Hydrodynamics control shear-induced pattern formation in attractive suspensions

Dilute suspensions of repulsive particles exhibit a Newtonian response to flow that can be accurately predicted by the particle volume fraction and the viscosity of the suspending fluid. However, such a description fails when the particles are weakly attractive. In a simple shear flow, suspensions o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-06, Vol.116 (25), p.12193-12198
Hauptverfasser: Varga, Zsigmond, Grenard, Vincent, Pecorario, Stefano, Taberlet, Nicolas, Dolique, Vincent, Manneville, Sébastien, Divoux, Thibaut, McKinley, Gareth H., Swan, James W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12198
container_issue 25
container_start_page 12193
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Varga, Zsigmond
Grenard, Vincent
Pecorario, Stefano
Taberlet, Nicolas
Dolique, Vincent
Manneville, Sébastien
Divoux, Thibaut
McKinley, Gareth H.
Swan, James W.
description Dilute suspensions of repulsive particles exhibit a Newtonian response to flow that can be accurately predicted by the particle volume fraction and the viscosity of the suspending fluid. However, such a description fails when the particles are weakly attractive. In a simple shear flow, suspensions of attractive particles exhibit complex, anisotropic microstructures and flow instabilities that are poorly understood and plague industrial processes. One such phenomenon, the formation of log-rolling flocs, which is ubiquitously observed in suspensions of attractive particles that are sheared while confined between parallel plates, is an exemplar of this phenomenology. Combining experiments and discrete element simulations, we demonstrate that this shear-induced structuring is driven by hydrodynamic coupling between the flocs and the confining boundaries. Clusters of particles trigger the formation of viscous eddies that are spaced periodically and whose centers act as stable regions where particles aggregate to form flocs spanning the vorticity direction. Simulation results for the wavelength of the periodic pattern of stripes formed by the logs and for the log diameter are in quantitative agreement with experimental observations on both colloidal and noncolloidal suspensions. Numerical and experimental results are successfully combined by means of rescaling in terms of a Mason number that describes the strength of the shear flow relative to the rupture force between contacting particles in the flocs. The introduction of this dimensionless group leads to a universal stability diagram for the log-rolling structures and allows for application of shear-induced structuring as a tool for assembling and patterning suspensions of attractive particles.
doi_str_mv 10.1073/pnas.1901370116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6591707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26743607</jstor_id><sourcerecordid>26743607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-59695ac7836c509784e7285b91bc24fe7986c15dfbe046230516b26efa80411c3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EosuWMydQJC5wSDv-THypVFXAVlqpF3q2HMdhvUrsYCcr7X-Poy0L7cnSzG-eZ95D6AOGKwwVvR69TldYAqYVYCxeoRUGiUvBJLxGKwBSlTUj7AK9S2kPAJLX8BZd0MwyRugKPWyObQzt0evBmVSY4KcY-iLtrI6l8-1sbFuMepps9EUX4qAnF3zhfJFrUZvJHWyR5jRan3IjXaI3ne6Tff_0rtHj928_7zbl9uHH_d3ttjSc0ankUkiuTVVTYTjIqma2IjVvJG4MYZ2tZC0M5m3XWGCCUOBYNETYTtfAMDZ0jW5OuuPcDLY1Nu-tezVGN-h4VEE79bzj3U79CgcluMRVtm6Nvp4Edi_GNrdbtdSAUL44dsCZ_fL0WQy_Z5smNbhkbN9rb8OcFCGMslpQssh-foHuwxx9tmKhuOBE5nPW6PpEmRhSirY7b4BBLcGqJVj1L9g88en_e8_83yQz8PEE7NMU4rlPRMWoyIp_AGXQqIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245652962</pqid></control><display><type>article</type><title>Hydrodynamics control shear-induced pattern formation in attractive suspensions</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Varga, Zsigmond ; Grenard, Vincent ; Pecorario, Stefano ; Taberlet, Nicolas ; Dolique, Vincent ; Manneville, Sébastien ; Divoux, Thibaut ; McKinley, Gareth H. ; Swan, James W.</creator><creatorcontrib>Varga, Zsigmond ; Grenard, Vincent ; Pecorario, Stefano ; Taberlet, Nicolas ; Dolique, Vincent ; Manneville, Sébastien ; Divoux, Thibaut ; McKinley, Gareth H. ; Swan, James W.</creatorcontrib><description>Dilute suspensions of repulsive particles exhibit a Newtonian response to flow that can be accurately predicted by the particle volume fraction and the viscosity of the suspending fluid. However, such a description fails when the particles are weakly attractive. In a simple shear flow, suspensions of attractive particles exhibit complex, anisotropic microstructures and flow instabilities that are poorly understood and plague industrial processes. One such phenomenon, the formation of log-rolling flocs, which is ubiquitously observed in suspensions of attractive particles that are sheared while confined between parallel plates, is an exemplar of this phenomenology. Combining experiments and discrete element simulations, we demonstrate that this shear-induced structuring is driven by hydrodynamic coupling between the flocs and the confining boundaries. Clusters of particles trigger the formation of viscous eddies that are spaced periodically and whose centers act as stable regions where particles aggregate to form flocs spanning the vorticity direction. Simulation results for the wavelength of the periodic pattern of stripes formed by the logs and for the log diameter are in quantitative agreement with experimental observations on both colloidal and noncolloidal suspensions. Numerical and experimental results are successfully combined by means of rescaling in terms of a Mason number that describes the strength of the shear flow relative to the rupture force between contacting particles in the flocs. The introduction of this dimensionless group leads to a universal stability diagram for the log-rolling structures and allows for application of shear-induced structuring as a tool for assembling and patterning suspensions of attractive particles.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1901370116</identifier><identifier>PMID: 31164423</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Computational fluid dynamics ; Computer simulation ; Condensed Matter ; Discrete element method ; Eddies ; Engineering Sciences ; Fluid Dynamics ; Fluid flow ; Fluid mechanics ; Hydrodynamics ; Mechanics ; Nonlinear Sciences ; Parallel plates ; Pattern formation ; Pattern Formation and Solitons ; Patterning ; Phenomenology ; Physical Sciences ; Physics ; Plague ; Reactive fluid environment ; Rescaling ; Scaling ; Shear flow ; Soft Condensed Matter ; Viscosity ; Vorticity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (25), p.12193-12198</ispartof><rights>Copyright National Academy of Sciences Jun 18, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-59695ac7836c509784e7285b91bc24fe7986c15dfbe046230516b26efa80411c3</citedby><cites>FETCH-LOGICAL-c543t-59695ac7836c509784e7285b91bc24fe7986c15dfbe046230516b26efa80411c3</cites><orcidid>0000-0001-8323-2779 ; 0000-0002-4244-8204 ; 0000-0002-6777-5084 ; 0000-0001-5644-9905 ; 0000-0002-4706-885X ; 0000-0003-1845-2091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26743607$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26743607$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31164423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02350009$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Varga, Zsigmond</creatorcontrib><creatorcontrib>Grenard, Vincent</creatorcontrib><creatorcontrib>Pecorario, Stefano</creatorcontrib><creatorcontrib>Taberlet, Nicolas</creatorcontrib><creatorcontrib>Dolique, Vincent</creatorcontrib><creatorcontrib>Manneville, Sébastien</creatorcontrib><creatorcontrib>Divoux, Thibaut</creatorcontrib><creatorcontrib>McKinley, Gareth H.</creatorcontrib><creatorcontrib>Swan, James W.</creatorcontrib><title>Hydrodynamics control shear-induced pattern formation in attractive suspensions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Dilute suspensions of repulsive particles exhibit a Newtonian response to flow that can be accurately predicted by the particle volume fraction and the viscosity of the suspending fluid. However, such a description fails when the particles are weakly attractive. In a simple shear flow, suspensions of attractive particles exhibit complex, anisotropic microstructures and flow instabilities that are poorly understood and plague industrial processes. One such phenomenon, the formation of log-rolling flocs, which is ubiquitously observed in suspensions of attractive particles that are sheared while confined between parallel plates, is an exemplar of this phenomenology. Combining experiments and discrete element simulations, we demonstrate that this shear-induced structuring is driven by hydrodynamic coupling between the flocs and the confining boundaries. Clusters of particles trigger the formation of viscous eddies that are spaced periodically and whose centers act as stable regions where particles aggregate to form flocs spanning the vorticity direction. Simulation results for the wavelength of the periodic pattern of stripes formed by the logs and for the log diameter are in quantitative agreement with experimental observations on both colloidal and noncolloidal suspensions. Numerical and experimental results are successfully combined by means of rescaling in terms of a Mason number that describes the strength of the shear flow relative to the rupture force between contacting particles in the flocs. The introduction of this dimensionless group leads to a universal stability diagram for the log-rolling structures and allows for application of shear-induced structuring as a tool for assembling and patterning suspensions of attractive particles.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Condensed Matter</subject><subject>Discrete element method</subject><subject>Eddies</subject><subject>Engineering Sciences</subject><subject>Fluid Dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Mechanics</subject><subject>Nonlinear Sciences</subject><subject>Parallel plates</subject><subject>Pattern formation</subject><subject>Pattern Formation and Solitons</subject><subject>Patterning</subject><subject>Phenomenology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Plague</subject><subject>Reactive fluid environment</subject><subject>Rescaling</subject><subject>Scaling</subject><subject>Shear flow</subject><subject>Soft Condensed Matter</subject><subject>Viscosity</subject><subject>Vorticity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EosuWMydQJC5wSDv-THypVFXAVlqpF3q2HMdhvUrsYCcr7X-Poy0L7cnSzG-eZ95D6AOGKwwVvR69TldYAqYVYCxeoRUGiUvBJLxGKwBSlTUj7AK9S2kPAJLX8BZd0MwyRugKPWyObQzt0evBmVSY4KcY-iLtrI6l8-1sbFuMepps9EUX4qAnF3zhfJFrUZvJHWyR5jRan3IjXaI3ne6Tff_0rtHj928_7zbl9uHH_d3ttjSc0ankUkiuTVVTYTjIqma2IjVvJG4MYZ2tZC0M5m3XWGCCUOBYNETYTtfAMDZ0jW5OuuPcDLY1Nu-tezVGN-h4VEE79bzj3U79CgcluMRVtm6Nvp4Edi_GNrdbtdSAUL44dsCZ_fL0WQy_Z5smNbhkbN9rb8OcFCGMslpQssh-foHuwxx9tmKhuOBE5nPW6PpEmRhSirY7b4BBLcGqJVj1L9g88en_e8_83yQz8PEE7NMU4rlPRMWoyIp_AGXQqIw</recordid><startdate>20190618</startdate><enddate>20190618</enddate><creator>Varga, Zsigmond</creator><creator>Grenard, Vincent</creator><creator>Pecorario, Stefano</creator><creator>Taberlet, Nicolas</creator><creator>Dolique, Vincent</creator><creator>Manneville, Sébastien</creator><creator>Divoux, Thibaut</creator><creator>McKinley, Gareth H.</creator><creator>Swan, James W.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8323-2779</orcidid><orcidid>https://orcid.org/0000-0002-4244-8204</orcidid><orcidid>https://orcid.org/0000-0002-6777-5084</orcidid><orcidid>https://orcid.org/0000-0001-5644-9905</orcidid><orcidid>https://orcid.org/0000-0002-4706-885X</orcidid><orcidid>https://orcid.org/0000-0003-1845-2091</orcidid></search><sort><creationdate>20190618</creationdate><title>Hydrodynamics control shear-induced pattern formation in attractive suspensions</title><author>Varga, Zsigmond ; Grenard, Vincent ; Pecorario, Stefano ; Taberlet, Nicolas ; Dolique, Vincent ; Manneville, Sébastien ; Divoux, Thibaut ; McKinley, Gareth H. ; Swan, James W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-59695ac7836c509784e7285b91bc24fe7986c15dfbe046230516b26efa80411c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Condensed Matter</topic><topic>Discrete element method</topic><topic>Eddies</topic><topic>Engineering Sciences</topic><topic>Fluid Dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Mechanics</topic><topic>Nonlinear Sciences</topic><topic>Parallel plates</topic><topic>Pattern formation</topic><topic>Pattern Formation and Solitons</topic><topic>Patterning</topic><topic>Phenomenology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Plague</topic><topic>Reactive fluid environment</topic><topic>Rescaling</topic><topic>Scaling</topic><topic>Shear flow</topic><topic>Soft Condensed Matter</topic><topic>Viscosity</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varga, Zsigmond</creatorcontrib><creatorcontrib>Grenard, Vincent</creatorcontrib><creatorcontrib>Pecorario, Stefano</creatorcontrib><creatorcontrib>Taberlet, Nicolas</creatorcontrib><creatorcontrib>Dolique, Vincent</creatorcontrib><creatorcontrib>Manneville, Sébastien</creatorcontrib><creatorcontrib>Divoux, Thibaut</creatorcontrib><creatorcontrib>McKinley, Gareth H.</creatorcontrib><creatorcontrib>Swan, James W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varga, Zsigmond</au><au>Grenard, Vincent</au><au>Pecorario, Stefano</au><au>Taberlet, Nicolas</au><au>Dolique, Vincent</au><au>Manneville, Sébastien</au><au>Divoux, Thibaut</au><au>McKinley, Gareth H.</au><au>Swan, James W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamics control shear-induced pattern formation in attractive suspensions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-06-18</date><risdate>2019</risdate><volume>116</volume><issue>25</issue><spage>12193</spage><epage>12198</epage><pages>12193-12198</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Dilute suspensions of repulsive particles exhibit a Newtonian response to flow that can be accurately predicted by the particle volume fraction and the viscosity of the suspending fluid. However, such a description fails when the particles are weakly attractive. In a simple shear flow, suspensions of attractive particles exhibit complex, anisotropic microstructures and flow instabilities that are poorly understood and plague industrial processes. One such phenomenon, the formation of log-rolling flocs, which is ubiquitously observed in suspensions of attractive particles that are sheared while confined between parallel plates, is an exemplar of this phenomenology. Combining experiments and discrete element simulations, we demonstrate that this shear-induced structuring is driven by hydrodynamic coupling between the flocs and the confining boundaries. Clusters of particles trigger the formation of viscous eddies that are spaced periodically and whose centers act as stable regions where particles aggregate to form flocs spanning the vorticity direction. Simulation results for the wavelength of the periodic pattern of stripes formed by the logs and for the log diameter are in quantitative agreement with experimental observations on both colloidal and noncolloidal suspensions. Numerical and experimental results are successfully combined by means of rescaling in terms of a Mason number that describes the strength of the shear flow relative to the rupture force between contacting particles in the flocs. The introduction of this dimensionless group leads to a universal stability diagram for the log-rolling structures and allows for application of shear-induced structuring as a tool for assembling and patterning suspensions of attractive particles.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31164423</pmid><doi>10.1073/pnas.1901370116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8323-2779</orcidid><orcidid>https://orcid.org/0000-0002-4244-8204</orcidid><orcidid>https://orcid.org/0000-0002-6777-5084</orcidid><orcidid>https://orcid.org/0000-0001-5644-9905</orcidid><orcidid>https://orcid.org/0000-0002-4706-885X</orcidid><orcidid>https://orcid.org/0000-0003-1845-2091</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (25), p.12193-12198
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6591707
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Computational fluid dynamics
Computer simulation
Condensed Matter
Discrete element method
Eddies
Engineering Sciences
Fluid Dynamics
Fluid flow
Fluid mechanics
Hydrodynamics
Mechanics
Nonlinear Sciences
Parallel plates
Pattern formation
Pattern Formation and Solitons
Patterning
Phenomenology
Physical Sciences
Physics
Plague
Reactive fluid environment
Rescaling
Scaling
Shear flow
Soft Condensed Matter
Viscosity
Vorticity
title Hydrodynamics control shear-induced pattern formation in attractive suspensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamics%20control%20shear-induced%20pattern%20formation%20in%20attractive%20suspensions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Varga,%20Zsigmond&rft.date=2019-06-18&rft.volume=116&rft.issue=25&rft.spage=12193&rft.epage=12198&rft.pages=12193-12198&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1901370116&rft_dat=%3Cjstor_pubme%3E26743607%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2245652962&rft_id=info:pmid/31164423&rft_jstor_id=26743607&rfr_iscdi=true