Robust closed-loop control of spike-and-wave discharges in a thalamocortical computational model of absence epilepsy

In this paper, we investigate the abatement of spike-and-wave discharges in a thalamocortical model using a closed-loop brain stimulation method. We first explore the complex states and various transitions in the thalamocortical computational model of absence epilepsy by using bifurcation analysis....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-06, Vol.9 (1), p.9093-16, Article 9093
Hauptverfasser: Ge, Yafang, Cao, Yuzhen, Yi, Guosheng, Han, Chunxiao, Qin, Yingmei, Wang, Jiang, Che, Yanqiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 1
container_start_page 9093
container_title Scientific reports
container_volume 9
creator Ge, Yafang
Cao, Yuzhen
Yi, Guosheng
Han, Chunxiao
Qin, Yingmei
Wang, Jiang
Che, Yanqiu
description In this paper, we investigate the abatement of spike-and-wave discharges in a thalamocortical model using a closed-loop brain stimulation method. We first explore the complex states and various transitions in the thalamocortical computational model of absence epilepsy by using bifurcation analysis. We demonstrate that the Hopf and double cycle bifurcations are the key dynamical mechanisms of the experimental observed bidirectional communications during absence seizures through top-down cortical excitation and thalamic feedforward inhibition. Then, we formulate the abatement of epileptic seizures to a closed-loop tracking control problem. Finally, we propose a neural network based sliding mode feedback control system to drive the dynamics of pathological cortical area to track the desired normal background activities. The control system is robust to uncertainties and disturbances, and its stability is guaranteed by Lyapunov stability theorem. Our results suggest that the seizure abatement can be modeled as a tracking control problem and solved by a robust closed-loop control method, which provides a promising brain stimulation strategy.
doi_str_mv 10.1038/s41598-019-45639-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6591255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2246906355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-20c481b58fe044e92267d27b4718dac5b919afec2484df81fd63faac99733a8f3</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEolXpC7BAltiwMfia2BskVHGpVAkJwdqaOJNzUpw42Emrvj3uSWkLC7wZW_PN75n5q-olZ285k-ZdVlxbQxm3VOlaWqqfVMeCKU2FFOLpo_tRdZrzJStHC6u4fV4dSS6kNtIcV8u32K55IT7EjB0NMc7Ex2lJMZDYkzwPP5HC1NFruELSDdnvIe0wk2EiQJY9BBijj2kZPIRSOc7rAssQp_IaY4cHFWgzTh4JzkPAOd-8qJ71EDKe3sWT6senj9_PvtCLr5_Pzz5cUK8atVDBvDK81aZHphRaIeqmE02rGm468Lq13EKPXiijut7wvqtlD-CtbaQE08uT6v2mO6_tiJ3HMhcEN6dhhHTjIgzu78w07N0uXrlaWy60LgJv7gRS_LViXtxYNoAhwIRxzU4IVVtWywP6-h_0Mq6prGGjhGS6bgolNsqnmHPC_r4Zztytr27z1RVf3cFXdyv96vEY9yV_XCyA3IBcUtMO08Pf_5H9DbO6sJ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246230567</pqid></control><display><type>article</type><title>Robust closed-loop control of spike-and-wave discharges in a thalamocortical computational model of absence epilepsy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ge, Yafang ; Cao, Yuzhen ; Yi, Guosheng ; Han, Chunxiao ; Qin, Yingmei ; Wang, Jiang ; Che, Yanqiu</creator><creatorcontrib>Ge, Yafang ; Cao, Yuzhen ; Yi, Guosheng ; Han, Chunxiao ; Qin, Yingmei ; Wang, Jiang ; Che, Yanqiu</creatorcontrib><description>In this paper, we investigate the abatement of spike-and-wave discharges in a thalamocortical model using a closed-loop brain stimulation method. We first explore the complex states and various transitions in the thalamocortical computational model of absence epilepsy by using bifurcation analysis. We demonstrate that the Hopf and double cycle bifurcations are the key dynamical mechanisms of the experimental observed bidirectional communications during absence seizures through top-down cortical excitation and thalamic feedforward inhibition. Then, we formulate the abatement of epileptic seizures to a closed-loop tracking control problem. Finally, we propose a neural network based sliding mode feedback control system to drive the dynamics of pathological cortical area to track the desired normal background activities. The control system is robust to uncertainties and disturbances, and its stability is guaranteed by Lyapunov stability theorem. Our results suggest that the seizure abatement can be modeled as a tracking control problem and solved by a robust closed-loop control method, which provides a promising brain stimulation strategy.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-45639-5</identifier><identifier>PMID: 31235838</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/116/2393 ; 631/378/1689/178 ; Cerebral cortex ; Cerebral Cortex - physiopathology ; Computational neuroscience ; Control systems ; Convulsions &amp; seizures ; Electroencephalography ; Epilepsy ; Epilepsy, Absence - physiopathology ; Firing pattern ; Humanities and Social Sciences ; Humans ; Models, Neurological ; multidisciplinary ; Neural networks ; Science ; Science (multidisciplinary) ; Seizures ; Thalamus ; Thalamus - physiopathology</subject><ispartof>Scientific reports, 2019-06, Vol.9 (1), p.9093-16, Article 9093</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-20c481b58fe044e92267d27b4718dac5b919afec2484df81fd63faac99733a8f3</citedby><cites>FETCH-LOGICAL-c474t-20c481b58fe044e92267d27b4718dac5b919afec2484df81fd63faac99733a8f3</cites><orcidid>0000-0002-5988-7908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591255/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591255/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31235838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ge, Yafang</creatorcontrib><creatorcontrib>Cao, Yuzhen</creatorcontrib><creatorcontrib>Yi, Guosheng</creatorcontrib><creatorcontrib>Han, Chunxiao</creatorcontrib><creatorcontrib>Qin, Yingmei</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Che, Yanqiu</creatorcontrib><title>Robust closed-loop control of spike-and-wave discharges in a thalamocortical computational model of absence epilepsy</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In this paper, we investigate the abatement of spike-and-wave discharges in a thalamocortical model using a closed-loop brain stimulation method. We first explore the complex states and various transitions in the thalamocortical computational model of absence epilepsy by using bifurcation analysis. We demonstrate that the Hopf and double cycle bifurcations are the key dynamical mechanisms of the experimental observed bidirectional communications during absence seizures through top-down cortical excitation and thalamic feedforward inhibition. Then, we formulate the abatement of epileptic seizures to a closed-loop tracking control problem. Finally, we propose a neural network based sliding mode feedback control system to drive the dynamics of pathological cortical area to track the desired normal background activities. The control system is robust to uncertainties and disturbances, and its stability is guaranteed by Lyapunov stability theorem. Our results suggest that the seizure abatement can be modeled as a tracking control problem and solved by a robust closed-loop control method, which provides a promising brain stimulation strategy.</description><subject>631/378/116/2393</subject><subject>631/378/1689/178</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Computational neuroscience</subject><subject>Control systems</subject><subject>Convulsions &amp; seizures</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Epilepsy, Absence - physiopathology</subject><subject>Firing pattern</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seizures</subject><subject>Thalamus</subject><subject>Thalamus - physiopathology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1TAQhiMEolXpC7BAltiwMfia2BskVHGpVAkJwdqaOJNzUpw42Emrvj3uSWkLC7wZW_PN75n5q-olZ285k-ZdVlxbQxm3VOlaWqqfVMeCKU2FFOLpo_tRdZrzJStHC6u4fV4dSS6kNtIcV8u32K55IT7EjB0NMc7Ex2lJMZDYkzwPP5HC1NFruELSDdnvIe0wk2EiQJY9BBijj2kZPIRSOc7rAssQp_IaY4cHFWgzTh4JzkPAOd-8qJ71EDKe3sWT6senj9_PvtCLr5_Pzz5cUK8atVDBvDK81aZHphRaIeqmE02rGm468Lq13EKPXiijut7wvqtlD-CtbaQE08uT6v2mO6_tiJ3HMhcEN6dhhHTjIgzu78w07N0uXrlaWy60LgJv7gRS_LViXtxYNoAhwIRxzU4IVVtWywP6-h_0Mq6prGGjhGS6bgolNsqnmHPC_r4Zztytr27z1RVf3cFXdyv96vEY9yV_XCyA3IBcUtMO08Pf_5H9DbO6sJ8</recordid><startdate>20190624</startdate><enddate>20190624</enddate><creator>Ge, Yafang</creator><creator>Cao, Yuzhen</creator><creator>Yi, Guosheng</creator><creator>Han, Chunxiao</creator><creator>Qin, Yingmei</creator><creator>Wang, Jiang</creator><creator>Che, Yanqiu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5988-7908</orcidid></search><sort><creationdate>20190624</creationdate><title>Robust closed-loop control of spike-and-wave discharges in a thalamocortical computational model of absence epilepsy</title><author>Ge, Yafang ; Cao, Yuzhen ; Yi, Guosheng ; Han, Chunxiao ; Qin, Yingmei ; Wang, Jiang ; Che, Yanqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-20c481b58fe044e92267d27b4718dac5b919afec2484df81fd63faac99733a8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/378/116/2393</topic><topic>631/378/1689/178</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Computational neuroscience</topic><topic>Control systems</topic><topic>Convulsions &amp; seizures</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Epilepsy, Absence - physiopathology</topic><topic>Firing pattern</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seizures</topic><topic>Thalamus</topic><topic>Thalamus - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Yafang</creatorcontrib><creatorcontrib>Cao, Yuzhen</creatorcontrib><creatorcontrib>Yi, Guosheng</creatorcontrib><creatorcontrib>Han, Chunxiao</creatorcontrib><creatorcontrib>Qin, Yingmei</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Che, Yanqiu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Yafang</au><au>Cao, Yuzhen</au><au>Yi, Guosheng</au><au>Han, Chunxiao</au><au>Qin, Yingmei</au><au>Wang, Jiang</au><au>Che, Yanqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust closed-loop control of spike-and-wave discharges in a thalamocortical computational model of absence epilepsy</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-06-24</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>9093</spage><epage>16</epage><pages>9093-16</pages><artnum>9093</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this paper, we investigate the abatement of spike-and-wave discharges in a thalamocortical model using a closed-loop brain stimulation method. We first explore the complex states and various transitions in the thalamocortical computational model of absence epilepsy by using bifurcation analysis. We demonstrate that the Hopf and double cycle bifurcations are the key dynamical mechanisms of the experimental observed bidirectional communications during absence seizures through top-down cortical excitation and thalamic feedforward inhibition. Then, we formulate the abatement of epileptic seizures to a closed-loop tracking control problem. Finally, we propose a neural network based sliding mode feedback control system to drive the dynamics of pathological cortical area to track the desired normal background activities. The control system is robust to uncertainties and disturbances, and its stability is guaranteed by Lyapunov stability theorem. Our results suggest that the seizure abatement can be modeled as a tracking control problem and solved by a robust closed-loop control method, which provides a promising brain stimulation strategy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31235838</pmid><doi>10.1038/s41598-019-45639-5</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5988-7908</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-06, Vol.9 (1), p.9093-16, Article 9093
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6591255
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 631/378/116/2393
631/378/1689/178
Cerebral cortex
Cerebral Cortex - physiopathology
Computational neuroscience
Control systems
Convulsions & seizures
Electroencephalography
Epilepsy
Epilepsy, Absence - physiopathology
Firing pattern
Humanities and Social Sciences
Humans
Models, Neurological
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Seizures
Thalamus
Thalamus - physiopathology
title Robust closed-loop control of spike-and-wave discharges in a thalamocortical computational model of absence epilepsy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20closed-loop%20control%20of%20spike-and-wave%20discharges%20in%20a%20thalamocortical%20computational%20model%20of%20absence%20epilepsy&rft.jtitle=Scientific%20reports&rft.au=Ge,%20Yafang&rft.date=2019-06-24&rft.volume=9&rft.issue=1&rft.spage=9093&rft.epage=16&rft.pages=9093-16&rft.artnum=9093&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-45639-5&rft_dat=%3Cproquest_pubme%3E2246906355%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2246230567&rft_id=info:pmid/31235838&rfr_iscdi=true