Human Systems Biology and Metabolic Modelling: A Review—From Disease Metabolism to Precision Medicine
In cell and molecular biology, metabolism is the only system that can be fully simulated at genome scale. Metabolic systems biology offers powerful abstraction tools to simulate all known metabolic reactions in a cell, therefore providing a snapshot that is close to its observable phenotype. In this...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2019, Vol.2019 (2019), p.1-16 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 2019 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2019 |
creator | Angione, Claudio |
description | In cell and molecular biology, metabolism is the only system that can be fully simulated at genome scale. Metabolic systems biology offers powerful abstraction tools to simulate all known metabolic reactions in a cell, therefore providing a snapshot that is close to its observable phenotype. In this review, we cover the 15 years of human metabolic modelling. We show that, although the past five years have not experienced large improvements in the size of the gene and metabolite sets in human metabolic models, their accuracy is rapidly increasing. We also describe how condition-, tissue-, and patient-specific metabolic models shed light on cell-specific changes occurring in the metabolic network, therefore predicting biomarkers of disease metabolism. We finally discuss current challenges and future promising directions for this research field, including machine/deep learning and precision medicine. In the omics era, profiling patients and biological processes from a multiomic point of view is becoming more common and less expensive. Starting from multiomic data collected from patients and N-of-1 trials where individual patients constitute different case studies, methods for model-building and data integration are being used to generate patient-specific models. Coupled with state-of-the-art machine learning methods, this will allow characterizing each patient’s disease phenotype and delivering precision medicine solutions, therefore leading to preventative medicine, reduced treatment, and in silico clinical trials. |
doi_str_mv | 10.1155/2019/8304260 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6590590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612030605</galeid><sourcerecordid>A612030605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4140-e594f2f1bcbcf269d7ab191a76c388c2d4fceedbb4152451d47d09b2ee5e695c3</originalsourceid><addsrcrecordid>eNqNkc1qFTEYhgdRbKnduZaAG0GPzZe_mXFROFZrhRbFn3XIJN9MU2aSOplpOTsvwiv0SszhHE_VlSGQkDw8yctbFI-BvgSQ8ohRqI8qTgVT9F6xzziIhQIB93d7zveKw5SuaB4VKFqrh8UeB1ZBJdR-0Z3Ngwnk8ypNOCTy2sc-ditigiMXOJkm9t6Si-iw733oXpEl-YQ3Hm9_fv9xOsaBvPEJTcIdnAYyRfJxROuTjyGfO299wEfFg9b0CQ-360Hx9fTtl5OzxfmHd-9PlucLK0DQBcpatKyFxja2Zap2pWmgBlMqy6vKMidai-iaRoBkQoITpaN1wxAlqlpaflAcb7zXczOgsxim0fT6evSDGVc6Gq__vgn-UnfxRitZ0zyz4NlWMMZvM6ZJDz7ZHN8EjHPSjElesVJKmdGn_6BXcR5DjpcpIYViXKg7qjM9ah_amN-1a6leKmCUU0XXrhcbyo4xpRHb3ZeB6nXVel213lad8Sd_xtzBv4vNwPMNcOmDM7f-P3WYGWzNHQ2srCTjvwCNIbq7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245462346</pqid></control><display><type>article</type><title>Human Systems Biology and Metabolic Modelling: A Review—From Disease Metabolism to Precision Medicine</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Angione, Claudio</creator><contributor>Brul, Stanley ; Stanley Brul</contributor><creatorcontrib>Angione, Claudio ; Brul, Stanley ; Stanley Brul</creatorcontrib><description>In cell and molecular biology, metabolism is the only system that can be fully simulated at genome scale. Metabolic systems biology offers powerful abstraction tools to simulate all known metabolic reactions in a cell, therefore providing a snapshot that is close to its observable phenotype. In this review, we cover the 15 years of human metabolic modelling. We show that, although the past five years have not experienced large improvements in the size of the gene and metabolite sets in human metabolic models, their accuracy is rapidly increasing. We also describe how condition-, tissue-, and patient-specific metabolic models shed light on cell-specific changes occurring in the metabolic network, therefore predicting biomarkers of disease metabolism. We finally discuss current challenges and future promising directions for this research field, including machine/deep learning and precision medicine. In the omics era, profiling patients and biological processes from a multiomic point of view is becoming more common and less expensive. Starting from multiomic data collected from patients and N-of-1 trials where individual patients constitute different case studies, methods for model-building and data integration are being used to generate patient-specific models. Coupled with state-of-the-art machine learning methods, this will allow characterizing each patient’s disease phenotype and delivering precision medicine solutions, therefore leading to preventative medicine, reduced treatment, and in silico clinical trials.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2019/8304260</identifier><identifier>PMID: 31281846</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Artificial intelligence ; Bioindicators ; Biological activity ; Biology ; Biomarkers ; Cancer ; Case studies ; Cell culture ; Cellular proteins ; Clinical trials ; Computer simulation ; Data integration ; Disease ; Gene expression ; Genome ; Genomes ; Genomics ; Genotype & phenotype ; Humans ; Learning algorithms ; Machine learning ; Medical research ; Medicine ; Medicine, Experimental ; Medicine, Preventive ; Metabolic Flux Analysis ; Metabolic networks ; Metabolic Networks and Pathways ; Metabolism ; Metabolites ; Model accuracy ; Modelling ; Molecular biology ; Ordinary differential equations ; Patients ; Phenotypes ; Physiological aspects ; Physiology ; Precision Medicine ; Preventive health services ; Protein expression ; Proteins ; Proteomics ; Review ; Science ; Systems Biology</subject><ispartof>BioMed research international, 2019, Vol.2019 (2019), p.1-16</ispartof><rights>Copyright © 2019 Claudio Angione.</rights><rights>COPYRIGHT 2019 John Wiley & Sons, Inc.</rights><rights>Copyright © 2019 Claudio Angione. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2019 Claudio Angione. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4140-e594f2f1bcbcf269d7ab191a76c388c2d4fceedbb4152451d47d09b2ee5e695c3</citedby><cites>FETCH-LOGICAL-c4140-e594f2f1bcbcf269d7ab191a76c388c2d4fceedbb4152451d47d09b2ee5e695c3</cites><orcidid>0000-0002-3140-7909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590590/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590590/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4022,27922,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31281846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Brul, Stanley</contributor><contributor>Stanley Brul</contributor><creatorcontrib>Angione, Claudio</creatorcontrib><title>Human Systems Biology and Metabolic Modelling: A Review—From Disease Metabolism to Precision Medicine</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>In cell and molecular biology, metabolism is the only system that can be fully simulated at genome scale. Metabolic systems biology offers powerful abstraction tools to simulate all known metabolic reactions in a cell, therefore providing a snapshot that is close to its observable phenotype. In this review, we cover the 15 years of human metabolic modelling. We show that, although the past five years have not experienced large improvements in the size of the gene and metabolite sets in human metabolic models, their accuracy is rapidly increasing. We also describe how condition-, tissue-, and patient-specific metabolic models shed light on cell-specific changes occurring in the metabolic network, therefore predicting biomarkers of disease metabolism. We finally discuss current challenges and future promising directions for this research field, including machine/deep learning and precision medicine. In the omics era, profiling patients and biological processes from a multiomic point of view is becoming more common and less expensive. Starting from multiomic data collected from patients and N-of-1 trials where individual patients constitute different case studies, methods for model-building and data integration are being used to generate patient-specific models. Coupled with state-of-the-art machine learning methods, this will allow characterizing each patient’s disease phenotype and delivering precision medicine solutions, therefore leading to preventative medicine, reduced treatment, and in silico clinical trials.</description><subject>Artificial intelligence</subject><subject>Bioindicators</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Cancer</subject><subject>Case studies</subject><subject>Cell culture</subject><subject>Cellular proteins</subject><subject>Clinical trials</subject><subject>Computer simulation</subject><subject>Data integration</subject><subject>Disease</subject><subject>Gene expression</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine, Experimental</subject><subject>Medicine, Preventive</subject><subject>Metabolic Flux Analysis</subject><subject>Metabolic networks</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Molecular biology</subject><subject>Ordinary differential equations</subject><subject>Patients</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Precision Medicine</subject><subject>Preventive health services</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Review</subject><subject>Science</subject><subject>Systems Biology</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc1qFTEYhgdRbKnduZaAG0GPzZe_mXFROFZrhRbFn3XIJN9MU2aSOplpOTsvwiv0SszhHE_VlSGQkDw8yctbFI-BvgSQ8ohRqI8qTgVT9F6xzziIhQIB93d7zveKw5SuaB4VKFqrh8UeB1ZBJdR-0Z3Ngwnk8ypNOCTy2sc-ditigiMXOJkm9t6Si-iw733oXpEl-YQ3Hm9_fv9xOsaBvPEJTcIdnAYyRfJxROuTjyGfO299wEfFg9b0CQ-360Hx9fTtl5OzxfmHd-9PlucLK0DQBcpatKyFxja2Zap2pWmgBlMqy6vKMidai-iaRoBkQoITpaN1wxAlqlpaflAcb7zXczOgsxim0fT6evSDGVc6Gq__vgn-UnfxRitZ0zyz4NlWMMZvM6ZJDz7ZHN8EjHPSjElesVJKmdGn_6BXcR5DjpcpIYViXKg7qjM9ah_amN-1a6leKmCUU0XXrhcbyo4xpRHb3ZeB6nXVel213lad8Sd_xtzBv4vNwPMNcOmDM7f-P3WYGWzNHQ2srCTjvwCNIbq7</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Angione, Claudio</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3140-7909</orcidid></search><sort><creationdate>2019</creationdate><title>Human Systems Biology and Metabolic Modelling: A Review—From Disease Metabolism to Precision Medicine</title><author>Angione, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4140-e594f2f1bcbcf269d7ab191a76c388c2d4fceedbb4152451d47d09b2ee5e695c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Bioindicators</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Cancer</topic><topic>Case studies</topic><topic>Cell culture</topic><topic>Cellular proteins</topic><topic>Clinical trials</topic><topic>Computer simulation</topic><topic>Data integration</topic><topic>Disease</topic><topic>Gene expression</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine, Experimental</topic><topic>Medicine, Preventive</topic><topic>Metabolic Flux Analysis</topic><topic>Metabolic networks</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Molecular biology</topic><topic>Ordinary differential equations</topic><topic>Patients</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Precision Medicine</topic><topic>Preventive health services</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Review</topic><topic>Science</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angione, Claudio</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angione, Claudio</au><au>Brul, Stanley</au><au>Stanley Brul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human Systems Biology and Metabolic Modelling: A Review—From Disease Metabolism to Precision Medicine</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>In cell and molecular biology, metabolism is the only system that can be fully simulated at genome scale. Metabolic systems biology offers powerful abstraction tools to simulate all known metabolic reactions in a cell, therefore providing a snapshot that is close to its observable phenotype. In this review, we cover the 15 years of human metabolic modelling. We show that, although the past five years have not experienced large improvements in the size of the gene and metabolite sets in human metabolic models, their accuracy is rapidly increasing. We also describe how condition-, tissue-, and patient-specific metabolic models shed light on cell-specific changes occurring in the metabolic network, therefore predicting biomarkers of disease metabolism. We finally discuss current challenges and future promising directions for this research field, including machine/deep learning and precision medicine. In the omics era, profiling patients and biological processes from a multiomic point of view is becoming more common and less expensive. Starting from multiomic data collected from patients and N-of-1 trials where individual patients constitute different case studies, methods for model-building and data integration are being used to generate patient-specific models. Coupled with state-of-the-art machine learning methods, this will allow characterizing each patient’s disease phenotype and delivering precision medicine solutions, therefore leading to preventative medicine, reduced treatment, and in silico clinical trials.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>31281846</pmid><doi>10.1155/2019/8304260</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3140-7909</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2019, Vol.2019 (2019), p.1-16 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6590590 |
source | MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection |
subjects | Artificial intelligence Bioindicators Biological activity Biology Biomarkers Cancer Case studies Cell culture Cellular proteins Clinical trials Computer simulation Data integration Disease Gene expression Genome Genomes Genomics Genotype & phenotype Humans Learning algorithms Machine learning Medical research Medicine Medicine, Experimental Medicine, Preventive Metabolic Flux Analysis Metabolic networks Metabolic Networks and Pathways Metabolism Metabolites Model accuracy Modelling Molecular biology Ordinary differential equations Patients Phenotypes Physiological aspects Physiology Precision Medicine Preventive health services Protein expression Proteins Proteomics Review Science Systems Biology |
title | Human Systems Biology and Metabolic Modelling: A Review—From Disease Metabolism to Precision Medicine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20Systems%20Biology%20and%20Metabolic%20Modelling:%20A%20Review%E2%80%94From%20Disease%20Metabolism%20to%20Precision%20Medicine&rft.jtitle=BioMed%20research%20international&rft.au=Angione,%20Claudio&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2019/8304260&rft_dat=%3Cgale_pubme%3EA612030605%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2245462346&rft_id=info:pmid/31281846&rft_galeid=A612030605&rfr_iscdi=true |