Epithelial-mesenchymal transition of cancer cells using bioengineered hybrid scaffold composed of hydrogel/3D-fibrous framework

Cancer cells undergoing epithelial-mesenchymal transition (EMT) acquire stem cell-like phenotype associated with malignant behaviour, chemoresistance, and relapse. Current two-dimensional (2D) in-vitro culture models of tumorigenesis are inadequate to replicate the complexity of in-vivo microenviron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-06, Vol.9 (1), p.8997-11, Article 8997
Hauptverfasser: Pal, Mintu, Chen, Huizhi, Lee, Bae Hoon, Lee, Justin Yin Hao, Yip, Yun Sheng, Tan, Nguan Soon, Tan, Lay Poh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 8997
container_title Scientific reports
container_volume 9
creator Pal, Mintu
Chen, Huizhi
Lee, Bae Hoon
Lee, Justin Yin Hao
Yip, Yun Sheng
Tan, Nguan Soon
Tan, Lay Poh
description Cancer cells undergoing epithelial-mesenchymal transition (EMT) acquire stem cell-like phenotype associated with malignant behaviour, chemoresistance, and relapse. Current two-dimensional (2D) in-vitro culture models of tumorigenesis are inadequate to replicate the complexity of in-vivo microenvironment. Therefore, the generation of functional three-dimensional (3D) constructs is a fundamental prerequisite to form multi-cellular tumour spheroids for studying basic pathological mechanisms. In this study, we focused on two major points (i) designing and fabrication of 3D hybrid scaffolds comprising electrospun fibers with cancer cells embedded within hydrogels, and (ii) determining the potential roles of 3D hybrid scaffolds associated with EMT in cancer progression and metastasis. Our findings revealed that 3D hybrid scaffold enhances cell proliferation and induces cancer cells to undergo EMT, as demonstrated by significant up-regulation of EMT associated transcriptional factors including Snail1, Zeb1, and Twist2; and mesenchymal markers whereas epithelial marker, E-Cadherin was downregulated. Remarkably, this induction is independent of cancer cell-type as similar results were obtained for breast cancer cells, MDA-MB-231 and gastric cancer cells, MKN74. Moreover, the hybrid scaffolds enrich aggressive cancer cells with stem cell properties. We showed that our 3D scaffolds could trigger EMT of cancer cells which could provide a useful model for studying anticancer therapeutics against metastasis.
doi_str_mv 10.1038/s41598-019-45384-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6586872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2245609757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1ac93fa518134f9a3a22578d62bcd6bb380ea285a3d1981ca9fbf466188719193</originalsourceid><addsrcrecordid>eNp9kT1v1TAYhSMEolXbP8CALLGwhPozsRck1JYPqVIXmC3HeZ24JPbFTkB36l_H4ZZSGPBiS-d5j318quoFwW8IZvI8cyKUrDFRNRdM8lo9qY4p5qKmjNKnj85H1VnOt7gsQRUn6nl1xAilFLP2uLq72vllhMmbqZ4hQ7DjfjYTWpIJ2S8-BhQdsiZYSMjCNGW0Zh8G1PkIYfABIEGPxn2XfI-yNc7FqUc2zruYi1CGx32f4gDTObusne9SXDNyyczwI6avp9UzZ6YMZ_f7SfXl_dXni4_19c2HTxfvrmvLW77UxFjFnBFEEsadMsxQKlrZN7SzfdN1TGIwVArDeqIksUa5zvGmIVK2RBHFTqq3B9_d2s3QWwgl4aR3yc8m7XU0Xv-tBD_qIX7XjZCNbGkxeH1vkOK3FfKiZ5-3DzEBSiJNKRcNVq1oC_rqH_Q2rimUeBvFCROYb4b0QNkUc07gHh5DsN4q1oeKdalY_6pYbzFePo7xMPK70AKwA5CLFAZIf-7-j-1Pihu0Xw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244135042</pqid></control><display><type>article</type><title>Epithelial-mesenchymal transition of cancer cells using bioengineered hybrid scaffold composed of hydrogel/3D-fibrous framework</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Pal, Mintu ; Chen, Huizhi ; Lee, Bae Hoon ; Lee, Justin Yin Hao ; Yip, Yun Sheng ; Tan, Nguan Soon ; Tan, Lay Poh</creator><creatorcontrib>Pal, Mintu ; Chen, Huizhi ; Lee, Bae Hoon ; Lee, Justin Yin Hao ; Yip, Yun Sheng ; Tan, Nguan Soon ; Tan, Lay Poh</creatorcontrib><description>Cancer cells undergoing epithelial-mesenchymal transition (EMT) acquire stem cell-like phenotype associated with malignant behaviour, chemoresistance, and relapse. Current two-dimensional (2D) in-vitro culture models of tumorigenesis are inadequate to replicate the complexity of in-vivo microenvironment. Therefore, the generation of functional three-dimensional (3D) constructs is a fundamental prerequisite to form multi-cellular tumour spheroids for studying basic pathological mechanisms. In this study, we focused on two major points (i) designing and fabrication of 3D hybrid scaffolds comprising electrospun fibers with cancer cells embedded within hydrogels, and (ii) determining the potential roles of 3D hybrid scaffolds associated with EMT in cancer progression and metastasis. Our findings revealed that 3D hybrid scaffold enhances cell proliferation and induces cancer cells to undergo EMT, as demonstrated by significant up-regulation of EMT associated transcriptional factors including Snail1, Zeb1, and Twist2; and mesenchymal markers whereas epithelial marker, E-Cadherin was downregulated. Remarkably, this induction is independent of cancer cell-type as similar results were obtained for breast cancer cells, MDA-MB-231 and gastric cancer cells, MKN74. Moreover, the hybrid scaffolds enrich aggressive cancer cells with stem cell properties. We showed that our 3D scaffolds could trigger EMT of cancer cells which could provide a useful model for studying anticancer therapeutics against metastasis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-45384-9</identifier><identifier>PMID: 31222037</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/19 ; 38 ; 38/77 ; 631/67/70 ; 639/301/54/2295 ; Biocompatible Materials ; Biomarkers ; Biomedical Engineering - methods ; Breast cancer ; Cancer ; Cell culture ; Cell Culture Techniques ; Cell Line, Tumor ; Cell proliferation ; Chemoresistance ; E-cadherin ; Epithelial-Mesenchymal Transition ; Fabrication ; Fibers ; Fluorescent Antibody Technique ; Gastric cancer ; Gene regulation ; Humanities and Social Sciences ; Humans ; Hydrogels ; Mesenchyme ; Metastases ; Metastasis ; multidisciplinary ; Neoplasms - pathology ; Phenotypes ; Science ; Science (multidisciplinary) ; Spheroids ; Spheroids, Cellular ; Stem cells ; Tissue Scaffolds ; Transcription factors ; Tumorigenesis ; Tumors</subject><ispartof>Scientific reports, 2019-06, Vol.9 (1), p.8997-11, Article 8997</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1ac93fa518134f9a3a22578d62bcd6bb380ea285a3d1981ca9fbf466188719193</citedby><cites>FETCH-LOGICAL-c474t-1ac93fa518134f9a3a22578d62bcd6bb380ea285a3d1981ca9fbf466188719193</cites><orcidid>0000-0003-0136-7341 ; 0000-0002-7222-0008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586872/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586872/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31222037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pal, Mintu</creatorcontrib><creatorcontrib>Chen, Huizhi</creatorcontrib><creatorcontrib>Lee, Bae Hoon</creatorcontrib><creatorcontrib>Lee, Justin Yin Hao</creatorcontrib><creatorcontrib>Yip, Yun Sheng</creatorcontrib><creatorcontrib>Tan, Nguan Soon</creatorcontrib><creatorcontrib>Tan, Lay Poh</creatorcontrib><title>Epithelial-mesenchymal transition of cancer cells using bioengineered hybrid scaffold composed of hydrogel/3D-fibrous framework</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Cancer cells undergoing epithelial-mesenchymal transition (EMT) acquire stem cell-like phenotype associated with malignant behaviour, chemoresistance, and relapse. Current two-dimensional (2D) in-vitro culture models of tumorigenesis are inadequate to replicate the complexity of in-vivo microenvironment. Therefore, the generation of functional three-dimensional (3D) constructs is a fundamental prerequisite to form multi-cellular tumour spheroids for studying basic pathological mechanisms. In this study, we focused on two major points (i) designing and fabrication of 3D hybrid scaffolds comprising electrospun fibers with cancer cells embedded within hydrogels, and (ii) determining the potential roles of 3D hybrid scaffolds associated with EMT in cancer progression and metastasis. Our findings revealed that 3D hybrid scaffold enhances cell proliferation and induces cancer cells to undergo EMT, as demonstrated by significant up-regulation of EMT associated transcriptional factors including Snail1, Zeb1, and Twist2; and mesenchymal markers whereas epithelial marker, E-Cadherin was downregulated. Remarkably, this induction is independent of cancer cell-type as similar results were obtained for breast cancer cells, MDA-MB-231 and gastric cancer cells, MKN74. Moreover, the hybrid scaffolds enrich aggressive cancer cells with stem cell properties. We showed that our 3D scaffolds could trigger EMT of cancer cells which could provide a useful model for studying anticancer therapeutics against metastasis.</description><subject>14</subject><subject>14/19</subject><subject>38</subject><subject>38/77</subject><subject>631/67/70</subject><subject>639/301/54/2295</subject><subject>Biocompatible Materials</subject><subject>Biomarkers</subject><subject>Biomedical Engineering - methods</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Chemoresistance</subject><subject>E-cadherin</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>Fabrication</subject><subject>Fibers</subject><subject>Fluorescent Antibody Technique</subject><subject>Gastric cancer</subject><subject>Gene regulation</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Mesenchyme</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>multidisciplinary</subject><subject>Neoplasms - pathology</subject><subject>Phenotypes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spheroids</subject><subject>Spheroids, Cellular</subject><subject>Stem cells</subject><subject>Tissue Scaffolds</subject><subject>Transcription factors</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kT1v1TAYhSMEolXbP8CALLGwhPozsRck1JYPqVIXmC3HeZ24JPbFTkB36l_H4ZZSGPBiS-d5j318quoFwW8IZvI8cyKUrDFRNRdM8lo9qY4p5qKmjNKnj85H1VnOt7gsQRUn6nl1xAilFLP2uLq72vllhMmbqZ4hQ7DjfjYTWpIJ2S8-BhQdsiZYSMjCNGW0Zh8G1PkIYfABIEGPxn2XfI-yNc7FqUc2zruYi1CGx32f4gDTObusne9SXDNyyczwI6avp9UzZ6YMZ_f7SfXl_dXni4_19c2HTxfvrmvLW77UxFjFnBFEEsadMsxQKlrZN7SzfdN1TGIwVArDeqIksUa5zvGmIVK2RBHFTqq3B9_d2s3QWwgl4aR3yc8m7XU0Xv-tBD_qIX7XjZCNbGkxeH1vkOK3FfKiZ5-3DzEBSiJNKRcNVq1oC_rqH_Q2rimUeBvFCROYb4b0QNkUc07gHh5DsN4q1oeKdalY_6pYbzFePo7xMPK70AKwA5CLFAZIf-7-j-1Pihu0Xw</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Pal, Mintu</creator><creator>Chen, Huizhi</creator><creator>Lee, Bae Hoon</creator><creator>Lee, Justin Yin Hao</creator><creator>Yip, Yun Sheng</creator><creator>Tan, Nguan Soon</creator><creator>Tan, Lay Poh</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0136-7341</orcidid><orcidid>https://orcid.org/0000-0002-7222-0008</orcidid></search><sort><creationdate>20190620</creationdate><title>Epithelial-mesenchymal transition of cancer cells using bioengineered hybrid scaffold composed of hydrogel/3D-fibrous framework</title><author>Pal, Mintu ; Chen, Huizhi ; Lee, Bae Hoon ; Lee, Justin Yin Hao ; Yip, Yun Sheng ; Tan, Nguan Soon ; Tan, Lay Poh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1ac93fa518134f9a3a22578d62bcd6bb380ea285a3d1981ca9fbf466188719193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14</topic><topic>14/19</topic><topic>38</topic><topic>38/77</topic><topic>631/67/70</topic><topic>639/301/54/2295</topic><topic>Biocompatible Materials</topic><topic>Biomarkers</topic><topic>Biomedical Engineering - methods</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Chemoresistance</topic><topic>E-cadherin</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>Fabrication</topic><topic>Fibers</topic><topic>Fluorescent Antibody Technique</topic><topic>Gastric cancer</topic><topic>Gene regulation</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Mesenchyme</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>multidisciplinary</topic><topic>Neoplasms - pathology</topic><topic>Phenotypes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spheroids</topic><topic>Spheroids, Cellular</topic><topic>Stem cells</topic><topic>Tissue Scaffolds</topic><topic>Transcription factors</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pal, Mintu</creatorcontrib><creatorcontrib>Chen, Huizhi</creatorcontrib><creatorcontrib>Lee, Bae Hoon</creatorcontrib><creatorcontrib>Lee, Justin Yin Hao</creatorcontrib><creatorcontrib>Yip, Yun Sheng</creatorcontrib><creatorcontrib>Tan, Nguan Soon</creatorcontrib><creatorcontrib>Tan, Lay Poh</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, Mintu</au><au>Chen, Huizhi</au><au>Lee, Bae Hoon</au><au>Lee, Justin Yin Hao</au><au>Yip, Yun Sheng</au><au>Tan, Nguan Soon</au><au>Tan, Lay Poh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epithelial-mesenchymal transition of cancer cells using bioengineered hybrid scaffold composed of hydrogel/3D-fibrous framework</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-06-20</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>8997</spage><epage>11</epage><pages>8997-11</pages><artnum>8997</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Cancer cells undergoing epithelial-mesenchymal transition (EMT) acquire stem cell-like phenotype associated with malignant behaviour, chemoresistance, and relapse. Current two-dimensional (2D) in-vitro culture models of tumorigenesis are inadequate to replicate the complexity of in-vivo microenvironment. Therefore, the generation of functional three-dimensional (3D) constructs is a fundamental prerequisite to form multi-cellular tumour spheroids for studying basic pathological mechanisms. In this study, we focused on two major points (i) designing and fabrication of 3D hybrid scaffolds comprising electrospun fibers with cancer cells embedded within hydrogels, and (ii) determining the potential roles of 3D hybrid scaffolds associated with EMT in cancer progression and metastasis. Our findings revealed that 3D hybrid scaffold enhances cell proliferation and induces cancer cells to undergo EMT, as demonstrated by significant up-regulation of EMT associated transcriptional factors including Snail1, Zeb1, and Twist2; and mesenchymal markers whereas epithelial marker, E-Cadherin was downregulated. Remarkably, this induction is independent of cancer cell-type as similar results were obtained for breast cancer cells, MDA-MB-231 and gastric cancer cells, MKN74. Moreover, the hybrid scaffolds enrich aggressive cancer cells with stem cell properties. We showed that our 3D scaffolds could trigger EMT of cancer cells which could provide a useful model for studying anticancer therapeutics against metastasis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31222037</pmid><doi>10.1038/s41598-019-45384-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0136-7341</orcidid><orcidid>https://orcid.org/0000-0002-7222-0008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-06, Vol.9 (1), p.8997-11, Article 8997
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6586872
source Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 14
14/19
38
38/77
631/67/70
639/301/54/2295
Biocompatible Materials
Biomarkers
Biomedical Engineering - methods
Breast cancer
Cancer
Cell culture
Cell Culture Techniques
Cell Line, Tumor
Cell proliferation
Chemoresistance
E-cadherin
Epithelial-Mesenchymal Transition
Fabrication
Fibers
Fluorescent Antibody Technique
Gastric cancer
Gene regulation
Humanities and Social Sciences
Humans
Hydrogels
Mesenchyme
Metastases
Metastasis
multidisciplinary
Neoplasms - pathology
Phenotypes
Science
Science (multidisciplinary)
Spheroids
Spheroids, Cellular
Stem cells
Tissue Scaffolds
Transcription factors
Tumorigenesis
Tumors
title Epithelial-mesenchymal transition of cancer cells using bioengineered hybrid scaffold composed of hydrogel/3D-fibrous framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A19%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epithelial-mesenchymal%20transition%20of%20cancer%20cells%20using%20bioengineered%20hybrid%20scaffold%20composed%20of%20hydrogel/3D-fibrous%20framework&rft.jtitle=Scientific%20reports&rft.au=Pal,%20Mintu&rft.date=2019-06-20&rft.volume=9&rft.issue=1&rft.spage=8997&rft.epage=11&rft.pages=8997-11&rft.artnum=8997&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-45384-9&rft_dat=%3Cproquest_pubme%3E2245609757%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244135042&rft_id=info:pmid/31222037&rfr_iscdi=true