Regional surname affinity: A spatial network approach

Objective We investigate surname affinities among areas of modern‐day China, by constructing a spatial network, and making community detection. It reports a geographical genealogy of the Chinese population that is result of population origins, historical migrations, and societal evolutions. Material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physical anthropology 2019-03, Vol.168 (3), p.428-437
Hauptverfasser: Shi, Yongbin, Li, Le, Wang, Yougui, Chen, Jiawei, Yuan, Yida, Stanley, H. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 3
container_start_page 428
container_title American journal of physical anthropology
container_volume 168
creator Shi, Yongbin
Li, Le
Wang, Yougui
Chen, Jiawei
Yuan, Yida
Stanley, H. E.
description Objective We investigate surname affinities among areas of modern‐day China, by constructing a spatial network, and making community detection. It reports a geographical genealogy of the Chinese population that is result of population origins, historical migrations, and societal evolutions. Materials and methods We acquire data from the census records supplied by China's National Citizen Identity Information System, including the surname and regional information of 1.28 billion registered Chinese citizens. We propose a multilayer minimum spanning tree (MMST) to construct a spatial network based on the matrix of isonymic distances, which is often used to characterize the dissimilarity of surname structure among areas. We use the fast unfolding algorithm to detect network communities. Results We obtain a 10‐layer MMST network of 362 prefecture nodes and 3,610 edges derived from the matrix of the Euclidean distances among these areas. These prefectures are divided into eight groups in the spatial network via community detection. We measure the partition by comparing the inter‐distances and intra‐distances of the communities and obtain meaningful regional ethnicity classification. Discussion The visualization of the resulting communities on the map indicates that the prefectures in the same community are usually geographically adjacent. The formation of this partition is influenced by geographical factors, historic migrations, trade and economic factors, as well as isolation of culture and language. The MMST algorithm proves to be effective in geo‐genealogy and ethnicity classification for it retains essential information about surname affinity and highlights the geographical consanguinity of the population.
doi_str_mv 10.1002/ajpa.23755
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6590414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160730900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4755-613d09ff7e8944458f9b83f486687ac58b89a0b657d70ea14a52449dc5df218c3</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoNY7Fq98QfIoDciTE0m314IS1GrFBTR63A2k3SzzibTZNay_75Zpy3qhRAI4X14cpIXoWcEnxKMuzewGeG0o5LzB2hBsBatEow9RAtc01YzRY_R41I29SjqeoSOKeZKEE4XiH9zlyFFGJqyyxG2rgHvQwzT_m2zbMoIU6hZdNN1yj8bGMecwK6foCMPQ3FPb_cT9OPD--9n5-3Fl4-fzpYXrWV1mlYQ2mPtvXRKM8a48nqlqGdKCCXBcrVSGvBKcNlL7IAw4B1jure89x1Rlp6gd7N33K22rrcuThkGM-awhbw3CYL5O4lhbS7TLyO4xoywKngxC1KZgik2TM6ubYrR2ckQppSSvEKvbm_J6WrnymS2oVg3DBBd2hXTEYElxRrjir78B92kw78NB0oqTgnhslKvZ8rmVEp2_n5igs2hMnOozPyurMLP_3zjPXrXUQXIDFyHwe3_ozLLz1-Xs_QG0vWfbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178531157</pqid></control><display><type>article</type><title>Regional surname affinity: A spatial network approach</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shi, Yongbin ; Li, Le ; Wang, Yougui ; Chen, Jiawei ; Yuan, Yida ; Stanley, H. E.</creator><creatorcontrib>Shi, Yongbin ; Li, Le ; Wang, Yougui ; Chen, Jiawei ; Yuan, Yida ; Stanley, H. E. ; Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><description>Objective We investigate surname affinities among areas of modern‐day China, by constructing a spatial network, and making community detection. It reports a geographical genealogy of the Chinese population that is result of population origins, historical migrations, and societal evolutions. Materials and methods We acquire data from the census records supplied by China's National Citizen Identity Information System, including the surname and regional information of 1.28 billion registered Chinese citizens. We propose a multilayer minimum spanning tree (MMST) to construct a spatial network based on the matrix of isonymic distances, which is often used to characterize the dissimilarity of surname structure among areas. We use the fast unfolding algorithm to detect network communities. Results We obtain a 10‐layer MMST network of 362 prefecture nodes and 3,610 edges derived from the matrix of the Euclidean distances among these areas. These prefectures are divided into eight groups in the spatial network via community detection. We measure the partition by comparing the inter‐distances and intra‐distances of the communities and obtain meaningful regional ethnicity classification. Discussion The visualization of the resulting communities on the map indicates that the prefectures in the same community are usually geographically adjacent. The formation of this partition is influenced by geographical factors, historic migrations, trade and economic factors, as well as isolation of culture and language. The MMST algorithm proves to be effective in geo‐genealogy and ethnicity classification for it retains essential information about surname affinity and highlights the geographical consanguinity of the population.</description><identifier>ISSN: 0002-9483</identifier><identifier>EISSN: 1096-8644</identifier><identifier>EISSN: 2692-7691</identifier><identifier>DOI: 10.1002/ajpa.23755</identifier><identifier>PMID: 30586153</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Affinity ; Algorithms ; Anthropology ; Asian Continental Ancestry Group ; BASIC BIOLOGICAL SCIENCES ; Censuses ; China ; Citizens ; Classification ; Community ; community detection ; Consanguineous marriage ; Demography - methods ; Economic factors ; Ethnic Groups - classification ; Ethnicity ; ethnicity classification ; evolutionary biology ; Genealogy ; Humans ; isonymic distance ; Minority &amp; ethnic groups ; Models, Statistical ; multilayer minimum spanning tree ; Names ; National identity ; Partition ; Social isolation ; spatial network ; Visualization</subject><ispartof>American journal of physical anthropology, 2019-03, Vol.168 (3), p.428-437</ispartof><rights>2018 The Authors. published by Wiley Periodicals, Inc.</rights><rights>2018 The Authors. American Journal of Physical Anthropology published by Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4755-613d09ff7e8944458f9b83f486687ac58b89a0b657d70ea14a52449dc5df218c3</citedby><cites>FETCH-LOGICAL-c4755-613d09ff7e8944458f9b83f486687ac58b89a0b657d70ea14a52449dc5df218c3</cites><orcidid>0000-0002-1608-7580 ; 0000000216087580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fajpa.23755$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fajpa.23755$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30586153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1488875$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yongbin</creatorcontrib><creatorcontrib>Li, Le</creatorcontrib><creatorcontrib>Wang, Yougui</creatorcontrib><creatorcontrib>Chen, Jiawei</creatorcontrib><creatorcontrib>Yuan, Yida</creatorcontrib><creatorcontrib>Stanley, H. E.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><title>Regional surname affinity: A spatial network approach</title><title>American journal of physical anthropology</title><addtitle>Am J Phys Anthropol</addtitle><description>Objective We investigate surname affinities among areas of modern‐day China, by constructing a spatial network, and making community detection. It reports a geographical genealogy of the Chinese population that is result of population origins, historical migrations, and societal evolutions. Materials and methods We acquire data from the census records supplied by China's National Citizen Identity Information System, including the surname and regional information of 1.28 billion registered Chinese citizens. We propose a multilayer minimum spanning tree (MMST) to construct a spatial network based on the matrix of isonymic distances, which is often used to characterize the dissimilarity of surname structure among areas. We use the fast unfolding algorithm to detect network communities. Results We obtain a 10‐layer MMST network of 362 prefecture nodes and 3,610 edges derived from the matrix of the Euclidean distances among these areas. These prefectures are divided into eight groups in the spatial network via community detection. We measure the partition by comparing the inter‐distances and intra‐distances of the communities and obtain meaningful regional ethnicity classification. Discussion The visualization of the resulting communities on the map indicates that the prefectures in the same community are usually geographically adjacent. The formation of this partition is influenced by geographical factors, historic migrations, trade and economic factors, as well as isolation of culture and language. The MMST algorithm proves to be effective in geo‐genealogy and ethnicity classification for it retains essential information about surname affinity and highlights the geographical consanguinity of the population.</description><subject>Affinity</subject><subject>Algorithms</subject><subject>Anthropology</subject><subject>Asian Continental Ancestry Group</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Censuses</subject><subject>China</subject><subject>Citizens</subject><subject>Classification</subject><subject>Community</subject><subject>community detection</subject><subject>Consanguineous marriage</subject><subject>Demography - methods</subject><subject>Economic factors</subject><subject>Ethnic Groups - classification</subject><subject>Ethnicity</subject><subject>ethnicity classification</subject><subject>evolutionary biology</subject><subject>Genealogy</subject><subject>Humans</subject><subject>isonymic distance</subject><subject>Minority &amp; ethnic groups</subject><subject>Models, Statistical</subject><subject>multilayer minimum spanning tree</subject><subject>Names</subject><subject>National identity</subject><subject>Partition</subject><subject>Social isolation</subject><subject>spatial network</subject><subject>Visualization</subject><issn>0002-9483</issn><issn>1096-8644</issn><issn>2692-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kV1rFDEUhoNY7Fq98QfIoDciTE0m314IS1GrFBTR63A2k3SzzibTZNay_75Zpy3qhRAI4X14cpIXoWcEnxKMuzewGeG0o5LzB2hBsBatEow9RAtc01YzRY_R41I29SjqeoSOKeZKEE4XiH9zlyFFGJqyyxG2rgHvQwzT_m2zbMoIU6hZdNN1yj8bGMecwK6foCMPQ3FPb_cT9OPD--9n5-3Fl4-fzpYXrWV1mlYQ2mPtvXRKM8a48nqlqGdKCCXBcrVSGvBKcNlL7IAw4B1jure89x1Rlp6gd7N33K22rrcuThkGM-awhbw3CYL5O4lhbS7TLyO4xoywKngxC1KZgik2TM6ubYrR2ckQppSSvEKvbm_J6WrnymS2oVg3DBBd2hXTEYElxRrjir78B92kw78NB0oqTgnhslKvZ8rmVEp2_n5igs2hMnOozPyurMLP_3zjPXrXUQXIDFyHwe3_ozLLz1-Xs_QG0vWfbA</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Shi, Yongbin</creator><creator>Li, Le</creator><creator>Wang, Yougui</creator><creator>Chen, Jiawei</creator><creator>Yuan, Yida</creator><creator>Stanley, H. E.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1608-7580</orcidid><orcidid>https://orcid.org/0000000216087580</orcidid></search><sort><creationdate>201903</creationdate><title>Regional surname affinity: A spatial network approach</title><author>Shi, Yongbin ; Li, Le ; Wang, Yougui ; Chen, Jiawei ; Yuan, Yida ; Stanley, H. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4755-613d09ff7e8944458f9b83f486687ac58b89a0b657d70ea14a52449dc5df218c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Affinity</topic><topic>Algorithms</topic><topic>Anthropology</topic><topic>Asian Continental Ancestry Group</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Censuses</topic><topic>China</topic><topic>Citizens</topic><topic>Classification</topic><topic>Community</topic><topic>community detection</topic><topic>Consanguineous marriage</topic><topic>Demography - methods</topic><topic>Economic factors</topic><topic>Ethnic Groups - classification</topic><topic>Ethnicity</topic><topic>ethnicity classification</topic><topic>evolutionary biology</topic><topic>Genealogy</topic><topic>Humans</topic><topic>isonymic distance</topic><topic>Minority &amp; ethnic groups</topic><topic>Models, Statistical</topic><topic>multilayer minimum spanning tree</topic><topic>Names</topic><topic>National identity</topic><topic>Partition</topic><topic>Social isolation</topic><topic>spatial network</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yongbin</creatorcontrib><creatorcontrib>Li, Le</creatorcontrib><creatorcontrib>Wang, Yougui</creatorcontrib><creatorcontrib>Chen, Jiawei</creatorcontrib><creatorcontrib>Yuan, Yida</creatorcontrib><creatorcontrib>Stanley, H. E.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physical anthropology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yongbin</au><au>Li, Le</au><au>Wang, Yougui</au><au>Chen, Jiawei</au><au>Yuan, Yida</au><au>Stanley, H. E.</au><aucorp>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional surname affinity: A spatial network approach</atitle><jtitle>American journal of physical anthropology</jtitle><addtitle>Am J Phys Anthropol</addtitle><date>2019-03</date><risdate>2019</risdate><volume>168</volume><issue>3</issue><spage>428</spage><epage>437</epage><pages>428-437</pages><issn>0002-9483</issn><eissn>1096-8644</eissn><eissn>2692-7691</eissn><abstract>Objective We investigate surname affinities among areas of modern‐day China, by constructing a spatial network, and making community detection. It reports a geographical genealogy of the Chinese population that is result of population origins, historical migrations, and societal evolutions. Materials and methods We acquire data from the census records supplied by China's National Citizen Identity Information System, including the surname and regional information of 1.28 billion registered Chinese citizens. We propose a multilayer minimum spanning tree (MMST) to construct a spatial network based on the matrix of isonymic distances, which is often used to characterize the dissimilarity of surname structure among areas. We use the fast unfolding algorithm to detect network communities. Results We obtain a 10‐layer MMST network of 362 prefecture nodes and 3,610 edges derived from the matrix of the Euclidean distances among these areas. These prefectures are divided into eight groups in the spatial network via community detection. We measure the partition by comparing the inter‐distances and intra‐distances of the communities and obtain meaningful regional ethnicity classification. Discussion The visualization of the resulting communities on the map indicates that the prefectures in the same community are usually geographically adjacent. The formation of this partition is influenced by geographical factors, historic migrations, trade and economic factors, as well as isolation of culture and language. The MMST algorithm proves to be effective in geo‐genealogy and ethnicity classification for it retains essential information about surname affinity and highlights the geographical consanguinity of the population.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30586153</pmid><doi>10.1002/ajpa.23755</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1608-7580</orcidid><orcidid>https://orcid.org/0000000216087580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9483
ispartof American journal of physical anthropology, 2019-03, Vol.168 (3), p.428-437
issn 0002-9483
1096-8644
2692-7691
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6590414
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Affinity
Algorithms
Anthropology
Asian Continental Ancestry Group
BASIC BIOLOGICAL SCIENCES
Censuses
China
Citizens
Classification
Community
community detection
Consanguineous marriage
Demography - methods
Economic factors
Ethnic Groups - classification
Ethnicity
ethnicity classification
evolutionary biology
Genealogy
Humans
isonymic distance
Minority & ethnic groups
Models, Statistical
multilayer minimum spanning tree
Names
National identity
Partition
Social isolation
spatial network
Visualization
title Regional surname affinity: A spatial network approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional%20surname%20affinity:%20A%20spatial%20network%20approach&rft.jtitle=American%20journal%20of%20physical%20anthropology&rft.au=Shi,%20Yongbin&rft.aucorp=Idaho%20National%20Laboratory%20(INL),%20Idaho%20Falls,%20ID%20(United%20States)&rft.date=2019-03&rft.volume=168&rft.issue=3&rft.spage=428&rft.epage=437&rft.pages=428-437&rft.issn=0002-9483&rft.eissn=1096-8644&rft_id=info:doi/10.1002/ajpa.23755&rft_dat=%3Cproquest_pubme%3E2160730900%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178531157&rft_id=info:pmid/30586153&rfr_iscdi=true