Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation
Plant tolerance to freezing temperatures is governed by endogenous components and environmental factors. Exposure to low non-freezing temperatures is a key factor in the induction of freezing tolerance in the process called cold acclimation. The role of nitric oxide (NO) in cold acclimation was expl...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2019-06, Vol.70 (12), p.3283-3296 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3296 |
---|---|
container_issue | 12 |
container_start_page | 3283 |
container_title | Journal of experimental botany |
container_volume | 70 |
creator | Costa-Broseta, Álvaro Perea-Resa, Carlos Castillo, Mari-Cruz Ruíz, M. Fernanda Salinas, Julio León, José |
description | Plant tolerance to freezing temperatures is governed by endogenous components and environmental factors. Exposure to low non-freezing temperatures is a key factor in the induction of freezing tolerance in the process called cold acclimation. The role of nitric oxide (NO) in cold acclimation was explored in Arabidopsis using triple nia1nia2noa1-2 mutants that are impaired in the nitrate-dependent and nitrate-independent pathways of NO production, and are thus NO deficient. Here, we demonstrate that cold-induced NO accumulation is required to promote the full cold acclimation response through C-repeat Binding Factor (CBF)-dependent gene expression, as well as the CBF-independent expression of other cold-responsive genes such as Oxidation-Related Zinc Finger 2 (ZF/OZF2). NO deficiency also altered abscisic acid perception and signaling and the cold-induced production of anthocyanins, which are additional factors involved in cold acclimation. |
doi_str_mv | 10.1093/jxb/erz115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6598078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26961931</jstor_id><sourcerecordid>26961931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-7410351e947920ec04e6102de30e7ae5e2cef0754233253d427f284599e7350d3</originalsourceid><addsrcrecordid>eNqFkc1rGzEUxEVoadykl9wbdCyFbZ6-VqtLIZh-QWgvzVnI0ttUZi050rok_eur4NQkp570mPkxjBhCzhh8YGDExfpudYHlD2PqiCyY7KHjUrAXZAHAeQdG6WPyutY1AChQ6hU5FjD0Rhu1IOV7nEv0NN_FgDTgGH3E5O_b6Qu6ipUuu4JbdDNdxRRiuqGj83MuXWhqCphm6lKgXTMPQrt3fo450TxSn6dAnfdT3LgH7ZS8HN1U8c3je0KuP3_6ufzaXf348m15edV5aczcaclAKIZGasMBPUjsGfCAAlA7VMg9jqCV5EJwJYLkeuSDVMagFgqCOCEf97nb3WqDwbdixU12W1qPcm-zi_a5k-Ive5N_216ZAfTQAt49BpR8u8M6202sHqfJJcy7arkEkIMwoP-PMsOEklL0DX2_R33JtRYcD40Y2Ic9bdvT7vds8PnTPxzQfwM24O0eWNe2ycHnvemZEUz8Bewap3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191354436</pqid></control><display><type>article</type><title>Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Costa-Broseta, Álvaro ; Perea-Resa, Carlos ; Castillo, Mari-Cruz ; Ruíz, M. Fernanda ; Salinas, Julio ; León, José</creator><creatorcontrib>Costa-Broseta, Álvaro ; Perea-Resa, Carlos ; Castillo, Mari-Cruz ; Ruíz, M. Fernanda ; Salinas, Julio ; León, José</creatorcontrib><description>Plant tolerance to freezing temperatures is governed by endogenous components and environmental factors. Exposure to low non-freezing temperatures is a key factor in the induction of freezing tolerance in the process called cold acclimation. The role of nitric oxide (NO) in cold acclimation was explored in Arabidopsis using triple nia1nia2noa1-2 mutants that are impaired in the nitrate-dependent and nitrate-independent pathways of NO production, and are thus NO deficient. Here, we demonstrate that cold-induced NO accumulation is required to promote the full cold acclimation response through C-repeat Binding Factor (CBF)-dependent gene expression, as well as the CBF-independent expression of other cold-responsive genes such as Oxidation-Related Zinc Finger 2 (ZF/OZF2). NO deficiency also altered abscisic acid perception and signaling and the cold-induced production of anthocyanins, which are additional factors involved in cold acclimation.</description><identifier>ISSN: 0022-0957</identifier><identifier>ISSN: 1460-2431</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/erz115</identifier><identifier>PMID: 30869795</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>abscisic acid ; acclimation ; anthocyanins ; Arabidopsis ; cold ; cold tolerance ; environmental factors ; frost ; gene expression ; genes ; mutants ; nitric oxide ; Plant—Environment Interactions ; Research Papers ; temperature ; zinc finger motif</subject><ispartof>Journal of experimental botany, 2019-06, Vol.70 (12), p.3283-3296</ispartof><rights>Society for Experimental Biology 2019</rights><rights>Society for Experimental Biology 2019.</rights><rights>Society for Experimental Biology 2019. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-7410351e947920ec04e6102de30e7ae5e2cef0754233253d427f284599e7350d3</citedby><cites>FETCH-LOGICAL-c499t-7410351e947920ec04e6102de30e7ae5e2cef0754233253d427f284599e7350d3</cites><orcidid>0000-0002-7332-1572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30869795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Costa-Broseta, Álvaro</creatorcontrib><creatorcontrib>Perea-Resa, Carlos</creatorcontrib><creatorcontrib>Castillo, Mari-Cruz</creatorcontrib><creatorcontrib>Ruíz, M. Fernanda</creatorcontrib><creatorcontrib>Salinas, Julio</creatorcontrib><creatorcontrib>León, José</creatorcontrib><title>Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Plant tolerance to freezing temperatures is governed by endogenous components and environmental factors. Exposure to low non-freezing temperatures is a key factor in the induction of freezing tolerance in the process called cold acclimation. The role of nitric oxide (NO) in cold acclimation was explored in Arabidopsis using triple nia1nia2noa1-2 mutants that are impaired in the nitrate-dependent and nitrate-independent pathways of NO production, and are thus NO deficient. Here, we demonstrate that cold-induced NO accumulation is required to promote the full cold acclimation response through C-repeat Binding Factor (CBF)-dependent gene expression, as well as the CBF-independent expression of other cold-responsive genes such as Oxidation-Related Zinc Finger 2 (ZF/OZF2). NO deficiency also altered abscisic acid perception and signaling and the cold-induced production of anthocyanins, which are additional factors involved in cold acclimation.</description><subject>abscisic acid</subject><subject>acclimation</subject><subject>anthocyanins</subject><subject>Arabidopsis</subject><subject>cold</subject><subject>cold tolerance</subject><subject>environmental factors</subject><subject>frost</subject><subject>gene expression</subject><subject>genes</subject><subject>mutants</subject><subject>nitric oxide</subject><subject>Plant—Environment Interactions</subject><subject>Research Papers</subject><subject>temperature</subject><subject>zinc finger motif</subject><issn>0022-0957</issn><issn>1460-2431</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc1rGzEUxEVoadykl9wbdCyFbZ6-VqtLIZh-QWgvzVnI0ttUZi050rok_eur4NQkp570mPkxjBhCzhh8YGDExfpudYHlD2PqiCyY7KHjUrAXZAHAeQdG6WPyutY1AChQ6hU5FjD0Rhu1IOV7nEv0NN_FgDTgGH3E5O_b6Qu6ipUuu4JbdDNdxRRiuqGj83MuXWhqCphm6lKgXTMPQrt3fo450TxSn6dAnfdT3LgH7ZS8HN1U8c3je0KuP3_6ufzaXf348m15edV5aczcaclAKIZGasMBPUjsGfCAAlA7VMg9jqCV5EJwJYLkeuSDVMagFgqCOCEf97nb3WqDwbdixU12W1qPcm-zi_a5k-Ive5N_216ZAfTQAt49BpR8u8M6202sHqfJJcy7arkEkIMwoP-PMsOEklL0DX2_R33JtRYcD40Y2Ic9bdvT7vds8PnTPxzQfwM24O0eWNe2ycHnvemZEUz8Bewap3g</recordid><startdate>20190628</startdate><enddate>20190628</enddate><creator>Costa-Broseta, Álvaro</creator><creator>Perea-Resa, Carlos</creator><creator>Castillo, Mari-Cruz</creator><creator>Ruíz, M. Fernanda</creator><creator>Salinas, Julio</creator><creator>León, José</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7332-1572</orcidid></search><sort><creationdate>20190628</creationdate><title>Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation</title><author>Costa-Broseta, Álvaro ; Perea-Resa, Carlos ; Castillo, Mari-Cruz ; Ruíz, M. Fernanda ; Salinas, Julio ; León, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-7410351e947920ec04e6102de30e7ae5e2cef0754233253d427f284599e7350d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>abscisic acid</topic><topic>acclimation</topic><topic>anthocyanins</topic><topic>Arabidopsis</topic><topic>cold</topic><topic>cold tolerance</topic><topic>environmental factors</topic><topic>frost</topic><topic>gene expression</topic><topic>genes</topic><topic>mutants</topic><topic>nitric oxide</topic><topic>Plant—Environment Interactions</topic><topic>Research Papers</topic><topic>temperature</topic><topic>zinc finger motif</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa-Broseta, Álvaro</creatorcontrib><creatorcontrib>Perea-Resa, Carlos</creatorcontrib><creatorcontrib>Castillo, Mari-Cruz</creatorcontrib><creatorcontrib>Ruíz, M. Fernanda</creatorcontrib><creatorcontrib>Salinas, Julio</creatorcontrib><creatorcontrib>León, José</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa-Broseta, Álvaro</au><au>Perea-Resa, Carlos</au><au>Castillo, Mari-Cruz</au><au>Ruíz, M. Fernanda</au><au>Salinas, Julio</au><au>León, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2019-06-28</date><risdate>2019</risdate><volume>70</volume><issue>12</issue><spage>3283</spage><epage>3296</epage><pages>3283-3296</pages><issn>0022-0957</issn><issn>1460-2431</issn><eissn>1460-2431</eissn><abstract>Plant tolerance to freezing temperatures is governed by endogenous components and environmental factors. Exposure to low non-freezing temperatures is a key factor in the induction of freezing tolerance in the process called cold acclimation. The role of nitric oxide (NO) in cold acclimation was explored in Arabidopsis using triple nia1nia2noa1-2 mutants that are impaired in the nitrate-dependent and nitrate-independent pathways of NO production, and are thus NO deficient. Here, we demonstrate that cold-induced NO accumulation is required to promote the full cold acclimation response through C-repeat Binding Factor (CBF)-dependent gene expression, as well as the CBF-independent expression of other cold-responsive genes such as Oxidation-Related Zinc Finger 2 (ZF/OZF2). NO deficiency also altered abscisic acid perception and signaling and the cold-induced production of anthocyanins, which are additional factors involved in cold acclimation.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30869795</pmid><doi>10.1093/jxb/erz115</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7332-1572</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0957 |
ispartof | Journal of experimental botany, 2019-06, Vol.70 (12), p.3283-3296 |
issn | 0022-0957 1460-2431 1460-2431 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6598078 |
source | Oxford University Press Journals All Titles (1996-Current); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | abscisic acid acclimation anthocyanins Arabidopsis cold cold tolerance environmental factors frost gene expression genes mutants nitric oxide Plant—Environment Interactions Research Papers temperature zinc finger motif |
title | Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20oxide%20deficiency%20decreases%20C-repeat%20binding%20factor-dependent%20and%20-independent%20induction%20of%20cold%20acclimation&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Costa-Broseta,%20%C3%81lvaro&rft.date=2019-06-28&rft.volume=70&rft.issue=12&rft.spage=3283&rft.epage=3296&rft.pages=3283-3296&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/erz115&rft_dat=%3Cjstor_pubme%3E26961931%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191354436&rft_id=info:pmid/30869795&rft_jstor_id=26961931&rfr_iscdi=true |