Remodeling - drug effects ; Vascular Remodeling - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (26), p.13006-13015</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jun 25, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-7deaed2d1312f6d6278baeba6799686c178475a7f058ba8e1352ad07920810863</citedby><cites>FETCH-LOGICAL-c410t-7deaed2d1312f6d6278baeba6799686c178475a7f058ba8e1352ad07920810863</cites><orcidid>0000-0003-1128-0100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26744134$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26744134$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31189595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wang</creatorcontrib><creatorcontrib>Shen, Mengcheng</creatorcontrib><creatorcontrib>Fischer, Conrad</creatorcontrib><creatorcontrib>Basu, Ratnadeep</creatorcontrib><creatorcontrib>Hazra, Saugata</creatorcontrib><creatorcontrib>Couvineau, Pierre</creatorcontrib><creatorcontrib>Paul, Manish</creatorcontrib><creatorcontrib>Wang, Faqi</creatorcontrib><creatorcontrib>Toth, Sandra</creatorcontrib><creatorcontrib>Mix, Doran S.</creatorcontrib><creatorcontrib>Poglitsch, Marko</creatorcontrib><creatorcontrib>Gerard, Norma P.</creatorcontrib><creatorcontrib>Bouvier, Michel</creatorcontrib><creatorcontrib>Vederas, John C.</creatorcontrib><creatorcontrib>Penninger, Josef M.</creatorcontrib><creatorcontrib>Kassiri, Zamaneh</creatorcontrib><creatorcontrib>Oudit, Gavin Y.</creatorcontrib><title>Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. Loss of APLN potentiated angiotensin II (Ang II)-induced AAA formation, aortic rupture, and reduced survival. Formation of AAA was driven by increased smooth muscle cell (SMC) apoptosis and oxidative stress in Apln −/y aorta and in APLN-deficient cultured murine and human aortic SMCs. Ang II-induced myogenic response and hypertension were greater in Apln −/y mice, however, an equivalent hypertension induced by phenylephrine, an α-adrenergic agonist, did not cause AAA or rupture in Apln −/y mice. We further identified Ang converting enzyme 2 (ACE2), the major negative regulator of the renin-Ang system (RAS), as an important target of APLN action in the vasculature. Using a combination of genetic, pharmacological, and modeling approaches, we identified neutral endopeptidase (NEP) that is up-regulated in human AAA tissue as a major enzyme that metabolizes and inactivates APLN-17 peptide. We designed and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2, that is resistant to NEP cleavage. This stable APLN analog ameliorated Ang II-mediated adverse aortic remodeling and AAA formation in an established model of AAA, high-fat diet (HFD) in Ldlr −/− mice. Our findings define a critical role of APLN in AAA formation through induction of ACE2 and protection of vascular SMCs, whereas stable APLN analogs provide an effective therapy for vascular diseases.</description><subject>ACE2</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Analogs</subject><subject>Aneurysms</subject><subject>Angiotensin</subject><subject>Angiotensin II</subject><subject>Angiotensin II - administration &amp; dosage</subject><subject>Angiotensin-converting enzyme 2</subject><subject>Animals</subject><subject>Aorta</subject><subject>Aorta, Abdominal - cytology</subject><subject>Aorta, Abdominal - pathology</subject><subject>Aortic Aneurysm, Abdominal - drug therapy</subject><subject>Aortic Aneurysm, Abdominal - etiology</subject><subject>Aortic Aneurysm, Abdominal - pathology</subject><subject>Aortic aneurysms</subject><subject>Apelin - genetics</subject><subject>Apelin - metabolism</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - genetics</subject><subject>Biological Sciences</subject><subject>Cardiovascular Agents - chemistry</subject><subject>Cardiovascular Agents - pharmacology</subject><subject>Cardiovascular Agents - therapeutic use</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Disease Models, Animal</subject><subject>Endopeptidases</subject><subject>Enzymes</subject><subject>Female</subject><subject>Gene Knockdown Techniques</subject><subject>High fat diet</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Male</subject><subject>Mice, Transgenic</subject><subject>Middle Aged</subject><subject>Muscles</subject><subject>Myocytes, Smooth Muscle</subject><subject>Neprilysin</subject><subject>Neprilysin - genetics</subject><subject>Neprilysin - metabolism</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - genetics</subject><subject>Peptidyl-Dipeptidase A - metabolism</subject><subject>Pharmacology</subject><subject>Phenylephrine</subject><subject>Phenylephrine - administration &amp; dosage</subject><subject>PNAS Plus</subject><subject>Primary Cell Culture</subject><subject>Proteolysis - drug effects</subject><subject>Receptors, LDL - genetics</subject><subject>Receptors, LDL - metabolism</subject><subject>Renin</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Rupture</subject><subject>Rupturing</subject><subject>Smooth muscle</subject><subject>Sympathomimetics</subject><subject>Therapy</subject><subject>Vascular diseases</subject><subject>Vascular Remodeling - drug effects</subject><subject>Vascular Remodeling - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc2LFDEQxYMo7rh69qQEPPduJd2ddC7CsvgFC170HGo61bMZZpI2SQsL_vGmmXVUSEjg_epVJY-x1wKuBOj2eg6Yr4QBEL0UQj1hGwFGNKoz8JRtAKRuhk52F-xFznsAMP0Az9lFK8RgetNv2K-bmQ4-8DnFQmPJHHfoQy4cty4efcADx5iKHzkGWtJDPtaL4-We1p1wpmUVUzwQjxOvTEm1hoKLM83FO8zEE2WfC4bqeuqG1Tfu8kv2bMJDpleP5yX7_vHDt9vPzd3XT19ub-6asRNQGu0IyUknWiEn5ZTUwxZpi0obowY1Cj10ukc9QV-FgUTbS3SgjYRBwKDaS_b-5Dsv2yO5kcI6pJ2TP2J6sBG9_V8J_t7u4k-r1Pplq8G7R4MUfyyUi93HJdVHZCtl39ZlpKnU9YkaU8w50XTuIMCucdk1Lvs3rlrx9t_BzvyffCrw5gTsc4nprEulu060XfsbudOeOw</recordid><startdate>20190625</startdate><enddate>20190625</enddate><creator>Wang, Wang</creator><creator>Shen, Mengcheng</creator><creator>Fischer, Conrad</creator><creator>Basu, Ratnadeep</creator><creator>Hazra, Saugata</creator><creator>Couvineau, Pierre</creator><creator>Paul, Manish</creator><creator>Wang, Faqi</creator><creator>Toth, Sandra</creator><creator>Mix, Doran S.</creator><creator>Poglitsch, Marko</creator><creator>Gerard, Norma P.</creator><creator>Bouvier, Michel</creator><creator>Vederas, John C.</creator><creator>Penninger, Josef M.</creator><creator>Kassiri, Zamaneh</creator><creator>Oudit, Gavin Y.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1128-0100</orcidid></search><sort><creationdate>20190625</creationdate><title>Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs</title><author>Wang, Wang ; Shen, Mengcheng ; Fischer, Conrad ; Basu, Ratnadeep ; Hazra, Saugata ; Couvineau, Pierre ; Paul, Manish ; Wang, Faqi ; Toth, Sandra ; Mix, Doran S. ; Poglitsch, Marko ; Gerard, Norma P. ; Bouvier, Michel ; Vederas, John C. ; Penninger, Josef M. ; Kassiri, Zamaneh ; Oudit, Gavin Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-7deaed2d1312f6d6278baeba6799686c178475a7f058ba8e1352ad07920810863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ACE2</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Analogs</topic><topic>Aneurysms</topic><topic>Angiotensin</topic><topic>Angiotensin II</topic><topic>Angiotensin II - administration &amp; dosage</topic><topic>Angiotensin-converting enzyme 2</topic><topic>Animals</topic><topic>Aorta</topic><topic>Aorta, Abdominal - cytology</topic><topic>Aorta, Abdominal - pathology</topic><topic>Aortic Aneurysm, Abdominal - drug therapy</topic><topic>Aortic Aneurysm, Abdominal - etiology</topic><topic>Aortic Aneurysm, Abdominal - pathology</topic><topic>Aortic aneurysms</topic><topic>Apelin - genetics</topic><topic>Apelin - metabolism</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - genetics</topic><topic>Biological Sciences</topic><topic>Cardiovascular Agents - chemistry</topic><topic>Cardiovascular Agents - pharmacology</topic><topic>Cardiovascular Agents - therapeutic use</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Disease Models, Animal</topic><topic>Endopeptidases</topic><topic>Enzymes</topic><topic>Female</topic><topic>Gene Knockdown Techniques</topic><topic>High fat diet</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Male</topic><topic>Mice, Transgenic</topic><topic>Middle Aged</topic><topic>Muscles</topic><topic>Myocytes, Smooth Muscle</topic><topic>Neprilysin</topic><topic>Neprilysin - genetics</topic><topic>Neprilysin - metabolism</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - genetics</topic><topic>Peptidyl-Dipeptidase A - metabolism</topic><topic>Pharmacology</topic><topic>Phenylephrine</topic><topic>Phenylephrine - administration &amp; dosage</topic><topic>PNAS Plus</topic><topic>Primary Cell Culture</topic><topic>Proteolysis - drug effects</topic><topic>Receptors, LDL - genetics</topic><topic>Receptors, LDL - metabolism</topic><topic>Renin</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Rupture</topic><topic>Rupturing</topic><topic>Smooth muscle</topic><topic>Sympathomimetics</topic><topic>Therapy</topic><topic>Vascular diseases</topic><topic>Vascular Remodeling - drug effects</topic><topic>Vascular Remodeling - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wang</creatorcontrib><creatorcontrib>Shen, Mengcheng</creatorcontrib><creatorcontrib>Fischer, Conrad</creatorcontrib><creatorcontrib>Basu, Ratnadeep</creatorcontrib><creatorcontrib>Hazra, Saugata</creatorcontrib><creatorcontrib>Couvineau, Pierre</creatorcontrib><creatorcontrib>Paul, Manish</creatorcontrib><creatorcontrib>Wang, Faqi</creatorcontrib><creatorcontrib>Toth, Sandra</creatorcontrib><creatorcontrib>Mix, Doran S.</creatorcontrib><creatorcontrib>Poglitsch, Marko</creatorcontrib><creatorcontrib>Gerard, Norma P.</creatorcontrib><creatorcontrib>Bouvier, Michel</creatorcontrib><creatorcontrib>Vederas, John C.</creatorcontrib><creatorcontrib>Penninger, Josef M.</creatorcontrib><creatorcontrib>Kassiri, Zamaneh</creatorcontrib><creatorcontrib>Oudit, Gavin Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wang</au><au>Shen, Mengcheng</au><au>Fischer, Conrad</au><au>Basu, Ratnadeep</au><au>Hazra, Saugata</au><au>Couvineau, Pierre</au><au>Paul, Manish</au><au>Wang, Faqi</au><au>Toth, Sandra</au><au>Mix, Doran S.</au><au>Poglitsch, Marko</au><au>Gerard, Norma P.</au><au>Bouvier, Michel</au><au>Vederas, John C.</au><au>Penninger, Josef M.</au><au>Kassiri, Zamaneh</au><au>Oudit, Gavin Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-06-25</date><risdate>2019</risdate><volume>116</volume><issue>26</issue><spage>13006</spage><epage>13015</epage><pages>13006-13015</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. Loss of APLN potentiated angiotensin II (Ang II)-induced AAA formation, aortic rupture, and reduced survival. Formation of AAA was driven by increased smooth muscle cell (SMC) apoptosis and oxidative stress in Apln −/y aorta and in APLN-deficient cultured murine and human aortic SMCs. Ang II-induced myogenic response and hypertension were greater in Apln −/y mice, however, an equivalent hypertension induced by phenylephrine, an α-adrenergic agonist, did not cause AAA or rupture in Apln −/y mice. We further identified Ang converting enzyme 2 (ACE2), the major negative regulator of the renin-Ang system (RAS), as an important target of APLN action in the vasculature. Using a combination of genetic, pharmacological, and modeling approaches, we identified neutral endopeptidase (NEP) that is up-regulated in human AAA tissue as a major enzyme that metabolizes and inactivates APLN-17 peptide. We designed and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2, that is resistant to NEP cleavage. This stable APLN analog ameliorated Ang II-mediated adverse aortic remodeling and AAA formation in an established model of AAA, high-fat diet (HFD) in Ldlr −/− mice. Our findings define a critical role of APLN in AAA formation through induction of ACE2 and protection of vascular SMCs, whereas stable APLN analogs provide an effective therapy for vascular diseases.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31189595</pmid><doi>10.1073/pnas.1900152116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1128-0100</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (26), p.13006-13015
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600956
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects ACE2
Aged
Aged, 80 and over
Analogs
Aneurysms
Angiotensin
Angiotensin II
Angiotensin II - administration & dosage
Angiotensin-converting enzyme 2
Animals
Aorta
Aorta, Abdominal - cytology
Aorta, Abdominal - pathology
Aortic Aneurysm, Abdominal - drug therapy
Aortic Aneurysm, Abdominal - etiology
Aortic Aneurysm, Abdominal - pathology
Aortic aneurysms
Apelin - genetics
Apelin - metabolism
Apoptosis
Apoptosis - drug effects
Apoptosis - genetics
Biological Sciences
Cardiovascular Agents - chemistry
Cardiovascular Agents - pharmacology
Cardiovascular Agents - therapeutic use
Diet, High-Fat - adverse effects
Disease Models, Animal
Endopeptidases
Enzymes
Female
Gene Knockdown Techniques
High fat diet
Humans
Hypertension
Male
Mice, Transgenic
Middle Aged
Muscles
Myocytes, Smooth Muscle
Neprilysin
Neprilysin - genetics
Neprilysin - metabolism
Oxidative stress
Oxidative Stress - drug effects
Oxidative Stress - genetics
Peptidyl-Dipeptidase A - metabolism
Pharmacology
Phenylephrine
Phenylephrine - administration & dosage
PNAS Plus
Primary Cell Culture
Proteolysis - drug effects
Receptors, LDL - genetics
Receptors, LDL - metabolism
Renin
RNA, Small Interfering - metabolism
Rupture
Rupturing
Smooth muscle
Sympathomimetics
Therapy
Vascular diseases
Vascular Remodeling - drug effects
Vascular Remodeling - genetics
title Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apelin%20protects%20against%20abdominal%20aortic%20aneurysm%20and%20the%20therapeutic%20role%20of%20neutral%20endopeptidase%20resistant%20apelin%20analogs&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Wang&rft.date=2019-06-25&rft.volume=116&rft.issue=26&rft.spage=13006&rft.epage=13015&rft.pages=13006-13015&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1900152116&rft_dat=%3Cjstor_pubme%3E26744134%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253253929&rft_id=info:pmid/31189595&rft_jstor_id=26744134&rfr_iscdi=true