Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity

The balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such a balance is arguably preserved in dendritic branches, yet its underlying mechanism and functional roles remain unknown. In this study, we developed computational models of heterosynaptic spike-timing-de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2017-12, Vol.37 (50), p.12106-12122
Hauptverfasser: Hiratani, Naoki, Fukai, Tomoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12122
container_issue 50
container_start_page 12106
container_title The Journal of neuroscience
container_volume 37
creator Hiratani, Naoki
Fukai, Tomoki
description The balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such a balance is arguably preserved in dendritic branches, yet its underlying mechanism and functional roles remain unknown. In this study, we developed computational models of heterosynaptic spike-timing-dependent plasticity (STDP) to show that the excitatory/inhibitory balance in dendritic branches is robustly achieved through heterosynaptic interactions between excitatory and inhibitory synapses. The model reproduces key features of experimental heterosynaptic STDP well, and provides analytical insights. Furthermore, heterosynaptic STDP explains how the maturation of inhibitory neurons modulates the selectivity of excitatory neurons for binocular matching in the critical period plasticity. The model also provides an alternative explanation for the potential mechanism underlying the somatic detailed balance that is commonly associated with inhibitory STDP. Our results propose heterosynaptic STDP as a critical factor in synaptic organization and the resultant dendritic computation. Recent experimental studies reveal that relative differences in spike timings experienced among neighboring glutamatergic and GABAergic synapses on a dendritic branch significantly influences changes in the efficiency of these synapses. This heterosynaptic form of spike-timing-dependent plasticity (STDP) is potentially important for shaping the synaptic organization and computation of neurons, but its functional role remains elusive. Through computational modeling at the parameter regime where previous experimental results are well reproduced, we show that heterosynaptic plasticity serves to finely balance excitatory and inhibitory inputs on the dendrite. Our results suggest a principle of GABA-driven neural circuit formation.
doi_str_mv 10.1523/jneurosci.0027-17.2017
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6596817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094489921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-71a51574a771b65667b30c32c4a3b66adf8eda80f0062c151703fb647d5357333</originalsourceid><addsrcrecordid>eNpdUVtP2zAYtaahUWB_AUXay15SfHfygrS1BYoQoAHPluM4rUvqBNuZ1n-PIy4aPNnSueic7wBwjOAUMUxONs4MvgvaTiHEIkdiiiESX8AkoWWOKURfwSQhMOdU0H1wEMIGQigS6RvYxyUsSkrJBNi5icq2ps7mxtXeRquzxT9to4qd350s3dpWdvxmv1WrnDZZXPtuWK2zCxNNSrBzqh9Fd719NPm93Vq3yuemT27Gxey2VSHBNu6OwF6j2mC-v76H4OFscT-7yK9uzpezX1e5ZhzFXCDFEBNUCYEqzjgXFYGaYE0VqThXdVOYWhWwgZBjjRgSkDRVKlkzwgQh5BCcvvj2Q7U1tU4pvGpl7-1W-Z3slJUfEWfXctX9lZyVvEAiGfx8NfDd02BClFsbtGlTfdMNQaKSFYxSRMtE_fGJuukG71I9iWE6cFGWGCUWf2HpdK_gTfMeBkE5rikvrxcPf27uZks5rimRkOOaSXj8f5V32dt85BmpIp7W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094489921</pqid></control><display><type>article</type><title>Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hiratani, Naoki ; Fukai, Tomoki</creator><creatorcontrib>Hiratani, Naoki ; Fukai, Tomoki</creatorcontrib><description>The balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such a balance is arguably preserved in dendritic branches, yet its underlying mechanism and functional roles remain unknown. In this study, we developed computational models of heterosynaptic spike-timing-dependent plasticity (STDP) to show that the excitatory/inhibitory balance in dendritic branches is robustly achieved through heterosynaptic interactions between excitatory and inhibitory synapses. The model reproduces key features of experimental heterosynaptic STDP well, and provides analytical insights. Furthermore, heterosynaptic STDP explains how the maturation of inhibitory neurons modulates the selectivity of excitatory neurons for binocular matching in the critical period plasticity. The model also provides an alternative explanation for the potential mechanism underlying the somatic detailed balance that is commonly associated with inhibitory STDP. Our results propose heterosynaptic STDP as a critical factor in synaptic organization and the resultant dendritic computation. Recent experimental studies reveal that relative differences in spike timings experienced among neighboring glutamatergic and GABAergic synapses on a dendritic branch significantly influences changes in the efficiency of these synapses. This heterosynaptic form of spike-timing-dependent plasticity (STDP) is potentially important for shaping the synaptic organization and computation of neurons, but its functional role remains elusive. Through computational modeling at the parameter regime where previous experimental results are well reproduced, we show that heterosynaptic plasticity serves to finely balance excitatory and inhibitory inputs on the dendrite. Our results suggest a principle of GABA-driven neural circuit formation.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.0027-17.2017</identifier><identifier>PMID: 29089443</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Action Potentials - physiology ; Animals ; CA1 Region, Hippocampal - cytology ; CA1 Region, Hippocampal - physiology ; Calcium Signaling - physiology ; Computation ; Computational neuroscience ; Computer Simulation ; Corpus Striatum - cytology ; Corpus Striatum - physiology ; Cortex ; Critical period ; Dendrites - physiology ; Dendritic plasticity ; Dendritic structure ; Firing pattern ; gamma-Aminobutyric Acid - physiology ; Glutamatergic transmission ; Learning - physiology ; Mice ; Models, Neurological ; Neuronal Plasticity - physiology ; Neurons ; Plastic properties ; Plasticity ; Rats ; Synapses ; Synapses - classification ; Synapses - physiology ; Synaptic plasticity ; Synaptogenesis ; Time Factors ; γ-Aminobutyric acid</subject><ispartof>The Journal of neuroscience, 2017-12, Vol.37 (50), p.12106-12122</ispartof><rights>Copyright © 2017 the authors 0270-6474/17/3712106-17$15.00/0.</rights><rights>Copyright Society for Neuroscience Dec 13, 2017</rights><rights>Copyright © 2017 the authors 0270-6474/17/3712106-17$15.00/0 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-71a51574a771b65667b30c32c4a3b66adf8eda80f0062c151703fb647d5357333</citedby><cites>FETCH-LOGICAL-c561t-71a51574a771b65667b30c32c4a3b66adf8eda80f0062c151703fb647d5357333</cites><orcidid>0000-0001-6977-5638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596817/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596817/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29089443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hiratani, Naoki</creatorcontrib><creatorcontrib>Fukai, Tomoki</creatorcontrib><title>Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such a balance is arguably preserved in dendritic branches, yet its underlying mechanism and functional roles remain unknown. In this study, we developed computational models of heterosynaptic spike-timing-dependent plasticity (STDP) to show that the excitatory/inhibitory balance in dendritic branches is robustly achieved through heterosynaptic interactions between excitatory and inhibitory synapses. The model reproduces key features of experimental heterosynaptic STDP well, and provides analytical insights. Furthermore, heterosynaptic STDP explains how the maturation of inhibitory neurons modulates the selectivity of excitatory neurons for binocular matching in the critical period plasticity. The model also provides an alternative explanation for the potential mechanism underlying the somatic detailed balance that is commonly associated with inhibitory STDP. Our results propose heterosynaptic STDP as a critical factor in synaptic organization and the resultant dendritic computation. Recent experimental studies reveal that relative differences in spike timings experienced among neighboring glutamatergic and GABAergic synapses on a dendritic branch significantly influences changes in the efficiency of these synapses. This heterosynaptic form of spike-timing-dependent plasticity (STDP) is potentially important for shaping the synaptic organization and computation of neurons, but its functional role remains elusive. Through computational modeling at the parameter regime where previous experimental results are well reproduced, we show that heterosynaptic plasticity serves to finely balance excitatory and inhibitory inputs on the dendrite. Our results suggest a principle of GABA-driven neural circuit formation.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>CA1 Region, Hippocampal - cytology</subject><subject>CA1 Region, Hippocampal - physiology</subject><subject>Calcium Signaling - physiology</subject><subject>Computation</subject><subject>Computational neuroscience</subject><subject>Computer Simulation</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - physiology</subject><subject>Cortex</subject><subject>Critical period</subject><subject>Dendrites - physiology</subject><subject>Dendritic plasticity</subject><subject>Dendritic structure</subject><subject>Firing pattern</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Glutamatergic transmission</subject><subject>Learning - physiology</subject><subject>Mice</subject><subject>Models, Neurological</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Rats</subject><subject>Synapses</subject><subject>Synapses - classification</subject><subject>Synapses - physiology</subject><subject>Synaptic plasticity</subject><subject>Synaptogenesis</subject><subject>Time Factors</subject><subject>γ-Aminobutyric acid</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUVtP2zAYtaahUWB_AUXay15SfHfygrS1BYoQoAHPluM4rUvqBNuZ1n-PIy4aPNnSueic7wBwjOAUMUxONs4MvgvaTiHEIkdiiiESX8AkoWWOKURfwSQhMOdU0H1wEMIGQigS6RvYxyUsSkrJBNi5icq2ps7mxtXeRquzxT9to4qd350s3dpWdvxmv1WrnDZZXPtuWK2zCxNNSrBzqh9Fd719NPm93Vq3yuemT27Gxey2VSHBNu6OwF6j2mC-v76H4OFscT-7yK9uzpezX1e5ZhzFXCDFEBNUCYEqzjgXFYGaYE0VqThXdVOYWhWwgZBjjRgSkDRVKlkzwgQh5BCcvvj2Q7U1tU4pvGpl7-1W-Z3slJUfEWfXctX9lZyVvEAiGfx8NfDd02BClFsbtGlTfdMNQaKSFYxSRMtE_fGJuukG71I9iWE6cFGWGCUWf2HpdK_gTfMeBkE5rikvrxcPf27uZks5rimRkOOaSXj8f5V32dt85BmpIp7W</recordid><startdate>20171213</startdate><enddate>20171213</enddate><creator>Hiratani, Naoki</creator><creator>Fukai, Tomoki</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6977-5638</orcidid></search><sort><creationdate>20171213</creationdate><title>Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity</title><author>Hiratani, Naoki ; Fukai, Tomoki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-71a51574a771b65667b30c32c4a3b66adf8eda80f0062c151703fb647d5357333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>CA1 Region, Hippocampal - cytology</topic><topic>CA1 Region, Hippocampal - physiology</topic><topic>Calcium Signaling - physiology</topic><topic>Computation</topic><topic>Computational neuroscience</topic><topic>Computer Simulation</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - physiology</topic><topic>Cortex</topic><topic>Critical period</topic><topic>Dendrites - physiology</topic><topic>Dendritic plasticity</topic><topic>Dendritic structure</topic><topic>Firing pattern</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Glutamatergic transmission</topic><topic>Learning - physiology</topic><topic>Mice</topic><topic>Models, Neurological</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Rats</topic><topic>Synapses</topic><topic>Synapses - classification</topic><topic>Synapses - physiology</topic><topic>Synaptic plasticity</topic><topic>Synaptogenesis</topic><topic>Time Factors</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiratani, Naoki</creatorcontrib><creatorcontrib>Fukai, Tomoki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiratani, Naoki</au><au>Fukai, Tomoki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2017-12-13</date><risdate>2017</risdate><volume>37</volume><issue>50</issue><spage>12106</spage><epage>12122</epage><pages>12106-12122</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such a balance is arguably preserved in dendritic branches, yet its underlying mechanism and functional roles remain unknown. In this study, we developed computational models of heterosynaptic spike-timing-dependent plasticity (STDP) to show that the excitatory/inhibitory balance in dendritic branches is robustly achieved through heterosynaptic interactions between excitatory and inhibitory synapses. The model reproduces key features of experimental heterosynaptic STDP well, and provides analytical insights. Furthermore, heterosynaptic STDP explains how the maturation of inhibitory neurons modulates the selectivity of excitatory neurons for binocular matching in the critical period plasticity. The model also provides an alternative explanation for the potential mechanism underlying the somatic detailed balance that is commonly associated with inhibitory STDP. Our results propose heterosynaptic STDP as a critical factor in synaptic organization and the resultant dendritic computation. Recent experimental studies reveal that relative differences in spike timings experienced among neighboring glutamatergic and GABAergic synapses on a dendritic branch significantly influences changes in the efficiency of these synapses. This heterosynaptic form of spike-timing-dependent plasticity (STDP) is potentially important for shaping the synaptic organization and computation of neurons, but its functional role remains elusive. Through computational modeling at the parameter regime where previous experimental results are well reproduced, we show that heterosynaptic plasticity serves to finely balance excitatory and inhibitory inputs on the dendrite. Our results suggest a principle of GABA-driven neural circuit formation.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>29089443</pmid><doi>10.1523/jneurosci.0027-17.2017</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6977-5638</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2017-12, Vol.37 (50), p.12106-12122
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6596817
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Action Potentials - physiology
Animals
CA1 Region, Hippocampal - cytology
CA1 Region, Hippocampal - physiology
Calcium Signaling - physiology
Computation
Computational neuroscience
Computer Simulation
Corpus Striatum - cytology
Corpus Striatum - physiology
Cortex
Critical period
Dendrites - physiology
Dendritic plasticity
Dendritic structure
Firing pattern
gamma-Aminobutyric Acid - physiology
Glutamatergic transmission
Learning - physiology
Mice
Models, Neurological
Neuronal Plasticity - physiology
Neurons
Plastic properties
Plasticity
Rats
Synapses
Synapses - classification
Synapses - physiology
Synaptic plasticity
Synaptogenesis
Time Factors
γ-Aminobutyric acid
title Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detailed%20Dendritic%20Excitatory/Inhibitory%20Balance%20through%20Heterosynaptic%20Spike-Timing-Dependent%20Plasticity&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Hiratani,%20Naoki&rft.date=2017-12-13&rft.volume=37&rft.issue=50&rft.spage=12106&rft.epage=12122&rft.pages=12106-12122&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.0027-17.2017&rft_dat=%3Cproquest_pubme%3E2094489921%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094489921&rft_id=info:pmid/29089443&rfr_iscdi=true