Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers

Immunotherapy is regarded as one of the major breakthroughs in cancer treatment. Despite its success, only a subset of patients responds—urging the quest for predictive biomarkers. We hypothesize that artificial intelligence (AI) algorithms can automatically quantify radiographic characteristics tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of oncology 2019-06, Vol.30 (6), p.998-1004
Hauptverfasser: Trebeschi, S., Drago, S.G., Birkbak, N.J., Kurilova, I., Cǎlin, A.M., Delli Pizzi, A., Lalezari, F., Lambregts, D.M.J., Rohaan, M.W., Parmar, C., Rozeman, E.A., Hartemink, K.J., Swanton, C., Haanen, J B A G, Blank, C.U., Smit, E.F., Beets-Tan, R.G.H., Aerts, H.J.W.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1004
container_issue 6
container_start_page 998
container_title Annals of oncology
container_volume 30
creator Trebeschi, S.
Drago, S.G.
Birkbak, N.J.
Kurilova, I.
Cǎlin, A.M.
Delli Pizzi, A.
Lalezari, F.
Lambregts, D.M.J.
Rohaan, M.W.
Parmar, C.
Rozeman, E.A.
Hartemink, K.J.
Swanton, C.
Haanen, J B A G
Blank, C.U.
Smit, E.F.
Beets-Tan, R.G.H.
Aerts, H.J.W.L
description Immunotherapy is regarded as one of the major breakthroughs in cancer treatment. Despite its success, only a subset of patients responds—urging the quest for predictive biomarkers. We hypothesize that artificial intelligence (AI) algorithms can automatically quantify radiographic characteristics that are related to and may therefore act as noninvasive radiomic biomarkers for immunotherapy response. In this study, we analyzed 1055 primary and metastatic lesions from 203 patients with advanced melanoma and non-small-cell lung cancer (NSCLC) undergoing anti-PD1 therapy. We carried out an AI-based characterization of each lesion on the pretreatment contrast-enhanced CT imaging data to develop and validate a noninvasive machine learning biomarker capable of distinguishing between immunotherapy responding and nonresponding. To define the biological basis of the radiographic biomarker, we carried out gene set enrichment analysis in an independent dataset of 262 NSCLC patients. The biomarker reached significant performance on NSCLC lesions (up to 0.83 AUC, P
doi_str_mv 10.1093/annonc/mdz108
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6594459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0923753419312025</els_id><sourcerecordid>2195260883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-4842df991f42a5ee65c73c8ecfff2ec2561dc66cbe1972605f21cffb8bf3f26a3</originalsourceid><addsrcrecordid>eNp1kc1P3DAUxK0KVBbaY69VjlwC_oi98QWpQuVDQgIkeracl-fF7cZe7GQl-tdjlC2iB07vMD_NPM0Q8o3RE0a1OLUhxACnQ_-X0fYTWTCpdN3Shu2RBdVc1EspmgNymPNvSqnSXH8mB4K2WgraLMj9XcLew-jDqkqYNzFkrMZYgQ2AqfLDMIU4PmKym-dqyq9YyfNha7PfYpVs7-PgoerKsekPpvyF7Du7zvh1d4_Ir4ufD-dX9c3t5fX5j5saJGVj3bQN753WzDXcSkQlYSmgRXDOcQQuFetBKeiQ6SVXVDrOita1nROOKyuOyNnsu5m6AXvAMCa7NpvkyyPPJlpv_leCfzSruDVK6qaRuhgc7wxSfJowj2bwGXC9tgHjlA1nWpbgthUFrWcUUsw5oXuLYdS8zmDmGcw8Q-G_v__tjf7XewGWM4Cloa3HZDJ4LJX3PiGMpo_-A-sXa6mdlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195260883</pqid></control><display><type>article</type><title>Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Trebeschi, S. ; Drago, S.G. ; Birkbak, N.J. ; Kurilova, I. ; Cǎlin, A.M. ; Delli Pizzi, A. ; Lalezari, F. ; Lambregts, D.M.J. ; Rohaan, M.W. ; Parmar, C. ; Rozeman, E.A. ; Hartemink, K.J. ; Swanton, C. ; Haanen, J B A G ; Blank, C.U. ; Smit, E.F. ; Beets-Tan, R.G.H. ; Aerts, H.J.W.L</creator><creatorcontrib>Trebeschi, S. ; Drago, S.G. ; Birkbak, N.J. ; Kurilova, I. ; Cǎlin, A.M. ; Delli Pizzi, A. ; Lalezari, F. ; Lambregts, D.M.J. ; Rohaan, M.W. ; Parmar, C. ; Rozeman, E.A. ; Hartemink, K.J. ; Swanton, C. ; Haanen, J B A G ; Blank, C.U. ; Smit, E.F. ; Beets-Tan, R.G.H. ; Aerts, H.J.W.L</creatorcontrib><description>Immunotherapy is regarded as one of the major breakthroughs in cancer treatment. Despite its success, only a subset of patients responds—urging the quest for predictive biomarkers. We hypothesize that artificial intelligence (AI) algorithms can automatically quantify radiographic characteristics that are related to and may therefore act as noninvasive radiomic biomarkers for immunotherapy response. In this study, we analyzed 1055 primary and metastatic lesions from 203 patients with advanced melanoma and non-small-cell lung cancer (NSCLC) undergoing anti-PD1 therapy. We carried out an AI-based characterization of each lesion on the pretreatment contrast-enhanced CT imaging data to develop and validate a noninvasive machine learning biomarker capable of distinguishing between immunotherapy responding and nonresponding. To define the biological basis of the radiographic biomarker, we carried out gene set enrichment analysis in an independent dataset of 262 NSCLC patients. The biomarker reached significant performance on NSCLC lesions (up to 0.83 AUC, P&lt;0.001) and borderline significant for melanoma lymph nodes (0.64 AUC, P=0.05). Combining these lesion-wide predictions on a patient level, immunotherapy response could be predicted with an AUC of up to 0.76 for both cancer types (P&lt;0.001), resulting in a 1-year survival difference of 24% (P=0.02). We found highly significant associations with pathways involved in mitosis, indicating a relationship between increased proliferative potential and preferential response to immunotherapy. These results indicate that radiographic characteristics of lesions on standard-of-care imaging may function as noninvasive biomarkers for response to immunotherapy, and may show utility for improved patient stratification in both neoadjuvant and palliative settings.</description><identifier>ISSN: 0923-7534</identifier><identifier>EISSN: 1569-8041</identifier><identifier>DOI: 10.1093/annonc/mdz108</identifier><identifier>PMID: 30895304</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Artificial Intelligence ; Carcinoma, Non-Small-Cell Lung - diagnostic imaging ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - immunology ; Carcinoma, Non-Small-Cell Lung - pathology ; Editor's Choice ; Follow-Up Studies ; Humans ; immunotherapy ; Immunotherapy - methods ; Lung Neoplasms - diagnostic imaging ; Lung Neoplasms - drug therapy ; Lung Neoplasms - immunology ; Lung Neoplasms - pathology ; Machine Learning ; medical imaging ; Melanoma - diagnostic imaging ; Melanoma - drug therapy ; Melanoma - immunology ; Melanoma - pathology ; Original articles ; Predictive Value of Tests ; Prognosis ; Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors ; Programmed Cell Death 1 Receptor - immunology ; radiomics ; response prediction ; Survival Rate ; Tomography, X-Ray Computed - methods</subject><ispartof>Annals of oncology, 2019-06, Vol.30 (6), p.998-1004</ispartof><rights>2019 THE AUTHORS</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the European Society for Medical Oncology.</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the European Society for Medical Oncology. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-4842df991f42a5ee65c73c8ecfff2ec2561dc66cbe1972605f21cffb8bf3f26a3</citedby><cites>FETCH-LOGICAL-c501t-4842df991f42a5ee65c73c8ecfff2ec2561dc66cbe1972605f21cffb8bf3f26a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30895304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trebeschi, S.</creatorcontrib><creatorcontrib>Drago, S.G.</creatorcontrib><creatorcontrib>Birkbak, N.J.</creatorcontrib><creatorcontrib>Kurilova, I.</creatorcontrib><creatorcontrib>Cǎlin, A.M.</creatorcontrib><creatorcontrib>Delli Pizzi, A.</creatorcontrib><creatorcontrib>Lalezari, F.</creatorcontrib><creatorcontrib>Lambregts, D.M.J.</creatorcontrib><creatorcontrib>Rohaan, M.W.</creatorcontrib><creatorcontrib>Parmar, C.</creatorcontrib><creatorcontrib>Rozeman, E.A.</creatorcontrib><creatorcontrib>Hartemink, K.J.</creatorcontrib><creatorcontrib>Swanton, C.</creatorcontrib><creatorcontrib>Haanen, J B A G</creatorcontrib><creatorcontrib>Blank, C.U.</creatorcontrib><creatorcontrib>Smit, E.F.</creatorcontrib><creatorcontrib>Beets-Tan, R.G.H.</creatorcontrib><creatorcontrib>Aerts, H.J.W.L</creatorcontrib><title>Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers</title><title>Annals of oncology</title><addtitle>Ann Oncol</addtitle><description>Immunotherapy is regarded as one of the major breakthroughs in cancer treatment. Despite its success, only a subset of patients responds—urging the quest for predictive biomarkers. We hypothesize that artificial intelligence (AI) algorithms can automatically quantify radiographic characteristics that are related to and may therefore act as noninvasive radiomic biomarkers for immunotherapy response. In this study, we analyzed 1055 primary and metastatic lesions from 203 patients with advanced melanoma and non-small-cell lung cancer (NSCLC) undergoing anti-PD1 therapy. We carried out an AI-based characterization of each lesion on the pretreatment contrast-enhanced CT imaging data to develop and validate a noninvasive machine learning biomarker capable of distinguishing between immunotherapy responding and nonresponding. To define the biological basis of the radiographic biomarker, we carried out gene set enrichment analysis in an independent dataset of 262 NSCLC patients. The biomarker reached significant performance on NSCLC lesions (up to 0.83 AUC, P&lt;0.001) and borderline significant for melanoma lymph nodes (0.64 AUC, P=0.05). Combining these lesion-wide predictions on a patient level, immunotherapy response could be predicted with an AUC of up to 0.76 for both cancer types (P&lt;0.001), resulting in a 1-year survival difference of 24% (P=0.02). We found highly significant associations with pathways involved in mitosis, indicating a relationship between increased proliferative potential and preferential response to immunotherapy. These results indicate that radiographic characteristics of lesions on standard-of-care imaging may function as noninvasive biomarkers for response to immunotherapy, and may show utility for improved patient stratification in both neoadjuvant and palliative settings.</description><subject>Algorithms</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Artificial Intelligence</subject><subject>Carcinoma, Non-Small-Cell Lung - diagnostic imaging</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - immunology</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Editor's Choice</subject><subject>Follow-Up Studies</subject><subject>Humans</subject><subject>immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - immunology</subject><subject>Lung Neoplasms - pathology</subject><subject>Machine Learning</subject><subject>medical imaging</subject><subject>Melanoma - diagnostic imaging</subject><subject>Melanoma - drug therapy</subject><subject>Melanoma - immunology</subject><subject>Melanoma - pathology</subject><subject>Original articles</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</subject><subject>Programmed Cell Death 1 Receptor - immunology</subject><subject>radiomics</subject><subject>response prediction</subject><subject>Survival Rate</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0923-7534</issn><issn>1569-8041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1P3DAUxK0KVBbaY69VjlwC_oi98QWpQuVDQgIkeracl-fF7cZe7GQl-tdjlC2iB07vMD_NPM0Q8o3RE0a1OLUhxACnQ_-X0fYTWTCpdN3Shu2RBdVc1EspmgNymPNvSqnSXH8mB4K2WgraLMj9XcLew-jDqkqYNzFkrMZYgQ2AqfLDMIU4PmKym-dqyq9YyfNha7PfYpVs7-PgoerKsekPpvyF7Du7zvh1d4_Ir4ufD-dX9c3t5fX5j5saJGVj3bQN753WzDXcSkQlYSmgRXDOcQQuFetBKeiQ6SVXVDrOita1nROOKyuOyNnsu5m6AXvAMCa7NpvkyyPPJlpv_leCfzSruDVK6qaRuhgc7wxSfJowj2bwGXC9tgHjlA1nWpbgthUFrWcUUsw5oXuLYdS8zmDmGcw8Q-G_v__tjf7XewGWM4Cloa3HZDJ4LJX3PiGMpo_-A-sXa6mdlA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Trebeschi, S.</creator><creator>Drago, S.G.</creator><creator>Birkbak, N.J.</creator><creator>Kurilova, I.</creator><creator>Cǎlin, A.M.</creator><creator>Delli Pizzi, A.</creator><creator>Lalezari, F.</creator><creator>Lambregts, D.M.J.</creator><creator>Rohaan, M.W.</creator><creator>Parmar, C.</creator><creator>Rozeman, E.A.</creator><creator>Hartemink, K.J.</creator><creator>Swanton, C.</creator><creator>Haanen, J B A G</creator><creator>Blank, C.U.</creator><creator>Smit, E.F.</creator><creator>Beets-Tan, R.G.H.</creator><creator>Aerts, H.J.W.L</creator><general>Elsevier Ltd</general><general>Oxford University Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190601</creationdate><title>Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers</title><author>Trebeschi, S. ; Drago, S.G. ; Birkbak, N.J. ; Kurilova, I. ; Cǎlin, A.M. ; Delli Pizzi, A. ; Lalezari, F. ; Lambregts, D.M.J. ; Rohaan, M.W. ; Parmar, C. ; Rozeman, E.A. ; Hartemink, K.J. ; Swanton, C. ; Haanen, J B A G ; Blank, C.U. ; Smit, E.F. ; Beets-Tan, R.G.H. ; Aerts, H.J.W.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-4842df991f42a5ee65c73c8ecfff2ec2561dc66cbe1972605f21cffb8bf3f26a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Artificial Intelligence</topic><topic>Carcinoma, Non-Small-Cell Lung - diagnostic imaging</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - immunology</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Editor's Choice</topic><topic>Follow-Up Studies</topic><topic>Humans</topic><topic>immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - immunology</topic><topic>Lung Neoplasms - pathology</topic><topic>Machine Learning</topic><topic>medical imaging</topic><topic>Melanoma - diagnostic imaging</topic><topic>Melanoma - drug therapy</topic><topic>Melanoma - immunology</topic><topic>Melanoma - pathology</topic><topic>Original articles</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</topic><topic>Programmed Cell Death 1 Receptor - immunology</topic><topic>radiomics</topic><topic>response prediction</topic><topic>Survival Rate</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trebeschi, S.</creatorcontrib><creatorcontrib>Drago, S.G.</creatorcontrib><creatorcontrib>Birkbak, N.J.</creatorcontrib><creatorcontrib>Kurilova, I.</creatorcontrib><creatorcontrib>Cǎlin, A.M.</creatorcontrib><creatorcontrib>Delli Pizzi, A.</creatorcontrib><creatorcontrib>Lalezari, F.</creatorcontrib><creatorcontrib>Lambregts, D.M.J.</creatorcontrib><creatorcontrib>Rohaan, M.W.</creatorcontrib><creatorcontrib>Parmar, C.</creatorcontrib><creatorcontrib>Rozeman, E.A.</creatorcontrib><creatorcontrib>Hartemink, K.J.</creatorcontrib><creatorcontrib>Swanton, C.</creatorcontrib><creatorcontrib>Haanen, J B A G</creatorcontrib><creatorcontrib>Blank, C.U.</creatorcontrib><creatorcontrib>Smit, E.F.</creatorcontrib><creatorcontrib>Beets-Tan, R.G.H.</creatorcontrib><creatorcontrib>Aerts, H.J.W.L</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trebeschi, S.</au><au>Drago, S.G.</au><au>Birkbak, N.J.</au><au>Kurilova, I.</au><au>Cǎlin, A.M.</au><au>Delli Pizzi, A.</au><au>Lalezari, F.</au><au>Lambregts, D.M.J.</au><au>Rohaan, M.W.</au><au>Parmar, C.</au><au>Rozeman, E.A.</au><au>Hartemink, K.J.</au><au>Swanton, C.</au><au>Haanen, J B A G</au><au>Blank, C.U.</au><au>Smit, E.F.</au><au>Beets-Tan, R.G.H.</au><au>Aerts, H.J.W.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers</atitle><jtitle>Annals of oncology</jtitle><addtitle>Ann Oncol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>30</volume><issue>6</issue><spage>998</spage><epage>1004</epage><pages>998-1004</pages><issn>0923-7534</issn><eissn>1569-8041</eissn><abstract>Immunotherapy is regarded as one of the major breakthroughs in cancer treatment. Despite its success, only a subset of patients responds—urging the quest for predictive biomarkers. We hypothesize that artificial intelligence (AI) algorithms can automatically quantify radiographic characteristics that are related to and may therefore act as noninvasive radiomic biomarkers for immunotherapy response. In this study, we analyzed 1055 primary and metastatic lesions from 203 patients with advanced melanoma and non-small-cell lung cancer (NSCLC) undergoing anti-PD1 therapy. We carried out an AI-based characterization of each lesion on the pretreatment contrast-enhanced CT imaging data to develop and validate a noninvasive machine learning biomarker capable of distinguishing between immunotherapy responding and nonresponding. To define the biological basis of the radiographic biomarker, we carried out gene set enrichment analysis in an independent dataset of 262 NSCLC patients. The biomarker reached significant performance on NSCLC lesions (up to 0.83 AUC, P&lt;0.001) and borderline significant for melanoma lymph nodes (0.64 AUC, P=0.05). Combining these lesion-wide predictions on a patient level, immunotherapy response could be predicted with an AUC of up to 0.76 for both cancer types (P&lt;0.001), resulting in a 1-year survival difference of 24% (P=0.02). We found highly significant associations with pathways involved in mitosis, indicating a relationship between increased proliferative potential and preferential response to immunotherapy. These results indicate that radiographic characteristics of lesions on standard-of-care imaging may function as noninvasive biomarkers for response to immunotherapy, and may show utility for improved patient stratification in both neoadjuvant and palliative settings.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30895304</pmid><doi>10.1093/annonc/mdz108</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0923-7534
ispartof Annals of oncology, 2019-06, Vol.30 (6), p.998-1004
issn 0923-7534
1569-8041
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6594459
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Artificial Intelligence
Carcinoma, Non-Small-Cell Lung - diagnostic imaging
Carcinoma, Non-Small-Cell Lung - drug therapy
Carcinoma, Non-Small-Cell Lung - immunology
Carcinoma, Non-Small-Cell Lung - pathology
Editor's Choice
Follow-Up Studies
Humans
immunotherapy
Immunotherapy - methods
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - drug therapy
Lung Neoplasms - immunology
Lung Neoplasms - pathology
Machine Learning
medical imaging
Melanoma - diagnostic imaging
Melanoma - drug therapy
Melanoma - immunology
Melanoma - pathology
Original articles
Predictive Value of Tests
Prognosis
Programmed Cell Death 1 Receptor - antagonists & inhibitors
Programmed Cell Death 1 Receptor - immunology
radiomics
response prediction
Survival Rate
Tomography, X-Ray Computed - methods
title Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20response%20to%20cancer%20immunotherapy%20using%20noninvasive%20radiomic%20biomarkers&rft.jtitle=Annals%20of%20oncology&rft.au=Trebeschi,%20S.&rft.date=2019-06-01&rft.volume=30&rft.issue=6&rft.spage=998&rft.epage=1004&rft.pages=998-1004&rft.issn=0923-7534&rft.eissn=1569-8041&rft_id=info:doi/10.1093/annonc/mdz108&rft_dat=%3Cproquest_pubme%3E2195260883%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195260883&rft_id=info:pmid/30895304&rft_els_id=S0923753419312025&rfr_iscdi=true