Inclusive fitness is an indispensable approximation for understanding organismal design

For some decades most biologists interested in design have agreed that natural selection leads to organisms acting as if they are maximizing a quantity known as “inclusive fitness.” This maximization principle has been criticized on the (uncontested) grounds that other quantities, such as offspring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 2019-06, Vol.73 (6), p.1066-1076
Hauptverfasser: Levin, Samuel R., Grafen, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1076
container_issue 6
container_start_page 1066
container_title Evolution
container_volume 73
creator Levin, Samuel R.
Grafen, Alan
description For some decades most biologists interested in design have agreed that natural selection leads to organisms acting as if they are maximizing a quantity known as “inclusive fitness.” This maximization principle has been criticized on the (uncontested) grounds that other quantities, such as offspring number, predict gene frequency changes accurately in a wider range of mathematical models. Here, we adopt a resolution offered by Birch, who accepts the technical difficulties of establishing inclusive fitness maximization in a fully general model, while concluding that inclusive fitness is still useful as an organizing framework. We set out in more detail why inclusive fitness is such a practical and powerful framework, and provide verbal and conceptual arguments for why social biology would be more or less impossible without it. We aim to help mathematicians understand why social biologists are content to use inclusive fitness despite its theoretical weaknesses. Here, we also offer biologists practical advice for avoiding potential pitfalls.
doi_str_mv 10.1111/evo.13739
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6593845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48578658</jstor_id><sourcerecordid>48578658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4659-26e3383dec0ba00576666e5a43f052eef9bbc9cc61f3b696ef48f05e2fa481d03</originalsourceid><addsrcrecordid>eNp1kctuFDEQRS0EIkNgwQeALLEJi07s9mPsTSQUBRIpUjY8lpbbXR486rEbu3sgfx-TSUYhErXxok5d36qL0FtKjmmtE9imY8qWTD9DCyqEaoTk8jlaEEJ5w1RLDtCrUtaEEC2ofokOGNGaySVdoB-X0Q1zCVvAPkwRSsGhYBtxiH0oI8RiuwGwHcec_oSNnUKK2KeM59hDLpOtWFzhlFc2hrKxA-6hhFV8jV54OxR4c_8eom-fz7-eXTRX118uzz5dNY5LoZtWAmOK9eBIZwkRS1kLhOXME9ECeN11TjsnqWed1BI8V7UDrbdc0Z6wQ3S60x3nbgO9gzhlO5gxV6_5xiQbzL-dGH6aVdqa-jtTXFSBo3uBnH7NUCazCcXBMNgIaS6mbWm9Gq_HreiHJ-g6zTnW9SrFhBS8VaxSH3eUy6mUDH5vhhLzNy5T4zJ3cVX2_WP3e_Ihnwqc7IDfYYCb_yuZ8-_XD5LvdhPrMqW8n-BKLJUUit0CrParAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235654283</pqid></control><display><type>article</type><title>Inclusive fitness is an indispensable approximation for understanding organismal design</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Levin, Samuel R. ; Grafen, Alan</creator><creatorcontrib>Levin, Samuel R. ; Grafen, Alan</creatorcontrib><description>For some decades most biologists interested in design have agreed that natural selection leads to organisms acting as if they are maximizing a quantity known as “inclusive fitness.” This maximization principle has been criticized on the (uncontested) grounds that other quantities, such as offspring number, predict gene frequency changes accurately in a wider range of mathematical models. Here, we adopt a resolution offered by Birch, who accepts the technical difficulties of establishing inclusive fitness maximization in a fully general model, while concluding that inclusive fitness is still useful as an organizing framework. We set out in more detail why inclusive fitness is such a practical and powerful framework, and provide verbal and conceptual arguments for why social biology would be more or less impossible without it. We aim to help mathematicians understand why social biologists are content to use inclusive fitness despite its theoretical weaknesses. Here, we also offer biologists practical advice for avoiding potential pitfalls.</description><identifier>ISSN: 0014-3820</identifier><identifier>ISSN: 1558-5646</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1111/evo.13739</identifier><identifier>PMID: 30993671</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>biological design ; Biologists ; Biology ; Fitness ; Fitness maximization ; Gene Frequency ; Genetic Fitness ; inclusive fitness ; Mathematical models ; Maximization ; Models, Biological ; Models, Genetic ; Natural selection ; Offspring ; Optimization ; PERSPECTIVE ; population genetics ; Selection, Genetic ; social evolution ; δ‐weak selection</subject><ispartof>Evolution, 2019-06, Vol.73 (6), p.1066-1076</ispartof><rights>2019 The Author(s)</rights><rights>2019 The Author(s). published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.</rights><rights>2019 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4659-26e3383dec0ba00576666e5a43f052eef9bbc9cc61f3b696ef48f05e2fa481d03</citedby><cites>FETCH-LOGICAL-c4659-26e3383dec0ba00576666e5a43f052eef9bbc9cc61f3b696ef48f05e2fa481d03</cites><orcidid>0000-0002-9588-7729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48578658$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48578658$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30993671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levin, Samuel R.</creatorcontrib><creatorcontrib>Grafen, Alan</creatorcontrib><title>Inclusive fitness is an indispensable approximation for understanding organismal design</title><title>Evolution</title><addtitle>Evolution</addtitle><description>For some decades most biologists interested in design have agreed that natural selection leads to organisms acting as if they are maximizing a quantity known as “inclusive fitness.” This maximization principle has been criticized on the (uncontested) grounds that other quantities, such as offspring number, predict gene frequency changes accurately in a wider range of mathematical models. Here, we adopt a resolution offered by Birch, who accepts the technical difficulties of establishing inclusive fitness maximization in a fully general model, while concluding that inclusive fitness is still useful as an organizing framework. We set out in more detail why inclusive fitness is such a practical and powerful framework, and provide verbal and conceptual arguments for why social biology would be more or less impossible without it. We aim to help mathematicians understand why social biologists are content to use inclusive fitness despite its theoretical weaknesses. Here, we also offer biologists practical advice for avoiding potential pitfalls.</description><subject>biological design</subject><subject>Biologists</subject><subject>Biology</subject><subject>Fitness</subject><subject>Fitness maximization</subject><subject>Gene Frequency</subject><subject>Genetic Fitness</subject><subject>inclusive fitness</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Models, Biological</subject><subject>Models, Genetic</subject><subject>Natural selection</subject><subject>Offspring</subject><subject>Optimization</subject><subject>PERSPECTIVE</subject><subject>population genetics</subject><subject>Selection, Genetic</subject><subject>social evolution</subject><subject>δ‐weak selection</subject><issn>0014-3820</issn><issn>1558-5646</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kctuFDEQRS0EIkNgwQeALLEJi07s9mPsTSQUBRIpUjY8lpbbXR486rEbu3sgfx-TSUYhErXxok5d36qL0FtKjmmtE9imY8qWTD9DCyqEaoTk8jlaEEJ5w1RLDtCrUtaEEC2ofokOGNGaySVdoB-X0Q1zCVvAPkwRSsGhYBtxiH0oI8RiuwGwHcec_oSNnUKK2KeM59hDLpOtWFzhlFc2hrKxA-6hhFV8jV54OxR4c_8eom-fz7-eXTRX118uzz5dNY5LoZtWAmOK9eBIZwkRS1kLhOXME9ECeN11TjsnqWed1BI8V7UDrbdc0Z6wQ3S60x3nbgO9gzhlO5gxV6_5xiQbzL-dGH6aVdqa-jtTXFSBo3uBnH7NUCazCcXBMNgIaS6mbWm9Gq_HreiHJ-g6zTnW9SrFhBS8VaxSH3eUy6mUDH5vhhLzNy5T4zJ3cVX2_WP3e_Ihnwqc7IDfYYCb_yuZ8-_XD5LvdhPrMqW8n-BKLJUUit0CrParAw</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Levin, Samuel R.</creator><creator>Grafen, Alan</creator><general>Wiley</general><general>Oxford University Press</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9588-7729</orcidid></search><sort><creationdate>201906</creationdate><title>Inclusive fitness is an indispensable approximation for understanding organismal design</title><author>Levin, Samuel R. ; Grafen, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4659-26e3383dec0ba00576666e5a43f052eef9bbc9cc61f3b696ef48f05e2fa481d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>biological design</topic><topic>Biologists</topic><topic>Biology</topic><topic>Fitness</topic><topic>Fitness maximization</topic><topic>Gene Frequency</topic><topic>Genetic Fitness</topic><topic>inclusive fitness</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Models, Biological</topic><topic>Models, Genetic</topic><topic>Natural selection</topic><topic>Offspring</topic><topic>Optimization</topic><topic>PERSPECTIVE</topic><topic>population genetics</topic><topic>Selection, Genetic</topic><topic>social evolution</topic><topic>δ‐weak selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levin, Samuel R.</creatorcontrib><creatorcontrib>Grafen, Alan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levin, Samuel R.</au><au>Grafen, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inclusive fitness is an indispensable approximation for understanding organismal design</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2019-06</date><risdate>2019</risdate><volume>73</volume><issue>6</issue><spage>1066</spage><epage>1076</epage><pages>1066-1076</pages><issn>0014-3820</issn><issn>1558-5646</issn><eissn>1558-5646</eissn><abstract>For some decades most biologists interested in design have agreed that natural selection leads to organisms acting as if they are maximizing a quantity known as “inclusive fitness.” This maximization principle has been criticized on the (uncontested) grounds that other quantities, such as offspring number, predict gene frequency changes accurately in a wider range of mathematical models. Here, we adopt a resolution offered by Birch, who accepts the technical difficulties of establishing inclusive fitness maximization in a fully general model, while concluding that inclusive fitness is still useful as an organizing framework. We set out in more detail why inclusive fitness is such a practical and powerful framework, and provide verbal and conceptual arguments for why social biology would be more or less impossible without it. We aim to help mathematicians understand why social biologists are content to use inclusive fitness despite its theoretical weaknesses. Here, we also offer biologists practical advice for avoiding potential pitfalls.</abstract><cop>United States</cop><pub>Wiley</pub><pmid>30993671</pmid><doi>10.1111/evo.13739</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9588-7729</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-3820
ispartof Evolution, 2019-06, Vol.73 (6), p.1066-1076
issn 0014-3820
1558-5646
1558-5646
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6593845
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects biological design
Biologists
Biology
Fitness
Fitness maximization
Gene Frequency
Genetic Fitness
inclusive fitness
Mathematical models
Maximization
Models, Biological
Models, Genetic
Natural selection
Offspring
Optimization
PERSPECTIVE
population genetics
Selection, Genetic
social evolution
δ‐weak selection
title Inclusive fitness is an indispensable approximation for understanding organismal design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inclusive%20fitness%20is%20an%20indispensable%20approximation%20for%20understanding%20organismal%20design&rft.jtitle=Evolution&rft.au=Levin,%20Samuel%20R.&rft.date=2019-06&rft.volume=73&rft.issue=6&rft.spage=1066&rft.epage=1076&rft.pages=1066-1076&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1111/evo.13739&rft_dat=%3Cjstor_pubme%3E48578658%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235654283&rft_id=info:pmid/30993671&rft_jstor_id=48578658&rfr_iscdi=true