Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity

In order to capture the stress-strain response of metallic materials under cyclic loading, it is necessary to consider the cyclic hardening behaviour in the constitutive model. Among different cyclic hardening approaches available in the literature, the Chaboche model proves to be very efficient and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2019-05, Vol.12 (11), p.1767
Hauptverfasser: Sajjad, Hafiz Muhammad, Hanke, Stefanie, Güler, Sedat, Ul Hassan, Hamad, Fischer, Alfons, Hartmaier, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1767
container_title Materials
container_volume 12
creator Sajjad, Hafiz Muhammad
Hanke, Stefanie
Güler, Sedat
Ul Hassan, Hamad
Fischer, Alfons
Hartmaier, Alexander
description In order to capture the stress-strain response of metallic materials under cyclic loading, it is necessary to consider the cyclic hardening behaviour in the constitutive model. Among different cyclic hardening approaches available in the literature, the Chaboche model proves to be very efficient and convenient to model the kinematic hardening and ratcheting behaviour of materials observed during cyclic loading. The purpose of this study is to determine the material parameters of the Chaboche kinematic hardening material model by using isotropic J2 plasticity and micromechanical crystal plasticity (CP) models as constitutive rules in finite element modelling. As model material, we chose a martensitic steel with a very fine microstructure. Thus, it is possible to compare the quality of description between the simpler J2 plasticity and more complex micromechanical material models. The quality of the results is rated based on the quantitative comparison between experimental and numerical stress-strain hysteresis curves for a rather wide range of loading amplitudes. It is seen that the ratcheting effect is captured well by both approaches. Furthermore, the results show that concerning macroscopic properties, J2 plasticity and CP are equally suited to describe cyclic plasticity. However, J2 plasticity is computationally less expensive whereas CP finite element analysis provides insight into local stresses and plastic strains on the microstructural length scale. With this study, we show that a consistent material description on the microstructural and the macroscopic scale is possible, which will enable future scale-bridging applications, by combining both constitutive rules within one single finite element model.
doi_str_mv 10.3390/ma12111767
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548769288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-4011523cfce1ca6e2cdadc4760254f3106977824a9b2afcf777a40df8f57de943</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoVrQbf4AE3Igwmtckk42gxSeKgrpwFdJMYiPTGU3Syvx7I_VRvZtc7v04nNwDwDZGB5RKdDjVmGCMBRcrYANLyQssGVtd6gdgGOMLykUprohcBwOKcSlxKTbA001X26bx7TMc9abxBp7YiZ77bhZg5-CNDsm20ae8uE_WNvDdpwm8IvCu0TFPfeqhbms4Cn1Mulkab4E1p5toh1_vJng8O30YXRTXt-eXo-PrwjDEU8FQ9kKoccZio7klpta1YYIjUjJHMeJSiIowLcdEO-OEEJqh2lWuFLWVjG6Co4Xu62w8tbWxbQq6Ua_BT3XoVae9-rtp_UQ9d3PFOUJC4Cyw9yUQureZjUlNfTT5KLq13SwqQmiZXeCqzOjuP_QlH6rN31PZbSW4JFWVqf0FZUIXY7DuxwxG6jM09RtahneW7f-g3xHRD2Zrkhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548769288</pqid></control><display><type>article</type><title>Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sajjad, Hafiz Muhammad ; Hanke, Stefanie ; Güler, Sedat ; Ul Hassan, Hamad ; Fischer, Alfons ; Hartmaier, Alexander</creator><creatorcontrib>Sajjad, Hafiz Muhammad ; Hanke, Stefanie ; Güler, Sedat ; Ul Hassan, Hamad ; Fischer, Alfons ; Hartmaier, Alexander</creatorcontrib><description>In order to capture the stress-strain response of metallic materials under cyclic loading, it is necessary to consider the cyclic hardening behaviour in the constitutive model. Among different cyclic hardening approaches available in the literature, the Chaboche model proves to be very efficient and convenient to model the kinematic hardening and ratcheting behaviour of materials observed during cyclic loading. The purpose of this study is to determine the material parameters of the Chaboche kinematic hardening material model by using isotropic J2 plasticity and micromechanical crystal plasticity (CP) models as constitutive rules in finite element modelling. As model material, we chose a martensitic steel with a very fine microstructure. Thus, it is possible to compare the quality of description between the simpler J2 plasticity and more complex micromechanical material models. The quality of the results is rated based on the quantitative comparison between experimental and numerical stress-strain hysteresis curves for a rather wide range of loading amplitudes. It is seen that the ratcheting effect is captured well by both approaches. Furthermore, the results show that concerning macroscopic properties, J2 plasticity and CP are equally suited to describe cyclic plasticity. However, J2 plasticity is computationally less expensive whereas CP finite element analysis provides insight into local stresses and plastic strains on the microstructural length scale. With this study, we show that a consistent material description on the microstructural and the macroscopic scale is possible, which will enable future scale-bridging applications, by combining both constitutive rules within one single finite element model.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12111767</identifier><identifier>PMID: 31159157</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Constitutive models ; Corrosion resistance ; Crack initiation ; Cyclic loads ; Experiments ; Finite element method ; Grain size ; Hardening ; Isotropic material ; Kinematics ; Martensitic stainless steels ; Mathematical models ; Metal fatigue ; Microstructure ; Nitrogen ; Parameter identification ; Plastic properties ; Ratcheting ; Scanning electron microscopy ; Steel ; Strain ; Stress-strain relationships</subject><ispartof>Materials, 2019-05, Vol.12 (11), p.1767</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-4011523cfce1ca6e2cdadc4760254f3106977824a9b2afcf777a40df8f57de943</citedby><cites>FETCH-LOGICAL-c406t-4011523cfce1ca6e2cdadc4760254f3106977824a9b2afcf777a40df8f57de943</cites><orcidid>0000-0002-3710-1169 ; 0000-0002-2707-8989 ; 0000-0002-9952-1919 ; 0000-0003-0407-2813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600771/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600771/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31159157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sajjad, Hafiz Muhammad</creatorcontrib><creatorcontrib>Hanke, Stefanie</creatorcontrib><creatorcontrib>Güler, Sedat</creatorcontrib><creatorcontrib>Ul Hassan, Hamad</creatorcontrib><creatorcontrib>Fischer, Alfons</creatorcontrib><creatorcontrib>Hartmaier, Alexander</creatorcontrib><title>Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In order to capture the stress-strain response of metallic materials under cyclic loading, it is necessary to consider the cyclic hardening behaviour in the constitutive model. Among different cyclic hardening approaches available in the literature, the Chaboche model proves to be very efficient and convenient to model the kinematic hardening and ratcheting behaviour of materials observed during cyclic loading. The purpose of this study is to determine the material parameters of the Chaboche kinematic hardening material model by using isotropic J2 plasticity and micromechanical crystal plasticity (CP) models as constitutive rules in finite element modelling. As model material, we chose a martensitic steel with a very fine microstructure. Thus, it is possible to compare the quality of description between the simpler J2 plasticity and more complex micromechanical material models. The quality of the results is rated based on the quantitative comparison between experimental and numerical stress-strain hysteresis curves for a rather wide range of loading amplitudes. It is seen that the ratcheting effect is captured well by both approaches. Furthermore, the results show that concerning macroscopic properties, J2 plasticity and CP are equally suited to describe cyclic plasticity. However, J2 plasticity is computationally less expensive whereas CP finite element analysis provides insight into local stresses and plastic strains on the microstructural length scale. With this study, we show that a consistent material description on the microstructural and the macroscopic scale is possible, which will enable future scale-bridging applications, by combining both constitutive rules within one single finite element model.</description><subject>Constitutive models</subject><subject>Corrosion resistance</subject><subject>Crack initiation</subject><subject>Cyclic loads</subject><subject>Experiments</subject><subject>Finite element method</subject><subject>Grain size</subject><subject>Hardening</subject><subject>Isotropic material</subject><subject>Kinematics</subject><subject>Martensitic stainless steels</subject><subject>Mathematical models</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Nitrogen</subject><subject>Parameter identification</subject><subject>Plastic properties</subject><subject>Ratcheting</subject><subject>Scanning electron microscopy</subject><subject>Steel</subject><subject>Strain</subject><subject>Stress-strain relationships</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtLAzEUhYMoVrQbf4AE3Igwmtckk42gxSeKgrpwFdJMYiPTGU3Syvx7I_VRvZtc7v04nNwDwDZGB5RKdDjVmGCMBRcrYANLyQssGVtd6gdgGOMLykUprohcBwOKcSlxKTbA001X26bx7TMc9abxBp7YiZ77bhZg5-CNDsm20ae8uE_WNvDdpwm8IvCu0TFPfeqhbms4Cn1Mulkab4E1p5toh1_vJng8O30YXRTXt-eXo-PrwjDEU8FQ9kKoccZio7klpta1YYIjUjJHMeJSiIowLcdEO-OEEJqh2lWuFLWVjG6Co4Xu62w8tbWxbQq6Ua_BT3XoVae9-rtp_UQ9d3PFOUJC4Cyw9yUQureZjUlNfTT5KLq13SwqQmiZXeCqzOjuP_QlH6rN31PZbSW4JFWVqf0FZUIXY7DuxwxG6jM09RtahneW7f-g3xHRD2Zrkhw</recordid><startdate>20190531</startdate><enddate>20190531</enddate><creator>Sajjad, Hafiz Muhammad</creator><creator>Hanke, Stefanie</creator><creator>Güler, Sedat</creator><creator>Ul Hassan, Hamad</creator><creator>Fischer, Alfons</creator><creator>Hartmaier, Alexander</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3710-1169</orcidid><orcidid>https://orcid.org/0000-0002-2707-8989</orcidid><orcidid>https://orcid.org/0000-0002-9952-1919</orcidid><orcidid>https://orcid.org/0000-0003-0407-2813</orcidid></search><sort><creationdate>20190531</creationdate><title>Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity</title><author>Sajjad, Hafiz Muhammad ; Hanke, Stefanie ; Güler, Sedat ; Ul Hassan, Hamad ; Fischer, Alfons ; Hartmaier, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-4011523cfce1ca6e2cdadc4760254f3106977824a9b2afcf777a40df8f57de943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Constitutive models</topic><topic>Corrosion resistance</topic><topic>Crack initiation</topic><topic>Cyclic loads</topic><topic>Experiments</topic><topic>Finite element method</topic><topic>Grain size</topic><topic>Hardening</topic><topic>Isotropic material</topic><topic>Kinematics</topic><topic>Martensitic stainless steels</topic><topic>Mathematical models</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Nitrogen</topic><topic>Parameter identification</topic><topic>Plastic properties</topic><topic>Ratcheting</topic><topic>Scanning electron microscopy</topic><topic>Steel</topic><topic>Strain</topic><topic>Stress-strain relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajjad, Hafiz Muhammad</creatorcontrib><creatorcontrib>Hanke, Stefanie</creatorcontrib><creatorcontrib>Güler, Sedat</creatorcontrib><creatorcontrib>Ul Hassan, Hamad</creatorcontrib><creatorcontrib>Fischer, Alfons</creatorcontrib><creatorcontrib>Hartmaier, Alexander</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajjad, Hafiz Muhammad</au><au>Hanke, Stefanie</au><au>Güler, Sedat</au><au>Ul Hassan, Hamad</au><au>Fischer, Alfons</au><au>Hartmaier, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-05-31</date><risdate>2019</risdate><volume>12</volume><issue>11</issue><spage>1767</spage><pages>1767-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In order to capture the stress-strain response of metallic materials under cyclic loading, it is necessary to consider the cyclic hardening behaviour in the constitutive model. Among different cyclic hardening approaches available in the literature, the Chaboche model proves to be very efficient and convenient to model the kinematic hardening and ratcheting behaviour of materials observed during cyclic loading. The purpose of this study is to determine the material parameters of the Chaboche kinematic hardening material model by using isotropic J2 plasticity and micromechanical crystal plasticity (CP) models as constitutive rules in finite element modelling. As model material, we chose a martensitic steel with a very fine microstructure. Thus, it is possible to compare the quality of description between the simpler J2 plasticity and more complex micromechanical material models. The quality of the results is rated based on the quantitative comparison between experimental and numerical stress-strain hysteresis curves for a rather wide range of loading amplitudes. It is seen that the ratcheting effect is captured well by both approaches. Furthermore, the results show that concerning macroscopic properties, J2 plasticity and CP are equally suited to describe cyclic plasticity. However, J2 plasticity is computationally less expensive whereas CP finite element analysis provides insight into local stresses and plastic strains on the microstructural length scale. With this study, we show that a consistent material description on the microstructural and the macroscopic scale is possible, which will enable future scale-bridging applications, by combining both constitutive rules within one single finite element model.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31159157</pmid><doi>10.3390/ma12111767</doi><orcidid>https://orcid.org/0000-0002-3710-1169</orcidid><orcidid>https://orcid.org/0000-0002-2707-8989</orcidid><orcidid>https://orcid.org/0000-0002-9952-1919</orcidid><orcidid>https://orcid.org/0000-0003-0407-2813</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2019-05, Vol.12 (11), p.1767
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600771
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Constitutive models
Corrosion resistance
Crack initiation
Cyclic loads
Experiments
Finite element method
Grain size
Hardening
Isotropic material
Kinematics
Martensitic stainless steels
Mathematical models
Metal fatigue
Microstructure
Nitrogen
Parameter identification
Plastic properties
Ratcheting
Scanning electron microscopy
Steel
Strain
Stress-strain relationships
title Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20Cyclic%20Behaviour%20of%20Martensitic%20Steel%20with%20J2%20Plasticity%20and%20Crystal%20Plasticity&rft.jtitle=Materials&rft.au=Sajjad,%20Hafiz%20Muhammad&rft.date=2019-05-31&rft.volume=12&rft.issue=11&rft.spage=1767&rft.pages=1767-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12111767&rft_dat=%3Cproquest_pubme%3E2548769288%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548769288&rft_id=info:pmid/31159157&rfr_iscdi=true