Rational design using sequence information only produces a peptide that binds to the intrinsically disordered region of p53
Intrinsically disordered regions (IDRs) of proteins are involved in many diseases. The rational drug design against disease-mediating proteins is often based on the 3D structure; however, the flexible structure of IDRs hinders the use of such structure-based design methods. Here, we developed a rati...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-06, Vol.9 (1), p.8584-10, Article 8584 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 8584 |
container_title | Scientific reports |
container_volume | 9 |
creator | Kamagata, Kiyoto Mano, Eriko Itoh, Yuji Wakamoto, Takuro Kitahara, Ryo Kanbayashi, Saori Takahashi, Hiroto Murata, Agato Kameda, Tomoshi |
description | Intrinsically disordered regions (IDRs) of proteins are involved in many diseases. The rational drug design against disease-mediating proteins is often based on the 3D structure; however, the flexible structure of IDRs hinders the use of such structure-based design methods. Here, we developed a rational design method to obtain a peptide that can bind an IDR using only sequence information based on the statistical contact energy of amino acid pairs. We applied the method to the disordered C-terminal domain of the tumor suppressor p53. Titration experiments revealed that one of the designed peptides, DP6, has a druggable affinity of ~1 μM to the p53 C-terminal domain. NMR spectroscopy and molecular dynamics simulation revealed that DP6 selectively binds to the vicinity of the target sequence in the C-terminal domain of p53. DP6 inhibits the nonspecific DNA binding of a tetrameric form of the p53 C-terminal domain, but does not significantly affect the specific DNA binding of a tetrameric form of the p53 core domain. Single-molecule measurements revealed that DP6 retards the 1D sliding of p53 along DNA, implying modulation of the target searching of p53. Statistical potential-based design may be useful in designing peptides that target IDRs for therapeutic purposes. |
doi_str_mv | 10.1038/s41598-019-44688-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6599006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2249019784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-f5f898ac5167826ab85e2398a40bf671cff01a909bbafc1867dedb75359423fd3</originalsourceid><addsrcrecordid>eNp9UU1LHTEUDaJUsf6BLiTQ9dh8ziSbQhG1BaFQ6jpkJjdjZF4yTWYE8c8b37PWbswm9-Occy_3IPSJkjNKuPpSBJVaNYTqRohW1WgPHTEiZMM4Y_tv4kN0UsodqU8yLaj-gA45ZZKrlh2hx192CSnaCTsoYYx4LSGOuMCfFeIAOESf8maLwSlOD3jOya0DFGzxDPMSHODl1i64D9EVvKSaPbOWHGIJg50qxYWSsoMMDmcYt0oez5J_RAfeTgVOXv5jdHN58fv8e3P98-rH-bfrZpCULo2XXmlla9J2irW2VxIYrxVBet92dPCeUKuJ7nvrB6razoHrO8mlFox7x4_R153uvPYbcAPU7exk5hw2Nj-YZIP5vxPDrRnTvWml1oS0VeDzi0BO9S5lMXdpzfVoxTAmdPWgU6Ki2A415FRKBv86gRLz7JnZeWYq3mw9M6SSTt_u9kr561AF8B2g1FYcIf-b_Y7sE3ClpTI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249019784</pqid></control><display><type>article</type><title>Rational design using sequence information only produces a peptide that binds to the intrinsically disordered region of p53</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kamagata, Kiyoto ; Mano, Eriko ; Itoh, Yuji ; Wakamoto, Takuro ; Kitahara, Ryo ; Kanbayashi, Saori ; Takahashi, Hiroto ; Murata, Agato ; Kameda, Tomoshi</creator><creatorcontrib>Kamagata, Kiyoto ; Mano, Eriko ; Itoh, Yuji ; Wakamoto, Takuro ; Kitahara, Ryo ; Kanbayashi, Saori ; Takahashi, Hiroto ; Murata, Agato ; Kameda, Tomoshi</creatorcontrib><description>Intrinsically disordered regions (IDRs) of proteins are involved in many diseases. The rational drug design against disease-mediating proteins is often based on the 3D structure; however, the flexible structure of IDRs hinders the use of such structure-based design methods. Here, we developed a rational design method to obtain a peptide that can bind an IDR using only sequence information based on the statistical contact energy of amino acid pairs. We applied the method to the disordered C-terminal domain of the tumor suppressor p53. Titration experiments revealed that one of the designed peptides, DP6, has a druggable affinity of ~1 μM to the p53 C-terminal domain. NMR spectroscopy and molecular dynamics simulation revealed that DP6 selectively binds to the vicinity of the target sequence in the C-terminal domain of p53. DP6 inhibits the nonspecific DNA binding of a tetrameric form of the p53 C-terminal domain, but does not significantly affect the specific DNA binding of a tetrameric form of the p53 core domain. Single-molecule measurements revealed that DP6 retards the 1D sliding of p53 along DNA, implying modulation of the target searching of p53. Statistical potential-based design may be useful in designing peptides that target IDRs for therapeutic purposes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-44688-0</identifier><identifier>PMID: 31253862</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 631/154/1435/2418 ; 631/1647/245/2225 ; 631/45/612/1229 ; 631/57/2269 ; 82/62 ; Amino Acid Sequence ; Amino acids ; Deoxyribonucleic acid ; Design ; DNA ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Drug development ; Humanities and Social Sciences ; Humans ; Hydrophobic and Hydrophilic Interactions ; Intrinsically Disordered Proteins - chemistry ; Kinetics ; Magnetic resonance spectroscopy ; Molecular Docking Simulation ; Molecular dynamics ; Molecular Dynamics Simulation ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Nucleotide sequence ; p53 Protein ; Peptides ; Peptides - metabolism ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Science ; Science (multidisciplinary) ; Static Electricity ; Statistics ; Therapeutic applications ; Titration ; Tumor suppressor genes ; Tumor Suppressor Protein p53 - chemistry ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Scientific reports, 2019-06, Vol.9 (1), p.8584-10, Article 8584</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-f5f898ac5167826ab85e2398a40bf671cff01a909bbafc1867dedb75359423fd3</citedby><cites>FETCH-LOGICAL-c511t-f5f898ac5167826ab85e2398a40bf671cff01a909bbafc1867dedb75359423fd3</cites><orcidid>0000-0003-1815-3227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599006/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599006/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,41103,42172,51559,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31253862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamagata, Kiyoto</creatorcontrib><creatorcontrib>Mano, Eriko</creatorcontrib><creatorcontrib>Itoh, Yuji</creatorcontrib><creatorcontrib>Wakamoto, Takuro</creatorcontrib><creatorcontrib>Kitahara, Ryo</creatorcontrib><creatorcontrib>Kanbayashi, Saori</creatorcontrib><creatorcontrib>Takahashi, Hiroto</creatorcontrib><creatorcontrib>Murata, Agato</creatorcontrib><creatorcontrib>Kameda, Tomoshi</creatorcontrib><title>Rational design using sequence information only produces a peptide that binds to the intrinsically disordered region of p53</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Intrinsically disordered regions (IDRs) of proteins are involved in many diseases. The rational drug design against disease-mediating proteins is often based on the 3D structure; however, the flexible structure of IDRs hinders the use of such structure-based design methods. Here, we developed a rational design method to obtain a peptide that can bind an IDR using only sequence information based on the statistical contact energy of amino acid pairs. We applied the method to the disordered C-terminal domain of the tumor suppressor p53. Titration experiments revealed that one of the designed peptides, DP6, has a druggable affinity of ~1 μM to the p53 C-terminal domain. NMR spectroscopy and molecular dynamics simulation revealed that DP6 selectively binds to the vicinity of the target sequence in the C-terminal domain of p53. DP6 inhibits the nonspecific DNA binding of a tetrameric form of the p53 C-terminal domain, but does not significantly affect the specific DNA binding of a tetrameric form of the p53 core domain. Single-molecule measurements revealed that DP6 retards the 1D sliding of p53 along DNA, implying modulation of the target searching of p53. Statistical potential-based design may be useful in designing peptides that target IDRs for therapeutic purposes.</description><subject>140/131</subject><subject>631/154/1435/2418</subject><subject>631/1647/245/2225</subject><subject>631/45/612/1229</subject><subject>631/57/2269</subject><subject>82/62</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Deoxyribonucleic acid</subject><subject>Design</subject><subject>DNA</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drug development</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Kinetics</subject><subject>Magnetic resonance spectroscopy</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nucleotide sequence</subject><subject>p53 Protein</subject><subject>Peptides</subject><subject>Peptides - metabolism</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Static Electricity</subject><subject>Statistics</subject><subject>Therapeutic applications</subject><subject>Titration</subject><subject>Tumor suppressor genes</subject><subject>Tumor Suppressor Protein p53 - chemistry</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1LHTEUDaJUsf6BLiTQ9dh8ziSbQhG1BaFQ6jpkJjdjZF4yTWYE8c8b37PWbswm9-Occy_3IPSJkjNKuPpSBJVaNYTqRohW1WgPHTEiZMM4Y_tv4kN0UsodqU8yLaj-gA45ZZKrlh2hx192CSnaCTsoYYx4LSGOuMCfFeIAOESf8maLwSlOD3jOya0DFGzxDPMSHODl1i64D9EVvKSaPbOWHGIJg50qxYWSsoMMDmcYt0oez5J_RAfeTgVOXv5jdHN58fv8e3P98-rH-bfrZpCULo2XXmlla9J2irW2VxIYrxVBet92dPCeUKuJ7nvrB6razoHrO8mlFox7x4_R153uvPYbcAPU7exk5hw2Nj-YZIP5vxPDrRnTvWml1oS0VeDzi0BO9S5lMXdpzfVoxTAmdPWgU6Ki2A415FRKBv86gRLz7JnZeWYq3mw9M6SSTt_u9kr561AF8B2g1FYcIf-b_Y7sE3ClpTI</recordid><startdate>20190628</startdate><enddate>20190628</enddate><creator>Kamagata, Kiyoto</creator><creator>Mano, Eriko</creator><creator>Itoh, Yuji</creator><creator>Wakamoto, Takuro</creator><creator>Kitahara, Ryo</creator><creator>Kanbayashi, Saori</creator><creator>Takahashi, Hiroto</creator><creator>Murata, Agato</creator><creator>Kameda, Tomoshi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1815-3227</orcidid></search><sort><creationdate>20190628</creationdate><title>Rational design using sequence information only produces a peptide that binds to the intrinsically disordered region of p53</title><author>Kamagata, Kiyoto ; Mano, Eriko ; Itoh, Yuji ; Wakamoto, Takuro ; Kitahara, Ryo ; Kanbayashi, Saori ; Takahashi, Hiroto ; Murata, Agato ; Kameda, Tomoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-f5f898ac5167826ab85e2398a40bf671cff01a909bbafc1867dedb75359423fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>140/131</topic><topic>631/154/1435/2418</topic><topic>631/1647/245/2225</topic><topic>631/45/612/1229</topic><topic>631/57/2269</topic><topic>82/62</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Deoxyribonucleic acid</topic><topic>Design</topic><topic>DNA</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drug development</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Kinetics</topic><topic>Magnetic resonance spectroscopy</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nucleotide sequence</topic><topic>p53 Protein</topic><topic>Peptides</topic><topic>Peptides - metabolism</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Static Electricity</topic><topic>Statistics</topic><topic>Therapeutic applications</topic><topic>Titration</topic><topic>Tumor suppressor genes</topic><topic>Tumor Suppressor Protein p53 - chemistry</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamagata, Kiyoto</creatorcontrib><creatorcontrib>Mano, Eriko</creatorcontrib><creatorcontrib>Itoh, Yuji</creatorcontrib><creatorcontrib>Wakamoto, Takuro</creatorcontrib><creatorcontrib>Kitahara, Ryo</creatorcontrib><creatorcontrib>Kanbayashi, Saori</creatorcontrib><creatorcontrib>Takahashi, Hiroto</creatorcontrib><creatorcontrib>Murata, Agato</creatorcontrib><creatorcontrib>Kameda, Tomoshi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamagata, Kiyoto</au><au>Mano, Eriko</au><au>Itoh, Yuji</au><au>Wakamoto, Takuro</au><au>Kitahara, Ryo</au><au>Kanbayashi, Saori</au><au>Takahashi, Hiroto</au><au>Murata, Agato</au><au>Kameda, Tomoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design using sequence information only produces a peptide that binds to the intrinsically disordered region of p53</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-06-28</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>8584</spage><epage>10</epage><pages>8584-10</pages><artnum>8584</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Intrinsically disordered regions (IDRs) of proteins are involved in many diseases. The rational drug design against disease-mediating proteins is often based on the 3D structure; however, the flexible structure of IDRs hinders the use of such structure-based design methods. Here, we developed a rational design method to obtain a peptide that can bind an IDR using only sequence information based on the statistical contact energy of amino acid pairs. We applied the method to the disordered C-terminal domain of the tumor suppressor p53. Titration experiments revealed that one of the designed peptides, DP6, has a druggable affinity of ~1 μM to the p53 C-terminal domain. NMR spectroscopy and molecular dynamics simulation revealed that DP6 selectively binds to the vicinity of the target sequence in the C-terminal domain of p53. DP6 inhibits the nonspecific DNA binding of a tetrameric form of the p53 C-terminal domain, but does not significantly affect the specific DNA binding of a tetrameric form of the p53 core domain. Single-molecule measurements revealed that DP6 retards the 1D sliding of p53 along DNA, implying modulation of the target searching of p53. Statistical potential-based design may be useful in designing peptides that target IDRs for therapeutic purposes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31253862</pmid><doi>10.1038/s41598-019-44688-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1815-3227</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-06, Vol.9 (1), p.8584-10, Article 8584 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6599006 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 140/131 631/154/1435/2418 631/1647/245/2225 631/45/612/1229 631/57/2269 82/62 Amino Acid Sequence Amino acids Deoxyribonucleic acid Design DNA DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Drug development Humanities and Social Sciences Humans Hydrophobic and Hydrophilic Interactions Intrinsically Disordered Proteins - chemistry Kinetics Magnetic resonance spectroscopy Molecular Docking Simulation Molecular dynamics Molecular Dynamics Simulation multidisciplinary NMR Nuclear magnetic resonance Nucleotide sequence p53 Protein Peptides Peptides - metabolism Protein Binding Protein Conformation Protein Interaction Domains and Motifs Science Science (multidisciplinary) Static Electricity Statistics Therapeutic applications Titration Tumor suppressor genes Tumor Suppressor Protein p53 - chemistry Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism |
title | Rational design using sequence information only produces a peptide that binds to the intrinsically disordered region of p53 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20using%20sequence%20information%20only%20produces%20a%20peptide%20that%20binds%20to%20the%20intrinsically%20disordered%20region%20of%20p53&rft.jtitle=Scientific%20reports&rft.au=Kamagata,%20Kiyoto&rft.date=2019-06-28&rft.volume=9&rft.issue=1&rft.spage=8584&rft.epage=10&rft.pages=8584-10&rft.artnum=8584&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-44688-0&rft_dat=%3Cproquest_pubme%3E2249019784%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249019784&rft_id=info:pmid/31253862&rfr_iscdi=true |