Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity
In order to capture the stress-strain response of metallic materials under cyclic loading, it is necessary to consider the cyclic hardening behaviour in the constitutive model. Among different cyclic hardening approaches available in the literature, the Chaboche model proves to be very efficient and...
Gespeichert in:
Veröffentlicht in: | Materials 2019-05, Vol.12 (11), p.1767 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1767 |
container_title | Materials |
container_volume | 12 |
creator | Sajjad, Hafiz Muhammad Hanke, Stefanie Güler, Sedat Ul Hassan, Hamad Fischer, Alfons Hartmaier, Alexander |
description | In order to capture the stress-strain response of metallic materials under cyclic loading, it is necessary to consider the cyclic hardening behaviour in the constitutive model. Among different cyclic hardening approaches available in the literature, the Chaboche model proves to be very efficient and convenient to model the kinematic hardening and ratcheting behaviour of materials observed during cyclic loading. The purpose of this study is to determine the material parameters of the Chaboche kinematic hardening material model by using isotropic J2 plasticity and micromechanical crystal plasticity (CP) models as constitutive rules in finite element modelling. As model material, we chose a martensitic steel with a very fine microstructure. Thus, it is possible to compare the quality of description between the simpler J2 plasticity and more complex micromechanical material models. The quality of the results is rated based on the quantitative comparison between experimental and numerical stress-strain hysteresis curves for a rather wide range of loading amplitudes. It is seen that the ratcheting effect is captured well by both approaches. Furthermore, the results show that concerning macroscopic properties, J2 plasticity and CP are equally suited to describe cyclic plasticity. However, J2 plasticity is computationally less expensive whereas CP finite element analysis provides insight into local stresses and plastic strains on the microstructural length scale. With this study, we show that a consistent material description on the microstructural and the macroscopic scale is possible, which will enable future scale-bridging applications, by combining both constitutive rules within one single finite element model. |
doi_str_mv | 10.3390/ma12111767 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548769288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-4011523cfce1ca6e2cdadc4760254f3106977824a9b2afcf777a40df8f57de943</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoVrQbf4AE3Igwmtckk42gxSeKgrpwFdJMYiPTGU3Syvx7I_VRvZtc7v04nNwDwDZGB5RKdDjVmGCMBRcrYANLyQssGVtd6gdgGOMLykUprohcBwOKcSlxKTbA001X26bx7TMc9abxBp7YiZ77bhZg5-CNDsm20ae8uE_WNvDdpwm8IvCu0TFPfeqhbms4Cn1Mulkab4E1p5toh1_vJng8O30YXRTXt-eXo-PrwjDEU8FQ9kKoccZio7klpta1YYIjUjJHMeJSiIowLcdEO-OEEJqh2lWuFLWVjG6Co4Xu62w8tbWxbQq6Ua_BT3XoVae9-rtp_UQ9d3PFOUJC4Cyw9yUQureZjUlNfTT5KLq13SwqQmiZXeCqzOjuP_QlH6rN31PZbSW4JFWVqf0FZUIXY7DuxwxG6jM09RtahneW7f-g3xHRD2Zrkhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548769288</pqid></control><display><type>article</type><title>Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sajjad, Hafiz Muhammad ; Hanke, Stefanie ; Güler, Sedat ; Ul Hassan, Hamad ; Fischer, Alfons ; Hartmaier, Alexander</creator><creatorcontrib>Sajjad, Hafiz Muhammad ; Hanke, Stefanie ; Güler, Sedat ; Ul Hassan, Hamad ; Fischer, Alfons ; Hartmaier, Alexander</creatorcontrib><description>In order to capture the stress-strain response of metallic materials under cyclic loading, it is necessary to consider the cyclic hardening behaviour in the constitutive model. Among different cyclic hardening approaches available in the literature, the Chaboche model proves to be very efficient and convenient to model the kinematic hardening and ratcheting behaviour of materials observed during cyclic loading. The purpose of this study is to determine the material parameters of the Chaboche kinematic hardening material model by using isotropic J2 plasticity and micromechanical crystal plasticity (CP) models as constitutive rules in finite element modelling. As model material, we chose a martensitic steel with a very fine microstructure. Thus, it is possible to compare the quality of description between the simpler J2 plasticity and more complex micromechanical material models. The quality of the results is rated based on the quantitative comparison between experimental and numerical stress-strain hysteresis curves for a rather wide range of loading amplitudes. It is seen that the ratcheting effect is captured well by both approaches. Furthermore, the results show that concerning macroscopic properties, J2 plasticity and CP are equally suited to describe cyclic plasticity. However, J2 plasticity is computationally less expensive whereas CP finite element analysis provides insight into local stresses and plastic strains on the microstructural length scale. With this study, we show that a consistent material description on the microstructural and the macroscopic scale is possible, which will enable future scale-bridging applications, by combining both constitutive rules within one single finite element model.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12111767</identifier><identifier>PMID: 31159157</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Constitutive models ; Corrosion resistance ; Crack initiation ; Cyclic loads ; Experiments ; Finite element method ; Grain size ; Hardening ; Isotropic material ; Kinematics ; Martensitic stainless steels ; Mathematical models ; Metal fatigue ; Microstructure ; Nitrogen ; Parameter identification ; Plastic properties ; Ratcheting ; Scanning electron microscopy ; Steel ; Strain ; Stress-strain relationships</subject><ispartof>Materials, 2019-05, Vol.12 (11), p.1767</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-4011523cfce1ca6e2cdadc4760254f3106977824a9b2afcf777a40df8f57de943</citedby><cites>FETCH-LOGICAL-c406t-4011523cfce1ca6e2cdadc4760254f3106977824a9b2afcf777a40df8f57de943</cites><orcidid>0000-0002-3710-1169 ; 0000-0002-2707-8989 ; 0000-0002-9952-1919 ; 0000-0003-0407-2813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600771/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600771/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31159157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sajjad, Hafiz Muhammad</creatorcontrib><creatorcontrib>Hanke, Stefanie</creatorcontrib><creatorcontrib>Güler, Sedat</creatorcontrib><creatorcontrib>Ul Hassan, Hamad</creatorcontrib><creatorcontrib>Fischer, Alfons</creatorcontrib><creatorcontrib>Hartmaier, Alexander</creatorcontrib><title>Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In order to capture the stress-strain response of metallic materials under cyclic loading, it is necessary to consider the cyclic hardening behaviour in the constitutive model. Among different cyclic hardening approaches available in the literature, the Chaboche model proves to be very efficient and convenient to model the kinematic hardening and ratcheting behaviour of materials observed during cyclic loading. The purpose of this study is to determine the material parameters of the Chaboche kinematic hardening material model by using isotropic J2 plasticity and micromechanical crystal plasticity (CP) models as constitutive rules in finite element modelling. As model material, we chose a martensitic steel with a very fine microstructure. Thus, it is possible to compare the quality of description between the simpler J2 plasticity and more complex micromechanical material models. The quality of the results is rated based on the quantitative comparison between experimental and numerical stress-strain hysteresis curves for a rather wide range of loading amplitudes. It is seen that the ratcheting effect is captured well by both approaches. Furthermore, the results show that concerning macroscopic properties, J2 plasticity and CP are equally suited to describe cyclic plasticity. However, J2 plasticity is computationally less expensive whereas CP finite element analysis provides insight into local stresses and plastic strains on the microstructural length scale. With this study, we show that a consistent material description on the microstructural and the macroscopic scale is possible, which will enable future scale-bridging applications, by combining both constitutive rules within one single finite element model.</description><subject>Constitutive models</subject><subject>Corrosion resistance</subject><subject>Crack initiation</subject><subject>Cyclic loads</subject><subject>Experiments</subject><subject>Finite element method</subject><subject>Grain size</subject><subject>Hardening</subject><subject>Isotropic material</subject><subject>Kinematics</subject><subject>Martensitic stainless steels</subject><subject>Mathematical models</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Nitrogen</subject><subject>Parameter identification</subject><subject>Plastic properties</subject><subject>Ratcheting</subject><subject>Scanning electron microscopy</subject><subject>Steel</subject><subject>Strain</subject><subject>Stress-strain relationships</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtLAzEUhYMoVrQbf4AE3Igwmtckk42gxSeKgrpwFdJMYiPTGU3Syvx7I_VRvZtc7v04nNwDwDZGB5RKdDjVmGCMBRcrYANLyQssGVtd6gdgGOMLykUprohcBwOKcSlxKTbA001X26bx7TMc9abxBp7YiZ77bhZg5-CNDsm20ae8uE_WNvDdpwm8IvCu0TFPfeqhbms4Cn1Mulkab4E1p5toh1_vJng8O30YXRTXt-eXo-PrwjDEU8FQ9kKoccZio7klpta1YYIjUjJHMeJSiIowLcdEO-OEEJqh2lWuFLWVjG6Co4Xu62w8tbWxbQq6Ua_BT3XoVae9-rtp_UQ9d3PFOUJC4Cyw9yUQureZjUlNfTT5KLq13SwqQmiZXeCqzOjuP_QlH6rN31PZbSW4JFWVqf0FZUIXY7DuxwxG6jM09RtahneW7f-g3xHRD2Zrkhw</recordid><startdate>20190531</startdate><enddate>20190531</enddate><creator>Sajjad, Hafiz Muhammad</creator><creator>Hanke, Stefanie</creator><creator>Güler, Sedat</creator><creator>Ul Hassan, Hamad</creator><creator>Fischer, Alfons</creator><creator>Hartmaier, Alexander</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3710-1169</orcidid><orcidid>https://orcid.org/0000-0002-2707-8989</orcidid><orcidid>https://orcid.org/0000-0002-9952-1919</orcidid><orcidid>https://orcid.org/0000-0003-0407-2813</orcidid></search><sort><creationdate>20190531</creationdate><title>Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity</title><author>Sajjad, Hafiz Muhammad ; Hanke, Stefanie ; Güler, Sedat ; Ul Hassan, Hamad ; Fischer, Alfons ; Hartmaier, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-4011523cfce1ca6e2cdadc4760254f3106977824a9b2afcf777a40df8f57de943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Constitutive models</topic><topic>Corrosion resistance</topic><topic>Crack initiation</topic><topic>Cyclic loads</topic><topic>Experiments</topic><topic>Finite element method</topic><topic>Grain size</topic><topic>Hardening</topic><topic>Isotropic material</topic><topic>Kinematics</topic><topic>Martensitic stainless steels</topic><topic>Mathematical models</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Nitrogen</topic><topic>Parameter identification</topic><topic>Plastic properties</topic><topic>Ratcheting</topic><topic>Scanning electron microscopy</topic><topic>Steel</topic><topic>Strain</topic><topic>Stress-strain relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajjad, Hafiz Muhammad</creatorcontrib><creatorcontrib>Hanke, Stefanie</creatorcontrib><creatorcontrib>Güler, Sedat</creatorcontrib><creatorcontrib>Ul Hassan, Hamad</creatorcontrib><creatorcontrib>Fischer, Alfons</creatorcontrib><creatorcontrib>Hartmaier, Alexander</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajjad, Hafiz Muhammad</au><au>Hanke, Stefanie</au><au>Güler, Sedat</au><au>Ul Hassan, Hamad</au><au>Fischer, Alfons</au><au>Hartmaier, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-05-31</date><risdate>2019</risdate><volume>12</volume><issue>11</issue><spage>1767</spage><pages>1767-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In order to capture the stress-strain response of metallic materials under cyclic loading, it is necessary to consider the cyclic hardening behaviour in the constitutive model. Among different cyclic hardening approaches available in the literature, the Chaboche model proves to be very efficient and convenient to model the kinematic hardening and ratcheting behaviour of materials observed during cyclic loading. The purpose of this study is to determine the material parameters of the Chaboche kinematic hardening material model by using isotropic J2 plasticity and micromechanical crystal plasticity (CP) models as constitutive rules in finite element modelling. As model material, we chose a martensitic steel with a very fine microstructure. Thus, it is possible to compare the quality of description between the simpler J2 plasticity and more complex micromechanical material models. The quality of the results is rated based on the quantitative comparison between experimental and numerical stress-strain hysteresis curves for a rather wide range of loading amplitudes. It is seen that the ratcheting effect is captured well by both approaches. Furthermore, the results show that concerning macroscopic properties, J2 plasticity and CP are equally suited to describe cyclic plasticity. However, J2 plasticity is computationally less expensive whereas CP finite element analysis provides insight into local stresses and plastic strains on the microstructural length scale. With this study, we show that a consistent material description on the microstructural and the macroscopic scale is possible, which will enable future scale-bridging applications, by combining both constitutive rules within one single finite element model.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31159157</pmid><doi>10.3390/ma12111767</doi><orcidid>https://orcid.org/0000-0002-3710-1169</orcidid><orcidid>https://orcid.org/0000-0002-2707-8989</orcidid><orcidid>https://orcid.org/0000-0002-9952-1919</orcidid><orcidid>https://orcid.org/0000-0003-0407-2813</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2019-05, Vol.12 (11), p.1767 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600771 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Constitutive models Corrosion resistance Crack initiation Cyclic loads Experiments Finite element method Grain size Hardening Isotropic material Kinematics Martensitic stainless steels Mathematical models Metal fatigue Microstructure Nitrogen Parameter identification Plastic properties Ratcheting Scanning electron microscopy Steel Strain Stress-strain relationships |
title | Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20Cyclic%20Behaviour%20of%20Martensitic%20Steel%20with%20J2%20Plasticity%20and%20Crystal%20Plasticity&rft.jtitle=Materials&rft.au=Sajjad,%20Hafiz%20Muhammad&rft.date=2019-05-31&rft.volume=12&rft.issue=11&rft.spage=1767&rft.pages=1767-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12111767&rft_dat=%3Cproquest_pubme%3E2548769288%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548769288&rft_id=info:pmid/31159157&rfr_iscdi=true |