Exploiting machine learning for end-to-end drug discovery and development

A variety of machine learning methods such as naive Bayesian, support vector machines and more recently deep neural networks are demonstrating their utility for drug discovery and development. These leverage the generally bigger datasets created from high-throughput screening data and allow predicti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2019-05, Vol.18 (5), p.435-441
Hauptverfasser: Ekins, Sean, Puhl, Ana C., Zorn, Kimberley M., Lane, Thomas R., Russo, Daniel P., Klein, Jennifer J., Hickey, Anthony J., Clark, Alex M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 441
container_issue 5
container_start_page 435
container_title Nature materials
container_volume 18
creator Ekins, Sean
Puhl, Ana C.
Zorn, Kimberley M.
Lane, Thomas R.
Russo, Daniel P.
Klein, Jennifer J.
Hickey, Anthony J.
Clark, Alex M.
description A variety of machine learning methods such as naive Bayesian, support vector machines and more recently deep neural networks are demonstrating their utility for drug discovery and development. These leverage the generally bigger datasets created from high-throughput screening data and allow prediction of bioactivities for targets and molecular properties with increased levels of accuracy. We have only just begun to exploit the potential of these techniques but they may already be fundamentally changing the research process for identifying new molecules and/or repurposing old drugs. The integrated application of such machine learning models for end-to-end (E2E) application is broadly relevant and has considerable implications for developing future therapies and their targeting. This Perspective describes the application of machine learning models in the design, synthesis and characterisation of molecules at different stages in the drug discovery and development process.
doi_str_mv 10.1038/s41563-019-0338-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6594828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211330263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-cac5a1455f127547871d89887883c8febea023de464d2a1e4c2f1212e383c7f03</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhi1UVD7aH8AFReqlFxePv-K9VKoQUCQkLnC2vM5kCUrsrZ2sgF9fL7vd0kqcxpr3mXc8egk5AfYNmDBnWYLSgjKYUSaEoS975BBkranUmn3YvgE4PyBHOT8yxkEp_ZEcCGCMGSYOyfXF07KP3diFRTU4_9AFrHp0KawbbUwVhoaOkZZSNWlaVE2XfVxheq7cuoUr7ONywDB-Ivut6zN-3tZjcn95cXf-k97cXl2f_7ihXtVipN555UAq1QKvlaxNDY2ZGVMbI7xpcY6OcdGg1LLhDlB6XkjgKIpet0wck-8b3-U0H7DxZXVyvV2mbnDp2UbX2X-V0D3YRVxZrWbScFMMvm4NUvw1YR7tUG7CvncB45Qt5wAzqTnogn75D32MUwrlvFdKCMa1KBRsKJ9izgnb3WeA2XVQdhOULUHZdVD2pcycvr1iN_EnmQLwDZCLFBaY_q5-3_U37Oye0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211330263</pqid></control><display><type>article</type><title>Exploiting machine learning for end-to-end drug discovery and development</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Ekins, Sean ; Puhl, Ana C. ; Zorn, Kimberley M. ; Lane, Thomas R. ; Russo, Daniel P. ; Klein, Jennifer J. ; Hickey, Anthony J. ; Clark, Alex M.</creator><creatorcontrib>Ekins, Sean ; Puhl, Ana C. ; Zorn, Kimberley M. ; Lane, Thomas R. ; Russo, Daniel P. ; Klein, Jennifer J. ; Hickey, Anthony J. ; Clark, Alex M.</creatorcontrib><description>A variety of machine learning methods such as naive Bayesian, support vector machines and more recently deep neural networks are demonstrating their utility for drug discovery and development. These leverage the generally bigger datasets created from high-throughput screening data and allow prediction of bioactivities for targets and molecular properties with increased levels of accuracy. We have only just begun to exploit the potential of these techniques but they may already be fundamentally changing the research process for identifying new molecules and/or repurposing old drugs. The integrated application of such machine learning models for end-to-end (E2E) application is broadly relevant and has considerable implications for developing future therapies and their targeting. This Perspective describes the application of machine learning models in the design, synthesis and characterisation of molecules at different stages in the drug discovery and development process.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0338-z</identifier><identifier>PMID: 31000803</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 631/154 ; 631/154/140 ; 631/154/1438 ; 631/154/152 ; 631/154/155 ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Bayes Theorem ; Bayesian analysis ; Biomaterials ; Chemistry and Materials Science ; Computational Biology - methods ; Computer Simulation ; Condensed Matter Physics ; Drug Design ; Drug Development ; Drug Discovery ; Drug Repositioning ; Humans ; Machine Learning ; Materials Science ; Nanomedicine ; Nanotechnology ; Neural Networks, Computer ; Optical and Electronic Materials ; Perspective ; Support Vector Machine ; Support vector machines ; Technology, Pharmaceutical - trends</subject><ispartof>Nature materials, 2019-05, Vol.18 (5), p.435-441</ispartof><rights>Springer Nature Limited 2019</rights><rights>Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-cac5a1455f127547871d89887883c8febea023de464d2a1e4c2f1212e383c7f03</citedby><cites>FETCH-LOGICAL-c573t-cac5a1455f127547871d89887883c8febea023de464d2a1e4c2f1212e383c7f03</cites><orcidid>0000-0003-1739-132X ; 0000-0002-5691-5790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-019-0338-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-019-0338-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31000803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekins, Sean</creatorcontrib><creatorcontrib>Puhl, Ana C.</creatorcontrib><creatorcontrib>Zorn, Kimberley M.</creatorcontrib><creatorcontrib>Lane, Thomas R.</creatorcontrib><creatorcontrib>Russo, Daniel P.</creatorcontrib><creatorcontrib>Klein, Jennifer J.</creatorcontrib><creatorcontrib>Hickey, Anthony J.</creatorcontrib><creatorcontrib>Clark, Alex M.</creatorcontrib><title>Exploiting machine learning for end-to-end drug discovery and development</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>A variety of machine learning methods such as naive Bayesian, support vector machines and more recently deep neural networks are demonstrating their utility for drug discovery and development. These leverage the generally bigger datasets created from high-throughput screening data and allow prediction of bioactivities for targets and molecular properties with increased levels of accuracy. We have only just begun to exploit the potential of these techniques but they may already be fundamentally changing the research process for identifying new molecules and/or repurposing old drugs. The integrated application of such machine learning models for end-to-end (E2E) application is broadly relevant and has considerable implications for developing future therapies and their targeting. This Perspective describes the application of machine learning models in the design, synthesis and characterisation of molecules at different stages in the drug discovery and development process.</description><subject>119/118</subject><subject>631/154</subject><subject>631/154/140</subject><subject>631/154/1438</subject><subject>631/154/152</subject><subject>631/154/155</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Condensed Matter Physics</subject><subject>Drug Design</subject><subject>Drug Development</subject><subject>Drug Discovery</subject><subject>Drug Repositioning</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Materials Science</subject><subject>Nanomedicine</subject><subject>Nanotechnology</subject><subject>Neural Networks, Computer</subject><subject>Optical and Electronic Materials</subject><subject>Perspective</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Technology, Pharmaceutical - trends</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1P3DAQhi1UVD7aH8AFReqlFxePv-K9VKoQUCQkLnC2vM5kCUrsrZ2sgF9fL7vd0kqcxpr3mXc8egk5AfYNmDBnWYLSgjKYUSaEoS975BBkranUmn3YvgE4PyBHOT8yxkEp_ZEcCGCMGSYOyfXF07KP3diFRTU4_9AFrHp0KawbbUwVhoaOkZZSNWlaVE2XfVxheq7cuoUr7ONywDB-Ivut6zN-3tZjcn95cXf-k97cXl2f_7ihXtVipN555UAq1QKvlaxNDY2ZGVMbI7xpcY6OcdGg1LLhDlB6XkjgKIpet0wck-8b3-U0H7DxZXVyvV2mbnDp2UbX2X-V0D3YRVxZrWbScFMMvm4NUvw1YR7tUG7CvncB45Qt5wAzqTnogn75D32MUwrlvFdKCMa1KBRsKJ9izgnb3WeA2XVQdhOULUHZdVD2pcycvr1iN_EnmQLwDZCLFBaY_q5-3_U37Oye0A</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Ekins, Sean</creator><creator>Puhl, Ana C.</creator><creator>Zorn, Kimberley M.</creator><creator>Lane, Thomas R.</creator><creator>Russo, Daniel P.</creator><creator>Klein, Jennifer J.</creator><creator>Hickey, Anthony J.</creator><creator>Clark, Alex M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1739-132X</orcidid><orcidid>https://orcid.org/0000-0002-5691-5790</orcidid></search><sort><creationdate>20190501</creationdate><title>Exploiting machine learning for end-to-end drug discovery and development</title><author>Ekins, Sean ; Puhl, Ana C. ; Zorn, Kimberley M. ; Lane, Thomas R. ; Russo, Daniel P. ; Klein, Jennifer J. ; Hickey, Anthony J. ; Clark, Alex M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-cac5a1455f127547871d89887883c8febea023de464d2a1e4c2f1212e383c7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>119/118</topic><topic>631/154</topic><topic>631/154/140</topic><topic>631/154/1438</topic><topic>631/154/152</topic><topic>631/154/155</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Condensed Matter Physics</topic><topic>Drug Design</topic><topic>Drug Development</topic><topic>Drug Discovery</topic><topic>Drug Repositioning</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Materials Science</topic><topic>Nanomedicine</topic><topic>Nanotechnology</topic><topic>Neural Networks, Computer</topic><topic>Optical and Electronic Materials</topic><topic>Perspective</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Technology, Pharmaceutical - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekins, Sean</creatorcontrib><creatorcontrib>Puhl, Ana C.</creatorcontrib><creatorcontrib>Zorn, Kimberley M.</creatorcontrib><creatorcontrib>Lane, Thomas R.</creatorcontrib><creatorcontrib>Russo, Daniel P.</creatorcontrib><creatorcontrib>Klein, Jennifer J.</creatorcontrib><creatorcontrib>Hickey, Anthony J.</creatorcontrib><creatorcontrib>Clark, Alex M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekins, Sean</au><au>Puhl, Ana C.</au><au>Zorn, Kimberley M.</au><au>Lane, Thomas R.</au><au>Russo, Daniel P.</au><au>Klein, Jennifer J.</au><au>Hickey, Anthony J.</au><au>Clark, Alex M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting machine learning for end-to-end drug discovery and development</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>18</volume><issue>5</issue><spage>435</spage><epage>441</epage><pages>435-441</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>A variety of machine learning methods such as naive Bayesian, support vector machines and more recently deep neural networks are demonstrating their utility for drug discovery and development. These leverage the generally bigger datasets created from high-throughput screening data and allow prediction of bioactivities for targets and molecular properties with increased levels of accuracy. We have only just begun to exploit the potential of these techniques but they may already be fundamentally changing the research process for identifying new molecules and/or repurposing old drugs. The integrated application of such machine learning models for end-to-end (E2E) application is broadly relevant and has considerable implications for developing future therapies and their targeting. This Perspective describes the application of machine learning models in the design, synthesis and characterisation of molecules at different stages in the drug discovery and development process.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31000803</pmid><doi>10.1038/s41563-019-0338-z</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1739-132X</orcidid><orcidid>https://orcid.org/0000-0002-5691-5790</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2019-05, Vol.18 (5), p.435-441
issn 1476-1122
1476-4660
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6594828
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 119/118
631/154
631/154/140
631/154/1438
631/154/152
631/154/155
Algorithms
Artificial intelligence
Artificial neural networks
Bayes Theorem
Bayesian analysis
Biomaterials
Chemistry and Materials Science
Computational Biology - methods
Computer Simulation
Condensed Matter Physics
Drug Design
Drug Development
Drug Discovery
Drug Repositioning
Humans
Machine Learning
Materials Science
Nanomedicine
Nanotechnology
Neural Networks, Computer
Optical and Electronic Materials
Perspective
Support Vector Machine
Support vector machines
Technology, Pharmaceutical - trends
title Exploiting machine learning for end-to-end drug discovery and development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20machine%20learning%20for%20end-to-end%20drug%20discovery%20and%20development&rft.jtitle=Nature%20materials&rft.au=Ekins,%20Sean&rft.date=2019-05-01&rft.volume=18&rft.issue=5&rft.spage=435&rft.epage=441&rft.pages=435-441&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0338-z&rft_dat=%3Cproquest_pubme%3E2211330263%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211330263&rft_id=info:pmid/31000803&rfr_iscdi=true