Selective Modulation of the Pupil Light Reflex by Microstimulation of Prefrontal Cortex

The prefrontal cortex (PFC) is thought to flexibly regulate sensorimotor responses, perhaps through modulating activity in other circuits. However, the scope of that control remains unknown: it remains unclear whether the PFC can modulate basic reflexes. One canonical example of a central reflex is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2017-05, Vol.37 (19), p.5008-5018
Hauptverfasser: Ebitz, R Becket, Moore, Tirin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The prefrontal cortex (PFC) is thought to flexibly regulate sensorimotor responses, perhaps through modulating activity in other circuits. However, the scope of that control remains unknown: it remains unclear whether the PFC can modulate basic reflexes. One canonical example of a central reflex is the pupil light reflex (PLR): the automatic constriction of the pupil in response to luminance increments. Unlike pupil size, which depends on the interaction of multiple physiological and neuromodulatory influences, the PLR reflects the action of a simple brainstem circuit. However, emerging behavioral evidence suggests that the PLR may be modulated by cognitive processes. Although the neural basis of these modulations remains unknown, one possible source is the PFC, particularly the frontal eye field (FEF), an area of the PFC implicated in the control of attention. We show that microstimulation of the rhesus macaque FEF alters the magnitude of the PLR in a spatially specific manner. FEF microstimulation enhanced the PLR to probes presented within the stimulated visual field, but suppressed the PLR to probes at nonoverlapping locations. The spatial specificity of this effect parallels the effect of FEF stimulation on attention and suggests that FEF is capable of modulating visuomotor transformations performed at a lower level than was previously known. These results provide evidence of the selective regulation of a basic brainstem reflex by the PFC. The pupil light reflex (PLR) is our brain's first and most fundamental mechanism for light adaptation. Although it is often described in textbooks as being an immutable reflex, converging evidence suggests that the magnitude of the PLR is modulated by cognitive factors. The neural bases of these modulations are unknown. Here, we report that microstimulation in the prefrontal cortex (PFC) modulates the gain of the PLR, changing how a simple reflex circuit responds to physically identical stimuli. These results suggest that control structures such as the PFC can add complexity and flexibility to even a basic brainstem circuit.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.2433-16.2017