Colloid osmotic parameterization and measurement of subcellular crowding
Crowding of the subcellular environment by macromolecules is thought to promote protein aggregation and phase separation. A challenge is how to parameterize the degree of crowding of the cell interior or artificial solutions that is relevant to these reactions. Here I review colloid osmotic pressure...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2019-01, Vol.30 (2), p.173-180 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 2 |
container_start_page | 173 |
container_title | Molecular biology of the cell |
container_volume | 30 |
creator | Mitchison, T J |
description | Crowding of the subcellular environment by macromolecules is thought to promote protein aggregation and phase separation. A challenge is how to parameterize the degree of crowding of the cell interior or artificial solutions that is relevant to these reactions. Here I review colloid osmotic pressure as a crowding metric. This pressure is generated by solutions of macromolecules in contact with pores that are permeable to water and ions but not macromolecules. It generates depletion forces that push macromolecules together in crowded solutions and thus promotes aggregation and phase separation. I discuss measurements of colloid osmotic pressure inside cells using the nucleus, the cytoplasmic gel, and fluorescence resonant energy transfer (FRET) biosensors as osmometers, which return a range of values from 1 to 20 kPa. I argue for a low value, 1-2 kPa, in frog eggs and perhaps more generally. This value is close to the linear range on concentration-pressure curves and is thus not crowded from an osmotic perspective. I discuss the implications of a low crowding pressure inside cells for phase separation biology, buffer design, and proteome evolution. I also discuss a pressure-tension model for nuclear shape, where colloid osmotic pressure generated by nuclear protein import inflates the nucleus. |
doi_str_mv | 10.1091/mbc.E18-09-0549 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6589563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179358296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-214adb2726cf967a0613dad9deec041efdf6d923f49272730e2d6c2c87924a2a3</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMotlbP3mSPXrbN924ugpRqhYIXPYc0ydbIZlOTXUX_elOsRU8zMG_evPkBcIngFEGBZn6tpwtUl1CUkFFxBMZIEFFSVvPj3EMmSsQwHYGzlF4hRJTy6hSMCOQUsroeg-U8tG1wpgjJh97pYqui8ra30X2p3oWuUJ0pvFVpiNbbri9CU6RhrW3bDq2KhY7hw7hucw5OGtUme7GvE_B8t3iaL8vV4_3D_HZVagZZX2JElVnjCnPdCF4pyBExyghjrYYU2cY03AhMGiqyqCLQYsM11nUlMFVYkQm4-fHdDmtvjc6RomrlNjqv4qcMysn_k869yE14l5zVgnGSDa73BjG8DTb10ru0e0d1NgxJYlQJwmoseJbOfqT5yZSibQ5nEJQ7_jLzl5m_hELu-OeNq7_pDvpf4OQb8SCD8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179358296</pqid></control><display><type>article</type><title>Colloid osmotic parameterization and measurement of subcellular crowding</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mitchison, T J</creator><contributor>Kellogg, Doug</contributor><creatorcontrib>Mitchison, T J ; Kellogg, Doug</creatorcontrib><description>Crowding of the subcellular environment by macromolecules is thought to promote protein aggregation and phase separation. A challenge is how to parameterize the degree of crowding of the cell interior or artificial solutions that is relevant to these reactions. Here I review colloid osmotic pressure as a crowding metric. This pressure is generated by solutions of macromolecules in contact with pores that are permeable to water and ions but not macromolecules. It generates depletion forces that push macromolecules together in crowded solutions and thus promotes aggregation and phase separation. I discuss measurements of colloid osmotic pressure inside cells using the nucleus, the cytoplasmic gel, and fluorescence resonant energy transfer (FRET) biosensors as osmometers, which return a range of values from 1 to 20 kPa. I argue for a low value, 1-2 kPa, in frog eggs and perhaps more generally. This value is close to the linear range on concentration-pressure curves and is thus not crowded from an osmotic perspective. I discuss the implications of a low crowding pressure inside cells for phase separation biology, buffer design, and proteome evolution. I also discuss a pressure-tension model for nuclear shape, where colloid osmotic pressure generated by nuclear protein import inflates the nucleus.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E18-09-0549</identifier><identifier>PMID: 30640588</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Animals ; Colloids - chemistry ; Hydrodynamics ; Macromolecular Substances - metabolism ; Models, Biological ; Osmosis ; Subcellular Fractions - metabolism</subject><ispartof>Molecular biology of the cell, 2019-01, Vol.30 (2), p.173-180</ispartof><rights>2019 Mitchison. “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-214adb2726cf967a0613dad9deec041efdf6d923f49272730e2d6c2c87924a2a3</citedby><cites>FETCH-LOGICAL-c505t-214adb2726cf967a0613dad9deec041efdf6d923f49272730e2d6c2c87924a2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589563/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589563/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30640588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kellogg, Doug</contributor><creatorcontrib>Mitchison, T J</creatorcontrib><title>Colloid osmotic parameterization and measurement of subcellular crowding</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Crowding of the subcellular environment by macromolecules is thought to promote protein aggregation and phase separation. A challenge is how to parameterize the degree of crowding of the cell interior or artificial solutions that is relevant to these reactions. Here I review colloid osmotic pressure as a crowding metric. This pressure is generated by solutions of macromolecules in contact with pores that are permeable to water and ions but not macromolecules. It generates depletion forces that push macromolecules together in crowded solutions and thus promotes aggregation and phase separation. I discuss measurements of colloid osmotic pressure inside cells using the nucleus, the cytoplasmic gel, and fluorescence resonant energy transfer (FRET) biosensors as osmometers, which return a range of values from 1 to 20 kPa. I argue for a low value, 1-2 kPa, in frog eggs and perhaps more generally. This value is close to the linear range on concentration-pressure curves and is thus not crowded from an osmotic perspective. I discuss the implications of a low crowding pressure inside cells for phase separation biology, buffer design, and proteome evolution. I also discuss a pressure-tension model for nuclear shape, where colloid osmotic pressure generated by nuclear protein import inflates the nucleus.</description><subject>Animals</subject><subject>Colloids - chemistry</subject><subject>Hydrodynamics</subject><subject>Macromolecular Substances - metabolism</subject><subject>Models, Biological</subject><subject>Osmosis</subject><subject>Subcellular Fractions - metabolism</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1LAzEQxYMotlbP3mSPXrbN924ugpRqhYIXPYc0ydbIZlOTXUX_elOsRU8zMG_evPkBcIngFEGBZn6tpwtUl1CUkFFxBMZIEFFSVvPj3EMmSsQwHYGzlF4hRJTy6hSMCOQUsroeg-U8tG1wpgjJh97pYqui8ra30X2p3oWuUJ0pvFVpiNbbri9CU6RhrW3bDq2KhY7hw7hucw5OGtUme7GvE_B8t3iaL8vV4_3D_HZVagZZX2JElVnjCnPdCF4pyBExyghjrYYU2cY03AhMGiqyqCLQYsM11nUlMFVYkQm4-fHdDmtvjc6RomrlNjqv4qcMysn_k869yE14l5zVgnGSDa73BjG8DTb10ru0e0d1NgxJYlQJwmoseJbOfqT5yZSibQ5nEJQ7_jLzl5m_hELu-OeNq7_pDvpf4OQb8SCD8g</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Mitchison, T J</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190115</creationdate><title>Colloid osmotic parameterization and measurement of subcellular crowding</title><author>Mitchison, T J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-214adb2726cf967a0613dad9deec041efdf6d923f49272730e2d6c2c87924a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Colloids - chemistry</topic><topic>Hydrodynamics</topic><topic>Macromolecular Substances - metabolism</topic><topic>Models, Biological</topic><topic>Osmosis</topic><topic>Subcellular Fractions - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchison, T J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitchison, T J</au><au>Kellogg, Doug</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloid osmotic parameterization and measurement of subcellular crowding</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2019-01-15</date><risdate>2019</risdate><volume>30</volume><issue>2</issue><spage>173</spage><epage>180</epage><pages>173-180</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Crowding of the subcellular environment by macromolecules is thought to promote protein aggregation and phase separation. A challenge is how to parameterize the degree of crowding of the cell interior or artificial solutions that is relevant to these reactions. Here I review colloid osmotic pressure as a crowding metric. This pressure is generated by solutions of macromolecules in contact with pores that are permeable to water and ions but not macromolecules. It generates depletion forces that push macromolecules together in crowded solutions and thus promotes aggregation and phase separation. I discuss measurements of colloid osmotic pressure inside cells using the nucleus, the cytoplasmic gel, and fluorescence resonant energy transfer (FRET) biosensors as osmometers, which return a range of values from 1 to 20 kPa. I argue for a low value, 1-2 kPa, in frog eggs and perhaps more generally. This value is close to the linear range on concentration-pressure curves and is thus not crowded from an osmotic perspective. I discuss the implications of a low crowding pressure inside cells for phase separation biology, buffer design, and proteome evolution. I also discuss a pressure-tension model for nuclear shape, where colloid osmotic pressure generated by nuclear protein import inflates the nucleus.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>30640588</pmid><doi>10.1091/mbc.E18-09-0549</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2019-01, Vol.30 (2), p.173-180 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6589563 |
source | MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Colloids - chemistry Hydrodynamics Macromolecular Substances - metabolism Models, Biological Osmosis Subcellular Fractions - metabolism |
title | Colloid osmotic parameterization and measurement of subcellular crowding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloid%20osmotic%20parameterization%20and%20measurement%20of%20subcellular%20crowding&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Mitchison,%20T%20J&rft.date=2019-01-15&rft.volume=30&rft.issue=2&rft.spage=173&rft.epage=180&rft.pages=173-180&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E18-09-0549&rft_dat=%3Cproquest_pubme%3E2179358296%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179358296&rft_id=info:pmid/30640588&rfr_iscdi=true |