Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment

The therapeutic potential of miRNA (miR) in cancer is limited by the lack of efficient delivery vehicles. Here, we show that a self-assembled dual-colour RNA-triple-helix structure comprising two miRNAs—a miR mimic (tumour suppressor miRNA) and an antagomiR (oncomiR inhibitor)—provides outstanding c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2016-03, Vol.15 (3), p.353-363
Hauptverfasser: Conde, João, Oliva, Nuria, Atilano, Mariana, Song, Hyun Seok, Artzi, Natalie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 3
container_start_page 353
container_title Nature materials
container_volume 15
creator Conde, João
Oliva, Nuria
Atilano, Mariana
Song, Hyun Seok
Artzi, Natalie
description The therapeutic potential of miRNA (miR) in cancer is limited by the lack of efficient delivery vehicles. Here, we show that a self-assembled dual-colour RNA-triple-helix structure comprising two miRNAs—a miR mimic (tumour suppressor miRNA) and an antagomiR (oncomiR inhibitor)—provides outstanding capability to synergistically abrogate tumours. Conjugation of RNA triple helices to dendrimers allows the formation of stable triplex nanoparticles, which form an RNA-triple-helix adhesive scaffold upon interaction with dextran aldehyde, the latter able to chemically interact and adhere to natural tissue amines in the tumour. We also show that the self-assembled RNA-triple-helix conjugates remain functional in vitro and in vivo , and that they lead to nearly 90% levels of tumour shrinkage two weeks post-gel implantation in a triple-negative breast cancer mouse model. Our findings suggest that the RNA-triple-helix hydrogels can be used as an efficient anticancer platform to locally modulate the expression of endogenous miRs in cancer. Tissue-adhesive scaffolds made by the conjugation of RNA triple helices to dendrimers lead to ∼90% shrinkage of tumours two weeks after implantation in a triple-negative breast cancer mouse model.
doi_str_mv 10.1038/nmat4497
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6594154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776654023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-69955301b4d1ed4afc7e02986b57ede118c1a425267d87e1fb9e4eb8f03356f3</originalsourceid><addsrcrecordid>eNqNkttqFTEUhgdRbK2CTyAD3ujFaJLJYXIjlOIJioL2PmQmK3tnk8M2mSnt2_RZ-mSmdrdse6NXWbA-vkV-_qZ5idE7jPrhfQx6plSKR80hpoJ3lHP0eDdjTMhB86yUDUIEM8afNgeEc4oR5ofN5id42-lSIIweTPvj23E3Z7f10K3Bu4t2fWlyWoFvy6StTd5cX9mU2-CmnCrchmQWr2eXYutiO6-hnZeQlnx99QeBeO5yigHi_Lx5YrUv8GL3HjVnnz6enXzpTr9__npyfNpNHIm541Iy1iM8UoPBUG0nAYjIgY9MgAGMhwlrShjhwgwCsB0lUBgHi_qecdsfNR9utdtlDGCmejlrr7bZBZ0vVdJO_b2Jbq1W6VxxJilmtAre7AQ5_VqgzCq4MoH3OkJaisJC9kQMQ03-36jgnFFE-v9A-YC5IAOr6OsH6KYGGmtmN0LUS0nEnrCmXEoGe_9FjNRNK9RdKyr6aj-Se_CuBhV4ewuUuooryHsXH8p-A6MRw4M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770399273</pqid></control><display><type>article</type><title>Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Conde, João ; Oliva, Nuria ; Atilano, Mariana ; Song, Hyun Seok ; Artzi, Natalie</creator><creatorcontrib>Conde, João ; Oliva, Nuria ; Atilano, Mariana ; Song, Hyun Seok ; Artzi, Natalie</creatorcontrib><description>The therapeutic potential of miRNA (miR) in cancer is limited by the lack of efficient delivery vehicles. Here, we show that a self-assembled dual-colour RNA-triple-helix structure comprising two miRNAs—a miR mimic (tumour suppressor miRNA) and an antagomiR (oncomiR inhibitor)—provides outstanding capability to synergistically abrogate tumours. Conjugation of RNA triple helices to dendrimers allows the formation of stable triplex nanoparticles, which form an RNA-triple-helix adhesive scaffold upon interaction with dextran aldehyde, the latter able to chemically interact and adhere to natural tissue amines in the tumour. We also show that the self-assembled RNA-triple-helix conjugates remain functional in vitro and in vivo , and that they lead to nearly 90% levels of tumour shrinkage two weeks post-gel implantation in a triple-negative breast cancer mouse model. Our findings suggest that the RNA-triple-helix hydrogels can be used as an efficient anticancer platform to locally modulate the expression of endogenous miRs in cancer. Tissue-adhesive scaffolds made by the conjugation of RNA triple helices to dendrimers lead to ∼90% shrinkage of tumours two weeks after implantation in a triple-negative breast cancer mouse model.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4497</identifier><identifier>PMID: 26641016</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>121/135 ; 121/143 ; 140/125 ; 631/61/391/2307 ; 639/166/985 ; 639/301/54/990 ; 639/925/352/2733 ; 639/925/357/341 ; Aldehydes ; Amines ; Animals ; Biomaterials ; Biomedical materials ; Breast ; Cancer ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Cell Survival ; Cellular Microenvironment ; Condensed Matter Physics ; Endocytosis - drug effects ; Gene Expression Regulation, Neoplastic ; Humans ; Hydrogels ; Hydrogels - chemistry ; Implantation ; Materials Science ; Mice ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Microscopy, Electron, Scanning ; Nanoparticles ; Nanotechnology ; Neoplasms - metabolism ; Nucleic Acid Conformation ; Optical and Electronic Materials ; Ribonucleic acids ; Scaffolds ; Tumors ; Tumours</subject><ispartof>Nature materials, 2016-03, Vol.15 (3), p.353-363</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Mar 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-69955301b4d1ed4afc7e02986b57ede118c1a425267d87e1fb9e4eb8f03356f3</citedby><cites>FETCH-LOGICAL-c607t-69955301b4d1ed4afc7e02986b57ede118c1a425267d87e1fb9e4eb8f03356f3</cites><orcidid>0000-0001-8422-6792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat4497$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat4497$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26641016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Conde, João</creatorcontrib><creatorcontrib>Oliva, Nuria</creatorcontrib><creatorcontrib>Atilano, Mariana</creatorcontrib><creatorcontrib>Song, Hyun Seok</creatorcontrib><creatorcontrib>Artzi, Natalie</creatorcontrib><title>Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The therapeutic potential of miRNA (miR) in cancer is limited by the lack of efficient delivery vehicles. Here, we show that a self-assembled dual-colour RNA-triple-helix structure comprising two miRNAs—a miR mimic (tumour suppressor miRNA) and an antagomiR (oncomiR inhibitor)—provides outstanding capability to synergistically abrogate tumours. Conjugation of RNA triple helices to dendrimers allows the formation of stable triplex nanoparticles, which form an RNA-triple-helix adhesive scaffold upon interaction with dextran aldehyde, the latter able to chemically interact and adhere to natural tissue amines in the tumour. We also show that the self-assembled RNA-triple-helix conjugates remain functional in vitro and in vivo , and that they lead to nearly 90% levels of tumour shrinkage two weeks post-gel implantation in a triple-negative breast cancer mouse model. Our findings suggest that the RNA-triple-helix hydrogels can be used as an efficient anticancer platform to locally modulate the expression of endogenous miRs in cancer. Tissue-adhesive scaffolds made by the conjugation of RNA triple helices to dendrimers lead to ∼90% shrinkage of tumours two weeks after implantation in a triple-negative breast cancer mouse model.</description><subject>121/135</subject><subject>121/143</subject><subject>140/125</subject><subject>631/61/391/2307</subject><subject>639/166/985</subject><subject>639/301/54/990</subject><subject>639/925/352/2733</subject><subject>639/925/357/341</subject><subject>Aldehydes</subject><subject>Amines</subject><subject>Animals</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Breast</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Cellular Microenvironment</subject><subject>Condensed Matter Physics</subject><subject>Endocytosis - drug effects</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Implantation</subject><subject>Materials Science</subject><subject>Mice</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Neoplasms - metabolism</subject><subject>Nucleic Acid Conformation</subject><subject>Optical and Electronic Materials</subject><subject>Ribonucleic acids</subject><subject>Scaffolds</subject><subject>Tumors</subject><subject>Tumours</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkttqFTEUhgdRbK2CTyAD3ujFaJLJYXIjlOIJioL2PmQmK3tnk8M2mSnt2_RZ-mSmdrdse6NXWbA-vkV-_qZ5idE7jPrhfQx6plSKR80hpoJ3lHP0eDdjTMhB86yUDUIEM8afNgeEc4oR5ofN5id42-lSIIweTPvj23E3Z7f10K3Bu4t2fWlyWoFvy6StTd5cX9mU2-CmnCrchmQWr2eXYutiO6-hnZeQlnx99QeBeO5yigHi_Lx5YrUv8GL3HjVnnz6enXzpTr9__npyfNpNHIm541Iy1iM8UoPBUG0nAYjIgY9MgAGMhwlrShjhwgwCsB0lUBgHi_qecdsfNR9utdtlDGCmejlrr7bZBZ0vVdJO_b2Jbq1W6VxxJilmtAre7AQ5_VqgzCq4MoH3OkJaisJC9kQMQ03-36jgnFFE-v9A-YC5IAOr6OsH6KYGGmtmN0LUS0nEnrCmXEoGe_9FjNRNK9RdKyr6aj-Se_CuBhV4ewuUuooryHsXH8p-A6MRw4M</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Conde, João</creator><creator>Oliva, Nuria</creator><creator>Atilano, Mariana</creator><creator>Song, Hyun Seok</creator><creator>Artzi, Natalie</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TM</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8422-6792</orcidid></search><sort><creationdate>20160301</creationdate><title>Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment</title><author>Conde, João ; Oliva, Nuria ; Atilano, Mariana ; Song, Hyun Seok ; Artzi, Natalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-69955301b4d1ed4afc7e02986b57ede118c1a425267d87e1fb9e4eb8f03356f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>121/135</topic><topic>121/143</topic><topic>140/125</topic><topic>631/61/391/2307</topic><topic>639/166/985</topic><topic>639/301/54/990</topic><topic>639/925/352/2733</topic><topic>639/925/357/341</topic><topic>Aldehydes</topic><topic>Amines</topic><topic>Animals</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Breast</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Cellular Microenvironment</topic><topic>Condensed Matter Physics</topic><topic>Endocytosis - drug effects</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Implantation</topic><topic>Materials Science</topic><topic>Mice</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Neoplasms - metabolism</topic><topic>Nucleic Acid Conformation</topic><topic>Optical and Electronic Materials</topic><topic>Ribonucleic acids</topic><topic>Scaffolds</topic><topic>Tumors</topic><topic>Tumours</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conde, João</creatorcontrib><creatorcontrib>Oliva, Nuria</creatorcontrib><creatorcontrib>Atilano, Mariana</creatorcontrib><creatorcontrib>Song, Hyun Seok</creatorcontrib><creatorcontrib>Artzi, Natalie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conde, João</au><au>Oliva, Nuria</au><au>Atilano, Mariana</au><au>Song, Hyun Seok</au><au>Artzi, Natalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>15</volume><issue>3</issue><spage>353</spage><epage>363</epage><pages>353-363</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The therapeutic potential of miRNA (miR) in cancer is limited by the lack of efficient delivery vehicles. Here, we show that a self-assembled dual-colour RNA-triple-helix structure comprising two miRNAs—a miR mimic (tumour suppressor miRNA) and an antagomiR (oncomiR inhibitor)—provides outstanding capability to synergistically abrogate tumours. Conjugation of RNA triple helices to dendrimers allows the formation of stable triplex nanoparticles, which form an RNA-triple-helix adhesive scaffold upon interaction with dextran aldehyde, the latter able to chemically interact and adhere to natural tissue amines in the tumour. We also show that the self-assembled RNA-triple-helix conjugates remain functional in vitro and in vivo , and that they lead to nearly 90% levels of tumour shrinkage two weeks post-gel implantation in a triple-negative breast cancer mouse model. Our findings suggest that the RNA-triple-helix hydrogels can be used as an efficient anticancer platform to locally modulate the expression of endogenous miRs in cancer. Tissue-adhesive scaffolds made by the conjugation of RNA triple helices to dendrimers lead to ∼90% shrinkage of tumours two weeks after implantation in a triple-negative breast cancer mouse model.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26641016</pmid><doi>10.1038/nmat4497</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8422-6792</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2016-03, Vol.15 (3), p.353-363
issn 1476-1122
1476-4660
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6594154
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 121/135
121/143
140/125
631/61/391/2307
639/166/985
639/301/54/990
639/925/352/2733
639/925/357/341
Aldehydes
Amines
Animals
Biomaterials
Biomedical materials
Breast
Cancer
Cell Line, Tumor
Cell Movement
Cell Proliferation
Cell Survival
Cellular Microenvironment
Condensed Matter Physics
Endocytosis - drug effects
Gene Expression Regulation, Neoplastic
Humans
Hydrogels
Hydrogels - chemistry
Implantation
Materials Science
Mice
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
Microscopy, Electron, Scanning
Nanoparticles
Nanotechnology
Neoplasms - metabolism
Nucleic Acid Conformation
Optical and Electronic Materials
Ribonucleic acids
Scaffolds
Tumors
Tumours
title Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembled%20RNA-triple-helix%20hydrogel%20scaffold%C2%A0for%20microRNA%20modulation%20in%20the%20tumour%C2%A0microenvironment&rft.jtitle=Nature%20materials&rft.au=Conde,%20Jo%C3%A3o&rft.date=2016-03-01&rft.volume=15&rft.issue=3&rft.spage=353&rft.epage=363&rft.pages=353-363&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4497&rft_dat=%3Cproquest_pubme%3E1776654023%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770399273&rft_id=info:pmid/26641016&rfr_iscdi=true