Exploiting machine learning for end-to-end drug discovery and development
A variety of machine learning methods such as naive Bayesian, support vector machines and more recently deep neural networks are demonstrating their utility for drug discovery and development. These leverage the generally bigger datasets created from high-throughput screening data and allow predicti...
Gespeichert in:
Veröffentlicht in: | Nature materials 2019-05, Vol.18 (5), p.435-441 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 441 |
---|---|
container_issue | 5 |
container_start_page | 435 |
container_title | Nature materials |
container_volume | 18 |
creator | Ekins, Sean Puhl, Ana C. Zorn, Kimberley M. Lane, Thomas R. Russo, Daniel P. Klein, Jennifer J. Hickey, Anthony J. Clark, Alex M. |
description | A variety of machine learning methods such as naive Bayesian, support vector machines and more recently deep neural networks are demonstrating their utility for drug discovery and development. These leverage the generally bigger datasets created from high-throughput screening data and allow prediction of bioactivities for targets and molecular properties with increased levels of accuracy. We have only just begun to exploit the potential of these techniques but they may already be fundamentally changing the research process for identifying new molecules and/or repurposing old drugs. The integrated application of such machine learning models for end-to-end (E2E) application is broadly relevant and has considerable implications for developing future therapies and their targeting.
This Perspective describes the application of machine learning models in the design, synthesis and characterisation of molecules at different stages in the drug discovery and development process. |
doi_str_mv | 10.1038/s41563-019-0338-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6594828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211330263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-cac5a1455f127547871d89887883c8febea023de464d2a1e4c2f1212e383c7f03</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhi1UVD7aH8AFReqlFxePv-K9VKoQUCQkLnC2vM5kCUrsrZ2sgF9fL7vd0kqcxpr3mXc8egk5AfYNmDBnWYLSgjKYUSaEoS975BBkranUmn3YvgE4PyBHOT8yxkEp_ZEcCGCMGSYOyfXF07KP3diFRTU4_9AFrHp0KawbbUwVhoaOkZZSNWlaVE2XfVxheq7cuoUr7ONywDB-Ivut6zN-3tZjcn95cXf-k97cXl2f_7ihXtVipN555UAq1QKvlaxNDY2ZGVMbI7xpcY6OcdGg1LLhDlB6XkjgKIpet0wck-8b3-U0H7DxZXVyvV2mbnDp2UbX2X-V0D3YRVxZrWbScFMMvm4NUvw1YR7tUG7CvncB45Qt5wAzqTnogn75D32MUwrlvFdKCMa1KBRsKJ9izgnb3WeA2XVQdhOULUHZdVD2pcycvr1iN_EnmQLwDZCLFBaY_q5-3_U37Oye0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211330263</pqid></control><display><type>article</type><title>Exploiting machine learning for end-to-end drug discovery and development</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Ekins, Sean ; Puhl, Ana C. ; Zorn, Kimberley M. ; Lane, Thomas R. ; Russo, Daniel P. ; Klein, Jennifer J. ; Hickey, Anthony J. ; Clark, Alex M.</creator><creatorcontrib>Ekins, Sean ; Puhl, Ana C. ; Zorn, Kimberley M. ; Lane, Thomas R. ; Russo, Daniel P. ; Klein, Jennifer J. ; Hickey, Anthony J. ; Clark, Alex M.</creatorcontrib><description>A variety of machine learning methods such as naive Bayesian, support vector machines and more recently deep neural networks are demonstrating their utility for drug discovery and development. These leverage the generally bigger datasets created from high-throughput screening data and allow prediction of bioactivities for targets and molecular properties with increased levels of accuracy. We have only just begun to exploit the potential of these techniques but they may already be fundamentally changing the research process for identifying new molecules and/or repurposing old drugs. The integrated application of such machine learning models for end-to-end (E2E) application is broadly relevant and has considerable implications for developing future therapies and their targeting.
This Perspective describes the application of machine learning models in the design, synthesis and characterisation of molecules at different stages in the drug discovery and development process.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0338-z</identifier><identifier>PMID: 31000803</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 631/154 ; 631/154/140 ; 631/154/1438 ; 631/154/152 ; 631/154/155 ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Bayes Theorem ; Bayesian analysis ; Biomaterials ; Chemistry and Materials Science ; Computational Biology - methods ; Computer Simulation ; Condensed Matter Physics ; Drug Design ; Drug Development ; Drug Discovery ; Drug Repositioning ; Humans ; Machine Learning ; Materials Science ; Nanomedicine ; Nanotechnology ; Neural Networks, Computer ; Optical and Electronic Materials ; Perspective ; Support Vector Machine ; Support vector machines ; Technology, Pharmaceutical - trends</subject><ispartof>Nature materials, 2019-05, Vol.18 (5), p.435-441</ispartof><rights>Springer Nature Limited 2019</rights><rights>Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-cac5a1455f127547871d89887883c8febea023de464d2a1e4c2f1212e383c7f03</citedby><cites>FETCH-LOGICAL-c573t-cac5a1455f127547871d89887883c8febea023de464d2a1e4c2f1212e383c7f03</cites><orcidid>0000-0003-1739-132X ; 0000-0002-5691-5790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-019-0338-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-019-0338-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31000803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekins, Sean</creatorcontrib><creatorcontrib>Puhl, Ana C.</creatorcontrib><creatorcontrib>Zorn, Kimberley M.</creatorcontrib><creatorcontrib>Lane, Thomas R.</creatorcontrib><creatorcontrib>Russo, Daniel P.</creatorcontrib><creatorcontrib>Klein, Jennifer J.</creatorcontrib><creatorcontrib>Hickey, Anthony J.</creatorcontrib><creatorcontrib>Clark, Alex M.</creatorcontrib><title>Exploiting machine learning for end-to-end drug discovery and development</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>A variety of machine learning methods such as naive Bayesian, support vector machines and more recently deep neural networks are demonstrating their utility for drug discovery and development. These leverage the generally bigger datasets created from high-throughput screening data and allow prediction of bioactivities for targets and molecular properties with increased levels of accuracy. We have only just begun to exploit the potential of these techniques but they may already be fundamentally changing the research process for identifying new molecules and/or repurposing old drugs. The integrated application of such machine learning models for end-to-end (E2E) application is broadly relevant and has considerable implications for developing future therapies and their targeting.
This Perspective describes the application of machine learning models in the design, synthesis and characterisation of molecules at different stages in the drug discovery and development process.</description><subject>119/118</subject><subject>631/154</subject><subject>631/154/140</subject><subject>631/154/1438</subject><subject>631/154/152</subject><subject>631/154/155</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Condensed Matter Physics</subject><subject>Drug Design</subject><subject>Drug Development</subject><subject>Drug Discovery</subject><subject>Drug Repositioning</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Materials Science</subject><subject>Nanomedicine</subject><subject>Nanotechnology</subject><subject>Neural Networks, Computer</subject><subject>Optical and Electronic Materials</subject><subject>Perspective</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Technology, Pharmaceutical - trends</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1P3DAQhi1UVD7aH8AFReqlFxePv-K9VKoQUCQkLnC2vM5kCUrsrZ2sgF9fL7vd0kqcxpr3mXc8egk5AfYNmDBnWYLSgjKYUSaEoS975BBkranUmn3YvgE4PyBHOT8yxkEp_ZEcCGCMGSYOyfXF07KP3diFRTU4_9AFrHp0KawbbUwVhoaOkZZSNWlaVE2XfVxheq7cuoUr7ONywDB-Ivut6zN-3tZjcn95cXf-k97cXl2f_7ihXtVipN555UAq1QKvlaxNDY2ZGVMbI7xpcY6OcdGg1LLhDlB6XkjgKIpet0wck-8b3-U0H7DxZXVyvV2mbnDp2UbX2X-V0D3YRVxZrWbScFMMvm4NUvw1YR7tUG7CvncB45Qt5wAzqTnogn75D32MUwrlvFdKCMa1KBRsKJ9izgnb3WeA2XVQdhOULUHZdVD2pcycvr1iN_EnmQLwDZCLFBaY_q5-3_U37Oye0A</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Ekins, Sean</creator><creator>Puhl, Ana C.</creator><creator>Zorn, Kimberley M.</creator><creator>Lane, Thomas R.</creator><creator>Russo, Daniel P.</creator><creator>Klein, Jennifer J.</creator><creator>Hickey, Anthony J.</creator><creator>Clark, Alex M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1739-132X</orcidid><orcidid>https://orcid.org/0000-0002-5691-5790</orcidid></search><sort><creationdate>20190501</creationdate><title>Exploiting machine learning for end-to-end drug discovery and development</title><author>Ekins, Sean ; Puhl, Ana C. ; Zorn, Kimberley M. ; Lane, Thomas R. ; Russo, Daniel P. ; Klein, Jennifer J. ; Hickey, Anthony J. ; Clark, Alex M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-cac5a1455f127547871d89887883c8febea023de464d2a1e4c2f1212e383c7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>119/118</topic><topic>631/154</topic><topic>631/154/140</topic><topic>631/154/1438</topic><topic>631/154/152</topic><topic>631/154/155</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Condensed Matter Physics</topic><topic>Drug Design</topic><topic>Drug Development</topic><topic>Drug Discovery</topic><topic>Drug Repositioning</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Materials Science</topic><topic>Nanomedicine</topic><topic>Nanotechnology</topic><topic>Neural Networks, Computer</topic><topic>Optical and Electronic Materials</topic><topic>Perspective</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Technology, Pharmaceutical - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekins, Sean</creatorcontrib><creatorcontrib>Puhl, Ana C.</creatorcontrib><creatorcontrib>Zorn, Kimberley M.</creatorcontrib><creatorcontrib>Lane, Thomas R.</creatorcontrib><creatorcontrib>Russo, Daniel P.</creatorcontrib><creatorcontrib>Klein, Jennifer J.</creatorcontrib><creatorcontrib>Hickey, Anthony J.</creatorcontrib><creatorcontrib>Clark, Alex M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekins, Sean</au><au>Puhl, Ana C.</au><au>Zorn, Kimberley M.</au><au>Lane, Thomas R.</au><au>Russo, Daniel P.</au><au>Klein, Jennifer J.</au><au>Hickey, Anthony J.</au><au>Clark, Alex M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting machine learning for end-to-end drug discovery and development</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>18</volume><issue>5</issue><spage>435</spage><epage>441</epage><pages>435-441</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>A variety of machine learning methods such as naive Bayesian, support vector machines and more recently deep neural networks are demonstrating their utility for drug discovery and development. These leverage the generally bigger datasets created from high-throughput screening data and allow prediction of bioactivities for targets and molecular properties with increased levels of accuracy. We have only just begun to exploit the potential of these techniques but they may already be fundamentally changing the research process for identifying new molecules and/or repurposing old drugs. The integrated application of such machine learning models for end-to-end (E2E) application is broadly relevant and has considerable implications for developing future therapies and their targeting.
This Perspective describes the application of machine learning models in the design, synthesis and characterisation of molecules at different stages in the drug discovery and development process.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31000803</pmid><doi>10.1038/s41563-019-0338-z</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1739-132X</orcidid><orcidid>https://orcid.org/0000-0002-5691-5790</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2019-05, Vol.18 (5), p.435-441 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6594828 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 119/118 631/154 631/154/140 631/154/1438 631/154/152 631/154/155 Algorithms Artificial intelligence Artificial neural networks Bayes Theorem Bayesian analysis Biomaterials Chemistry and Materials Science Computational Biology - methods Computer Simulation Condensed Matter Physics Drug Design Drug Development Drug Discovery Drug Repositioning Humans Machine Learning Materials Science Nanomedicine Nanotechnology Neural Networks, Computer Optical and Electronic Materials Perspective Support Vector Machine Support vector machines Technology, Pharmaceutical - trends |
title | Exploiting machine learning for end-to-end drug discovery and development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20machine%20learning%20for%20end-to-end%20drug%20discovery%20and%20development&rft.jtitle=Nature%20materials&rft.au=Ekins,%20Sean&rft.date=2019-05-01&rft.volume=18&rft.issue=5&rft.spage=435&rft.epage=441&rft.pages=435-441&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0338-z&rft_dat=%3Cproquest_pubme%3E2211330263%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211330263&rft_id=info:pmid/31000803&rfr_iscdi=true |