Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity
The balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such a balance is arguably preserved in dendritic branches, yet its underlying mechanism and functional roles remain unknown. In this study, we developed computational models of heterosynaptic spike-timing-de...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2017-12, Vol.37 (50), p.12106-12122 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12122 |
---|---|
container_issue | 50 |
container_start_page | 12106 |
container_title | The Journal of neuroscience |
container_volume | 37 |
creator | Hiratani, Naoki Fukai, Tomoki |
description | The balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such a balance is arguably preserved in dendritic branches, yet its underlying mechanism and functional roles remain unknown. In this study, we developed computational models of heterosynaptic spike-timing-dependent plasticity (STDP) to show that the excitatory/inhibitory balance in dendritic branches is robustly achieved through heterosynaptic interactions between excitatory and inhibitory synapses. The model reproduces key features of experimental heterosynaptic STDP well, and provides analytical insights. Furthermore, heterosynaptic STDP explains how the maturation of inhibitory neurons modulates the selectivity of excitatory neurons for binocular matching in the critical period plasticity. The model also provides an alternative explanation for the potential mechanism underlying the somatic detailed balance that is commonly associated with inhibitory STDP. Our results propose heterosynaptic STDP as a critical factor in synaptic organization and the resultant dendritic computation.
Recent experimental studies reveal that relative differences in spike timings experienced among neighboring glutamatergic and GABAergic synapses on a dendritic branch significantly influences changes in the efficiency of these synapses. This heterosynaptic form of spike-timing-dependent plasticity (STDP) is potentially important for shaping the synaptic organization and computation of neurons, but its functional role remains elusive. Through computational modeling at the parameter regime where previous experimental results are well reproduced, we show that heterosynaptic plasticity serves to finely balance excitatory and inhibitory inputs on the dendrite. Our results suggest a principle of GABA-driven neural circuit formation. |
doi_str_mv | 10.1523/jneurosci.0027-17.2017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6596817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094489921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-71a51574a771b65667b30c32c4a3b66adf8eda80f0062c151703fb647d5357333</originalsourceid><addsrcrecordid>eNpdUVtP2zAYtaahUWB_AUXay15SfHfygrS1BYoQoAHPluM4rUvqBNuZ1n-PIy4aPNnSueic7wBwjOAUMUxONs4MvgvaTiHEIkdiiiESX8AkoWWOKURfwSQhMOdU0H1wEMIGQigS6RvYxyUsSkrJBNi5icq2ps7mxtXeRquzxT9to4qd350s3dpWdvxmv1WrnDZZXPtuWK2zCxNNSrBzqh9Fd719NPm93Vq3yuemT27Gxey2VSHBNu6OwF6j2mC-v76H4OFscT-7yK9uzpezX1e5ZhzFXCDFEBNUCYEqzjgXFYGaYE0VqThXdVOYWhWwgZBjjRgSkDRVKlkzwgQh5BCcvvj2Q7U1tU4pvGpl7-1W-Z3slJUfEWfXctX9lZyVvEAiGfx8NfDd02BClFsbtGlTfdMNQaKSFYxSRMtE_fGJuukG71I9iWE6cFGWGCUWf2HpdK_gTfMeBkE5rikvrxcPf27uZks5rimRkOOaSXj8f5V32dt85BmpIp7W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094489921</pqid></control><display><type>article</type><title>Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hiratani, Naoki ; Fukai, Tomoki</creator><creatorcontrib>Hiratani, Naoki ; Fukai, Tomoki</creatorcontrib><description>The balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such a balance is arguably preserved in dendritic branches, yet its underlying mechanism and functional roles remain unknown. In this study, we developed computational models of heterosynaptic spike-timing-dependent plasticity (STDP) to show that the excitatory/inhibitory balance in dendritic branches is robustly achieved through heterosynaptic interactions between excitatory and inhibitory synapses. The model reproduces key features of experimental heterosynaptic STDP well, and provides analytical insights. Furthermore, heterosynaptic STDP explains how the maturation of inhibitory neurons modulates the selectivity of excitatory neurons for binocular matching in the critical period plasticity. The model also provides an alternative explanation for the potential mechanism underlying the somatic detailed balance that is commonly associated with inhibitory STDP. Our results propose heterosynaptic STDP as a critical factor in synaptic organization and the resultant dendritic computation.
Recent experimental studies reveal that relative differences in spike timings experienced among neighboring glutamatergic and GABAergic synapses on a dendritic branch significantly influences changes in the efficiency of these synapses. This heterosynaptic form of spike-timing-dependent plasticity (STDP) is potentially important for shaping the synaptic organization and computation of neurons, but its functional role remains elusive. Through computational modeling at the parameter regime where previous experimental results are well reproduced, we show that heterosynaptic plasticity serves to finely balance excitatory and inhibitory inputs on the dendrite. Our results suggest a principle of GABA-driven neural circuit formation.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.0027-17.2017</identifier><identifier>PMID: 29089443</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Action Potentials - physiology ; Animals ; CA1 Region, Hippocampal - cytology ; CA1 Region, Hippocampal - physiology ; Calcium Signaling - physiology ; Computation ; Computational neuroscience ; Computer Simulation ; Corpus Striatum - cytology ; Corpus Striatum - physiology ; Cortex ; Critical period ; Dendrites - physiology ; Dendritic plasticity ; Dendritic structure ; Firing pattern ; gamma-Aminobutyric Acid - physiology ; Glutamatergic transmission ; Learning - physiology ; Mice ; Models, Neurological ; Neuronal Plasticity - physiology ; Neurons ; Plastic properties ; Plasticity ; Rats ; Synapses ; Synapses - classification ; Synapses - physiology ; Synaptic plasticity ; Synaptogenesis ; Time Factors ; γ-Aminobutyric acid</subject><ispartof>The Journal of neuroscience, 2017-12, Vol.37 (50), p.12106-12122</ispartof><rights>Copyright © 2017 the authors 0270-6474/17/3712106-17$15.00/0.</rights><rights>Copyright Society for Neuroscience Dec 13, 2017</rights><rights>Copyright © 2017 the authors 0270-6474/17/3712106-17$15.00/0 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-71a51574a771b65667b30c32c4a3b66adf8eda80f0062c151703fb647d5357333</citedby><cites>FETCH-LOGICAL-c561t-71a51574a771b65667b30c32c4a3b66adf8eda80f0062c151703fb647d5357333</cites><orcidid>0000-0001-6977-5638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596817/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596817/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29089443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hiratani, Naoki</creatorcontrib><creatorcontrib>Fukai, Tomoki</creatorcontrib><title>Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such a balance is arguably preserved in dendritic branches, yet its underlying mechanism and functional roles remain unknown. In this study, we developed computational models of heterosynaptic spike-timing-dependent plasticity (STDP) to show that the excitatory/inhibitory balance in dendritic branches is robustly achieved through heterosynaptic interactions between excitatory and inhibitory synapses. The model reproduces key features of experimental heterosynaptic STDP well, and provides analytical insights. Furthermore, heterosynaptic STDP explains how the maturation of inhibitory neurons modulates the selectivity of excitatory neurons for binocular matching in the critical period plasticity. The model also provides an alternative explanation for the potential mechanism underlying the somatic detailed balance that is commonly associated with inhibitory STDP. Our results propose heterosynaptic STDP as a critical factor in synaptic organization and the resultant dendritic computation.
Recent experimental studies reveal that relative differences in spike timings experienced among neighboring glutamatergic and GABAergic synapses on a dendritic branch significantly influences changes in the efficiency of these synapses. This heterosynaptic form of spike-timing-dependent plasticity (STDP) is potentially important for shaping the synaptic organization and computation of neurons, but its functional role remains elusive. Through computational modeling at the parameter regime where previous experimental results are well reproduced, we show that heterosynaptic plasticity serves to finely balance excitatory and inhibitory inputs on the dendrite. Our results suggest a principle of GABA-driven neural circuit formation.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>CA1 Region, Hippocampal - cytology</subject><subject>CA1 Region, Hippocampal - physiology</subject><subject>Calcium Signaling - physiology</subject><subject>Computation</subject><subject>Computational neuroscience</subject><subject>Computer Simulation</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - physiology</subject><subject>Cortex</subject><subject>Critical period</subject><subject>Dendrites - physiology</subject><subject>Dendritic plasticity</subject><subject>Dendritic structure</subject><subject>Firing pattern</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Glutamatergic transmission</subject><subject>Learning - physiology</subject><subject>Mice</subject><subject>Models, Neurological</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Rats</subject><subject>Synapses</subject><subject>Synapses - classification</subject><subject>Synapses - physiology</subject><subject>Synaptic plasticity</subject><subject>Synaptogenesis</subject><subject>Time Factors</subject><subject>γ-Aminobutyric acid</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUVtP2zAYtaahUWB_AUXay15SfHfygrS1BYoQoAHPluM4rUvqBNuZ1n-PIy4aPNnSueic7wBwjOAUMUxONs4MvgvaTiHEIkdiiiESX8AkoWWOKURfwSQhMOdU0H1wEMIGQigS6RvYxyUsSkrJBNi5icq2ps7mxtXeRquzxT9to4qd350s3dpWdvxmv1WrnDZZXPtuWK2zCxNNSrBzqh9Fd719NPm93Vq3yuemT27Gxey2VSHBNu6OwF6j2mC-v76H4OFscT-7yK9uzpezX1e5ZhzFXCDFEBNUCYEqzjgXFYGaYE0VqThXdVOYWhWwgZBjjRgSkDRVKlkzwgQh5BCcvvj2Q7U1tU4pvGpl7-1W-Z3slJUfEWfXctX9lZyVvEAiGfx8NfDd02BClFsbtGlTfdMNQaKSFYxSRMtE_fGJuukG71I9iWE6cFGWGCUWf2HpdK_gTfMeBkE5rikvrxcPf27uZks5rimRkOOaSXj8f5V32dt85BmpIp7W</recordid><startdate>20171213</startdate><enddate>20171213</enddate><creator>Hiratani, Naoki</creator><creator>Fukai, Tomoki</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6977-5638</orcidid></search><sort><creationdate>20171213</creationdate><title>Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity</title><author>Hiratani, Naoki ; Fukai, Tomoki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-71a51574a771b65667b30c32c4a3b66adf8eda80f0062c151703fb647d5357333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>CA1 Region, Hippocampal - cytology</topic><topic>CA1 Region, Hippocampal - physiology</topic><topic>Calcium Signaling - physiology</topic><topic>Computation</topic><topic>Computational neuroscience</topic><topic>Computer Simulation</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - physiology</topic><topic>Cortex</topic><topic>Critical period</topic><topic>Dendrites - physiology</topic><topic>Dendritic plasticity</topic><topic>Dendritic structure</topic><topic>Firing pattern</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Glutamatergic transmission</topic><topic>Learning - physiology</topic><topic>Mice</topic><topic>Models, Neurological</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Rats</topic><topic>Synapses</topic><topic>Synapses - classification</topic><topic>Synapses - physiology</topic><topic>Synaptic plasticity</topic><topic>Synaptogenesis</topic><topic>Time Factors</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiratani, Naoki</creatorcontrib><creatorcontrib>Fukai, Tomoki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiratani, Naoki</au><au>Fukai, Tomoki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2017-12-13</date><risdate>2017</risdate><volume>37</volume><issue>50</issue><spage>12106</spage><epage>12122</epage><pages>12106-12122</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such a balance is arguably preserved in dendritic branches, yet its underlying mechanism and functional roles remain unknown. In this study, we developed computational models of heterosynaptic spike-timing-dependent plasticity (STDP) to show that the excitatory/inhibitory balance in dendritic branches is robustly achieved through heterosynaptic interactions between excitatory and inhibitory synapses. The model reproduces key features of experimental heterosynaptic STDP well, and provides analytical insights. Furthermore, heterosynaptic STDP explains how the maturation of inhibitory neurons modulates the selectivity of excitatory neurons for binocular matching in the critical period plasticity. The model also provides an alternative explanation for the potential mechanism underlying the somatic detailed balance that is commonly associated with inhibitory STDP. Our results propose heterosynaptic STDP as a critical factor in synaptic organization and the resultant dendritic computation.
Recent experimental studies reveal that relative differences in spike timings experienced among neighboring glutamatergic and GABAergic synapses on a dendritic branch significantly influences changes in the efficiency of these synapses. This heterosynaptic form of spike-timing-dependent plasticity (STDP) is potentially important for shaping the synaptic organization and computation of neurons, but its functional role remains elusive. Through computational modeling at the parameter regime where previous experimental results are well reproduced, we show that heterosynaptic plasticity serves to finely balance excitatory and inhibitory inputs on the dendrite. Our results suggest a principle of GABA-driven neural circuit formation.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>29089443</pmid><doi>10.1523/jneurosci.0027-17.2017</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6977-5638</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2017-12, Vol.37 (50), p.12106-12122 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6596817 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Action Potentials - physiology Animals CA1 Region, Hippocampal - cytology CA1 Region, Hippocampal - physiology Calcium Signaling - physiology Computation Computational neuroscience Computer Simulation Corpus Striatum - cytology Corpus Striatum - physiology Cortex Critical period Dendrites - physiology Dendritic plasticity Dendritic structure Firing pattern gamma-Aminobutyric Acid - physiology Glutamatergic transmission Learning - physiology Mice Models, Neurological Neuronal Plasticity - physiology Neurons Plastic properties Plasticity Rats Synapses Synapses - classification Synapses - physiology Synaptic plasticity Synaptogenesis Time Factors γ-Aminobutyric acid |
title | Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detailed%20Dendritic%20Excitatory/Inhibitory%20Balance%20through%20Heterosynaptic%20Spike-Timing-Dependent%20Plasticity&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Hiratani,%20Naoki&rft.date=2017-12-13&rft.volume=37&rft.issue=50&rft.spage=12106&rft.epage=12122&rft.pages=12106-12122&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.0027-17.2017&rft_dat=%3Cproquest_pubme%3E2094489921%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094489921&rft_id=info:pmid/29089443&rfr_iscdi=true |