Regional surname affinity: A spatial network approach
Objective We investigate surname affinities among areas of modern‐day China, by constructing a spatial network, and making community detection. It reports a geographical genealogy of the Chinese population that is result of population origins, historical migrations, and societal evolutions. Material...
Gespeichert in:
Veröffentlicht in: | American journal of physical anthropology 2019-03, Vol.168 (3), p.428-437 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 437 |
---|---|
container_issue | 3 |
container_start_page | 428 |
container_title | American journal of physical anthropology |
container_volume | 168 |
creator | Shi, Yongbin Li, Le Wang, Yougui Chen, Jiawei Yuan, Yida Stanley, H. E. |
description | Objective
We investigate surname affinities among areas of modern‐day China, by constructing a spatial network, and making community detection. It reports a geographical genealogy of the Chinese population that is result of population origins, historical migrations, and societal evolutions.
Materials and methods
We acquire data from the census records supplied by China's National Citizen Identity Information System, including the surname and regional information of 1.28 billion registered Chinese citizens. We propose a multilayer minimum spanning tree (MMST) to construct a spatial network based on the matrix of isonymic distances, which is often used to characterize the dissimilarity of surname structure among areas. We use the fast unfolding algorithm to detect network communities.
Results
We obtain a 10‐layer MMST network of 362 prefecture nodes and 3,610 edges derived from the matrix of the Euclidean distances among these areas. These prefectures are divided into eight groups in the spatial network via community detection. We measure the partition by comparing the inter‐distances and intra‐distances of the communities and obtain meaningful regional ethnicity classification.
Discussion
The visualization of the resulting communities on the map indicates that the prefectures in the same community are usually geographically adjacent. The formation of this partition is influenced by geographical factors, historic migrations, trade and economic factors, as well as isolation of culture and language. The MMST algorithm proves to be effective in geo‐genealogy and ethnicity classification for it retains essential information about surname affinity and highlights the geographical consanguinity of the population. |
doi_str_mv | 10.1002/ajpa.23755 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6590414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2160730900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4755-613d09ff7e8944458f9b83f486687ac58b89a0b657d70ea14a52449dc5df218c3</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoNY7Fq98QfIoDciTE0m314IS1GrFBTR63A2k3SzzibTZNay_75Zpy3qhRAI4X14cpIXoWcEnxKMuzewGeG0o5LzB2hBsBatEow9RAtc01YzRY_R41I29SjqeoSOKeZKEE4XiH9zlyFFGJqyyxG2rgHvQwzT_m2zbMoIU6hZdNN1yj8bGMecwK6foCMPQ3FPb_cT9OPD--9n5-3Fl4-fzpYXrWV1mlYQ2mPtvXRKM8a48nqlqGdKCCXBcrVSGvBKcNlL7IAw4B1jure89x1Rlp6gd7N33K22rrcuThkGM-awhbw3CYL5O4lhbS7TLyO4xoywKngxC1KZgik2TM6ubYrR2ckQppSSvEKvbm_J6WrnymS2oVg3DBBd2hXTEYElxRrjir78B92kw78NB0oqTgnhslKvZ8rmVEp2_n5igs2hMnOozPyurMLP_3zjPXrXUQXIDFyHwe3_ozLLz1-Xs_QG0vWfbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178531157</pqid></control><display><type>article</type><title>Regional surname affinity: A spatial network approach</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shi, Yongbin ; Li, Le ; Wang, Yougui ; Chen, Jiawei ; Yuan, Yida ; Stanley, H. E.</creator><creatorcontrib>Shi, Yongbin ; Li, Le ; Wang, Yougui ; Chen, Jiawei ; Yuan, Yida ; Stanley, H. E. ; Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><description>Objective
We investigate surname affinities among areas of modern‐day China, by constructing a spatial network, and making community detection. It reports a geographical genealogy of the Chinese population that is result of population origins, historical migrations, and societal evolutions.
Materials and methods
We acquire data from the census records supplied by China's National Citizen Identity Information System, including the surname and regional information of 1.28 billion registered Chinese citizens. We propose a multilayer minimum spanning tree (MMST) to construct a spatial network based on the matrix of isonymic distances, which is often used to characterize the dissimilarity of surname structure among areas. We use the fast unfolding algorithm to detect network communities.
Results
We obtain a 10‐layer MMST network of 362 prefecture nodes and 3,610 edges derived from the matrix of the Euclidean distances among these areas. These prefectures are divided into eight groups in the spatial network via community detection. We measure the partition by comparing the inter‐distances and intra‐distances of the communities and obtain meaningful regional ethnicity classification.
Discussion
The visualization of the resulting communities on the map indicates that the prefectures in the same community are usually geographically adjacent. The formation of this partition is influenced by geographical factors, historic migrations, trade and economic factors, as well as isolation of culture and language. The MMST algorithm proves to be effective in geo‐genealogy and ethnicity classification for it retains essential information about surname affinity and highlights the geographical consanguinity of the population.</description><identifier>ISSN: 0002-9483</identifier><identifier>EISSN: 1096-8644</identifier><identifier>EISSN: 2692-7691</identifier><identifier>DOI: 10.1002/ajpa.23755</identifier><identifier>PMID: 30586153</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Affinity ; Algorithms ; Anthropology ; Asian Continental Ancestry Group ; BASIC BIOLOGICAL SCIENCES ; Censuses ; China ; Citizens ; Classification ; Community ; community detection ; Consanguineous marriage ; Demography - methods ; Economic factors ; Ethnic Groups - classification ; Ethnicity ; ethnicity classification ; evolutionary biology ; Genealogy ; Humans ; isonymic distance ; Minority & ethnic groups ; Models, Statistical ; multilayer minimum spanning tree ; Names ; National identity ; Partition ; Social isolation ; spatial network ; Visualization</subject><ispartof>American journal of physical anthropology, 2019-03, Vol.168 (3), p.428-437</ispartof><rights>2018 The Authors. published by Wiley Periodicals, Inc.</rights><rights>2018 The Authors. American Journal of Physical Anthropology published by Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4755-613d09ff7e8944458f9b83f486687ac58b89a0b657d70ea14a52449dc5df218c3</citedby><cites>FETCH-LOGICAL-c4755-613d09ff7e8944458f9b83f486687ac58b89a0b657d70ea14a52449dc5df218c3</cites><orcidid>0000-0002-1608-7580 ; 0000000216087580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fajpa.23755$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fajpa.23755$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30586153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1488875$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yongbin</creatorcontrib><creatorcontrib>Li, Le</creatorcontrib><creatorcontrib>Wang, Yougui</creatorcontrib><creatorcontrib>Chen, Jiawei</creatorcontrib><creatorcontrib>Yuan, Yida</creatorcontrib><creatorcontrib>Stanley, H. E.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><title>Regional surname affinity: A spatial network approach</title><title>American journal of physical anthropology</title><addtitle>Am J Phys Anthropol</addtitle><description>Objective
We investigate surname affinities among areas of modern‐day China, by constructing a spatial network, and making community detection. It reports a geographical genealogy of the Chinese population that is result of population origins, historical migrations, and societal evolutions.
Materials and methods
We acquire data from the census records supplied by China's National Citizen Identity Information System, including the surname and regional information of 1.28 billion registered Chinese citizens. We propose a multilayer minimum spanning tree (MMST) to construct a spatial network based on the matrix of isonymic distances, which is often used to characterize the dissimilarity of surname structure among areas. We use the fast unfolding algorithm to detect network communities.
Results
We obtain a 10‐layer MMST network of 362 prefecture nodes and 3,610 edges derived from the matrix of the Euclidean distances among these areas. These prefectures are divided into eight groups in the spatial network via community detection. We measure the partition by comparing the inter‐distances and intra‐distances of the communities and obtain meaningful regional ethnicity classification.
Discussion
The visualization of the resulting communities on the map indicates that the prefectures in the same community are usually geographically adjacent. The formation of this partition is influenced by geographical factors, historic migrations, trade and economic factors, as well as isolation of culture and language. The MMST algorithm proves to be effective in geo‐genealogy and ethnicity classification for it retains essential information about surname affinity and highlights the geographical consanguinity of the population.</description><subject>Affinity</subject><subject>Algorithms</subject><subject>Anthropology</subject><subject>Asian Continental Ancestry Group</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Censuses</subject><subject>China</subject><subject>Citizens</subject><subject>Classification</subject><subject>Community</subject><subject>community detection</subject><subject>Consanguineous marriage</subject><subject>Demography - methods</subject><subject>Economic factors</subject><subject>Ethnic Groups - classification</subject><subject>Ethnicity</subject><subject>ethnicity classification</subject><subject>evolutionary biology</subject><subject>Genealogy</subject><subject>Humans</subject><subject>isonymic distance</subject><subject>Minority & ethnic groups</subject><subject>Models, Statistical</subject><subject>multilayer minimum spanning tree</subject><subject>Names</subject><subject>National identity</subject><subject>Partition</subject><subject>Social isolation</subject><subject>spatial network</subject><subject>Visualization</subject><issn>0002-9483</issn><issn>1096-8644</issn><issn>2692-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kV1rFDEUhoNY7Fq98QfIoDciTE0m314IS1GrFBTR63A2k3SzzibTZNay_75Zpy3qhRAI4X14cpIXoWcEnxKMuzewGeG0o5LzB2hBsBatEow9RAtc01YzRY_R41I29SjqeoSOKeZKEE4XiH9zlyFFGJqyyxG2rgHvQwzT_m2zbMoIU6hZdNN1yj8bGMecwK6foCMPQ3FPb_cT9OPD--9n5-3Fl4-fzpYXrWV1mlYQ2mPtvXRKM8a48nqlqGdKCCXBcrVSGvBKcNlL7IAw4B1jure89x1Rlp6gd7N33K22rrcuThkGM-awhbw3CYL5O4lhbS7TLyO4xoywKngxC1KZgik2TM6ubYrR2ckQppSSvEKvbm_J6WrnymS2oVg3DBBd2hXTEYElxRrjir78B92kw78NB0oqTgnhslKvZ8rmVEp2_n5igs2hMnOozPyurMLP_3zjPXrXUQXIDFyHwe3_ozLLz1-Xs_QG0vWfbA</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Shi, Yongbin</creator><creator>Li, Le</creator><creator>Wang, Yougui</creator><creator>Chen, Jiawei</creator><creator>Yuan, Yida</creator><creator>Stanley, H. E.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1608-7580</orcidid><orcidid>https://orcid.org/0000000216087580</orcidid></search><sort><creationdate>201903</creationdate><title>Regional surname affinity: A spatial network approach</title><author>Shi, Yongbin ; Li, Le ; Wang, Yougui ; Chen, Jiawei ; Yuan, Yida ; Stanley, H. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4755-613d09ff7e8944458f9b83f486687ac58b89a0b657d70ea14a52449dc5df218c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Affinity</topic><topic>Algorithms</topic><topic>Anthropology</topic><topic>Asian Continental Ancestry Group</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Censuses</topic><topic>China</topic><topic>Citizens</topic><topic>Classification</topic><topic>Community</topic><topic>community detection</topic><topic>Consanguineous marriage</topic><topic>Demography - methods</topic><topic>Economic factors</topic><topic>Ethnic Groups - classification</topic><topic>Ethnicity</topic><topic>ethnicity classification</topic><topic>evolutionary biology</topic><topic>Genealogy</topic><topic>Humans</topic><topic>isonymic distance</topic><topic>Minority & ethnic groups</topic><topic>Models, Statistical</topic><topic>multilayer minimum spanning tree</topic><topic>Names</topic><topic>National identity</topic><topic>Partition</topic><topic>Social isolation</topic><topic>spatial network</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yongbin</creatorcontrib><creatorcontrib>Li, Le</creatorcontrib><creatorcontrib>Wang, Yougui</creatorcontrib><creatorcontrib>Chen, Jiawei</creatorcontrib><creatorcontrib>Yuan, Yida</creatorcontrib><creatorcontrib>Stanley, H. E.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physical anthropology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yongbin</au><au>Li, Le</au><au>Wang, Yougui</au><au>Chen, Jiawei</au><au>Yuan, Yida</au><au>Stanley, H. E.</au><aucorp>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional surname affinity: A spatial network approach</atitle><jtitle>American journal of physical anthropology</jtitle><addtitle>Am J Phys Anthropol</addtitle><date>2019-03</date><risdate>2019</risdate><volume>168</volume><issue>3</issue><spage>428</spage><epage>437</epage><pages>428-437</pages><issn>0002-9483</issn><eissn>1096-8644</eissn><eissn>2692-7691</eissn><abstract>Objective
We investigate surname affinities among areas of modern‐day China, by constructing a spatial network, and making community detection. It reports a geographical genealogy of the Chinese population that is result of population origins, historical migrations, and societal evolutions.
Materials and methods
We acquire data from the census records supplied by China's National Citizen Identity Information System, including the surname and regional information of 1.28 billion registered Chinese citizens. We propose a multilayer minimum spanning tree (MMST) to construct a spatial network based on the matrix of isonymic distances, which is often used to characterize the dissimilarity of surname structure among areas. We use the fast unfolding algorithm to detect network communities.
Results
We obtain a 10‐layer MMST network of 362 prefecture nodes and 3,610 edges derived from the matrix of the Euclidean distances among these areas. These prefectures are divided into eight groups in the spatial network via community detection. We measure the partition by comparing the inter‐distances and intra‐distances of the communities and obtain meaningful regional ethnicity classification.
Discussion
The visualization of the resulting communities on the map indicates that the prefectures in the same community are usually geographically adjacent. The formation of this partition is influenced by geographical factors, historic migrations, trade and economic factors, as well as isolation of culture and language. The MMST algorithm proves to be effective in geo‐genealogy and ethnicity classification for it retains essential information about surname affinity and highlights the geographical consanguinity of the population.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30586153</pmid><doi>10.1002/ajpa.23755</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1608-7580</orcidid><orcidid>https://orcid.org/0000000216087580</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9483 |
ispartof | American journal of physical anthropology, 2019-03, Vol.168 (3), p.428-437 |
issn | 0002-9483 1096-8644 2692-7691 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6590414 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Affinity Algorithms Anthropology Asian Continental Ancestry Group BASIC BIOLOGICAL SCIENCES Censuses China Citizens Classification Community community detection Consanguineous marriage Demography - methods Economic factors Ethnic Groups - classification Ethnicity ethnicity classification evolutionary biology Genealogy Humans isonymic distance Minority & ethnic groups Models, Statistical multilayer minimum spanning tree Names National identity Partition Social isolation spatial network Visualization |
title | Regional surname affinity: A spatial network approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional%20surname%20affinity:%20A%20spatial%20network%20approach&rft.jtitle=American%20journal%20of%20physical%20anthropology&rft.au=Shi,%20Yongbin&rft.aucorp=Idaho%20National%20Laboratory%20(INL),%20Idaho%20Falls,%20ID%20(United%20States)&rft.date=2019-03&rft.volume=168&rft.issue=3&rft.spage=428&rft.epage=437&rft.pages=428-437&rft.issn=0002-9483&rft.eissn=1096-8644&rft_id=info:doi/10.1002/ajpa.23755&rft_dat=%3Cproquest_pubme%3E2160730900%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178531157&rft_id=info:pmid/30586153&rfr_iscdi=true |