LncRNA‐SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno‐miR‐466c‐5p through PI3K‐ATK signalling
Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specifi...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2019-07, Vol.23 (7), p.4582-4591 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4591 |
---|---|
container_issue | 7 |
container_start_page | 4582 |
container_title | Journal of cellular and molecular medicine |
container_volume | 23 |
creator | Chen, Chong Tan, Haining Bi, Jiaqi Li, Lin Rong, Tianhua Lin, Youxi Sun, Peiyu Liang, Jinqian Jiao, Yang Li, Zheng Sun, Liang Shen, Jianxiong |
description | Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specific lncRNA, SULT1C2A, in somitogenesis in a rat model of vitamin A deficiency (VAD)‐induced CS. Bioinformatics analysis and quantitative real‐time PCR (qRT‐PCR) indicated that SULT1C2A expression was down‐regulated in VAD group, accompanied by increased expression of rno‐miR‐466c‐5p but decreased expression of Foxo4 and somitogenesis‐related genes such as Pax1, Nkx3‐2 and Sox9 on gestational day (GD) 9. Luciferase reporter and small interfering RNA (siRNA) assays showed that SULT1C2A functioned as a competing endogenous RNA to inhibit rno‐miR‐466c‐5p expression by direct binding, and rno‐miR‐466c‐5p inhibited Foxo4 expression by binding to its 3′ untranslated region (UTR). The spatiotemporal expression of SULT1C2A, rno‐miR‐466c‐5p and Foxo4 axis was dynamically altered on GDs 3, 8, 11, 15 and 21 as detected by qRT‐PCR and northern blot analyses, with parallel changes in Protein kinase B (AKT) phosphorylation and PI3K expression. Taken together, our findings indicate that SULT1C2A enhanced Foxo4 expression by negatively modulating rno‐miR‐466c‐5p expression via the PI3K‐ATK signalling pathway in the rat model of VAD‐CS. Thus, SULT1C2A may be a potential target for treating CS. |
doi_str_mv | 10.1111/jcmm.14355 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6584475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2247638973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4485-8015736b394f01efae80dd69f151ac2cf5f73069918e3a40b77b87123ba761ec3</originalsourceid><addsrcrecordid>eNp9kc1uEzEURi0EoqWw4QGQJTYIKcUe_84GKYoolKaASrq2PI5n4shjp_YMEFY8As_Ik-CQUAELvPC17HOPrvUB8BijU1zWi7Xp-1NMCWN3wDFmsprQmtC7hzOWRB6BBzmvESIck_o-OCIYUcoIOwZf58FcvZv--Pb94_V8gWfVFCbbjV4PNsOz-CVS6AI0MXQ2uEF7mE30LmaXYbOFg06dHVzoYAqxOHp3VXbKuSmFbeCwSnHsVvDDObkoN9PFBcyuC9r70vMQ3Gu1z_bRoZ6A67NXi9mbyfz96_PZdD4xlEo2kQgzQXhDatoibFttJVoued1ihrWpTMtaQRCvaywt0RQ1QjRS4Io0WnBsDTkBL_fezdj0dmlsGJL2apNcr9NWRe3U3y_BrVQXPynOJKWCFcGzgyDFm9HmQfUuG-u9DjaOWVUVlnXNGdqhT_9B13FM5cM7igpOZC1IoZ7vKZNizsm2t8NgpHaRql2k6lekBX7y5_i36O8MC4D3wGfn7fY_KvV2dnm5l_4Ej5-v2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2247638973</pqid></control><display><type>article</type><title>LncRNA‐SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno‐miR‐466c‐5p through PI3K‐ATK signalling</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Chen, Chong ; Tan, Haining ; Bi, Jiaqi ; Li, Lin ; Rong, Tianhua ; Lin, Youxi ; Sun, Peiyu ; Liang, Jinqian ; Jiao, Yang ; Li, Zheng ; Sun, Liang ; Shen, Jianxiong</creator><creatorcontrib>Chen, Chong ; Tan, Haining ; Bi, Jiaqi ; Li, Lin ; Rong, Tianhua ; Lin, Youxi ; Sun, Peiyu ; Liang, Jinqian ; Jiao, Yang ; Li, Zheng ; Sun, Liang ; Shen, Jianxiong</creatorcontrib><description>Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specific lncRNA, SULT1C2A, in somitogenesis in a rat model of vitamin A deficiency (VAD)‐induced CS. Bioinformatics analysis and quantitative real‐time PCR (qRT‐PCR) indicated that SULT1C2A expression was down‐regulated in VAD group, accompanied by increased expression of rno‐miR‐466c‐5p but decreased expression of Foxo4 and somitogenesis‐related genes such as Pax1, Nkx3‐2 and Sox9 on gestational day (GD) 9. Luciferase reporter and small interfering RNA (siRNA) assays showed that SULT1C2A functioned as a competing endogenous RNA to inhibit rno‐miR‐466c‐5p expression by direct binding, and rno‐miR‐466c‐5p inhibited Foxo4 expression by binding to its 3′ untranslated region (UTR). The spatiotemporal expression of SULT1C2A, rno‐miR‐466c‐5p and Foxo4 axis was dynamically altered on GDs 3, 8, 11, 15 and 21 as detected by qRT‐PCR and northern blot analyses, with parallel changes in Protein kinase B (AKT) phosphorylation and PI3K expression. Taken together, our findings indicate that SULT1C2A enhanced Foxo4 expression by negatively modulating rno‐miR‐466c‐5p expression via the PI3K‐ATK signalling pathway in the rat model of VAD‐CS. Thus, SULT1C2A may be a potential target for treating CS.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.14355</identifier><identifier>PMID: 31044535</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>1-Phosphatidylinositol 3-kinase ; 3' Untranslated Regions - genetics ; AKT protein ; Animals ; Base Sequence ; Binding sites ; Bioinformatics ; congenital scoliosis (CS) ; Diet ; Down-Regulation - genetics ; Embryo, Mammalian - metabolism ; Embryos ; Forkhead Transcription Factors - genetics ; Forkhead Transcription Factors - metabolism ; Foxo4 ; FOXO4 protein ; Gene Expression Regulation, Developmental ; Genes ; Genes, Reporter ; HEK293 Cells ; Humans ; Kinases ; Laboratory animals ; Luciferases - metabolism ; MicroRNAs ; Models, Biological ; Organogenesis - genetics ; Original ; Pathogenesis ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; PI3K‐AKT ; Proto-Oncogene Proteins c-akt - metabolism ; Rats, Sprague-Dawley ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; rno‐miR‐466c‐5p ; Rodents ; Scoliosis ; Scoliosis - congenital ; Scoliosis - genetics ; Signal Transduction ; siRNA ; Somites - embryology ; Somitogenesis ; Sox9 protein ; Spine ; SULT1C2A ; Vertebrae ; Vitamin A ; Vitamin A Deficiency - embryology ; Vitamin A Deficiency - genetics ; Vitamin deficiency</subject><ispartof>Journal of cellular and molecular medicine, 2019-07, Vol.23 (7), p.4582-4591</ispartof><rights>2019 The Authors. published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2019 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4485-8015736b394f01efae80dd69f151ac2cf5f73069918e3a40b77b87123ba761ec3</citedby><cites>FETCH-LOGICAL-c4485-8015736b394f01efae80dd69f151ac2cf5f73069918e3a40b77b87123ba761ec3</cites><orcidid>0000-0001-6024-0194 ; 0000-0003-1824-6116 ; 0000-0002-1606-4370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584475/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584475/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31044535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chong</creatorcontrib><creatorcontrib>Tan, Haining</creatorcontrib><creatorcontrib>Bi, Jiaqi</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Rong, Tianhua</creatorcontrib><creatorcontrib>Lin, Youxi</creatorcontrib><creatorcontrib>Sun, Peiyu</creatorcontrib><creatorcontrib>Liang, Jinqian</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Sun, Liang</creatorcontrib><creatorcontrib>Shen, Jianxiong</creatorcontrib><title>LncRNA‐SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno‐miR‐466c‐5p through PI3K‐ATK signalling</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specific lncRNA, SULT1C2A, in somitogenesis in a rat model of vitamin A deficiency (VAD)‐induced CS. Bioinformatics analysis and quantitative real‐time PCR (qRT‐PCR) indicated that SULT1C2A expression was down‐regulated in VAD group, accompanied by increased expression of rno‐miR‐466c‐5p but decreased expression of Foxo4 and somitogenesis‐related genes such as Pax1, Nkx3‐2 and Sox9 on gestational day (GD) 9. Luciferase reporter and small interfering RNA (siRNA) assays showed that SULT1C2A functioned as a competing endogenous RNA to inhibit rno‐miR‐466c‐5p expression by direct binding, and rno‐miR‐466c‐5p inhibited Foxo4 expression by binding to its 3′ untranslated region (UTR). The spatiotemporal expression of SULT1C2A, rno‐miR‐466c‐5p and Foxo4 axis was dynamically altered on GDs 3, 8, 11, 15 and 21 as detected by qRT‐PCR and northern blot analyses, with parallel changes in Protein kinase B (AKT) phosphorylation and PI3K expression. Taken together, our findings indicate that SULT1C2A enhanced Foxo4 expression by negatively modulating rno‐miR‐466c‐5p expression via the PI3K‐ATK signalling pathway in the rat model of VAD‐CS. Thus, SULT1C2A may be a potential target for treating CS.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>3' Untranslated Regions - genetics</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>congenital scoliosis (CS)</subject><subject>Diet</subject><subject>Down-Regulation - genetics</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Embryos</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Foxo4</subject><subject>FOXO4 protein</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genes</subject><subject>Genes, Reporter</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Luciferases - metabolism</subject><subject>MicroRNAs</subject><subject>Models, Biological</subject><subject>Organogenesis - genetics</subject><subject>Original</subject><subject>Pathogenesis</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>PI3K‐AKT</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>rno‐miR‐466c‐5p</subject><subject>Rodents</subject><subject>Scoliosis</subject><subject>Scoliosis - congenital</subject><subject>Scoliosis - genetics</subject><subject>Signal Transduction</subject><subject>siRNA</subject><subject>Somites - embryology</subject><subject>Somitogenesis</subject><subject>Sox9 protein</subject><subject>Spine</subject><subject>SULT1C2A</subject><subject>Vertebrae</subject><subject>Vitamin A</subject><subject>Vitamin A Deficiency - embryology</subject><subject>Vitamin A Deficiency - genetics</subject><subject>Vitamin deficiency</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1uEzEURi0EoqWw4QGQJTYIKcUe_84GKYoolKaASrq2PI5n4shjp_YMEFY8As_Ik-CQUAELvPC17HOPrvUB8BijU1zWi7Xp-1NMCWN3wDFmsprQmtC7hzOWRB6BBzmvESIck_o-OCIYUcoIOwZf58FcvZv--Pb94_V8gWfVFCbbjV4PNsOz-CVS6AI0MXQ2uEF7mE30LmaXYbOFg06dHVzoYAqxOHp3VXbKuSmFbeCwSnHsVvDDObkoN9PFBcyuC9r70vMQ3Gu1z_bRoZ6A67NXi9mbyfz96_PZdD4xlEo2kQgzQXhDatoibFttJVoued1ihrWpTMtaQRCvaywt0RQ1QjRS4Io0WnBsDTkBL_fezdj0dmlsGJL2apNcr9NWRe3U3y_BrVQXPynOJKWCFcGzgyDFm9HmQfUuG-u9DjaOWVUVlnXNGdqhT_9B13FM5cM7igpOZC1IoZ7vKZNizsm2t8NgpHaRql2k6lekBX7y5_i36O8MC4D3wGfn7fY_KvV2dnm5l_4Ej5-v2g</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Chen, Chong</creator><creator>Tan, Haining</creator><creator>Bi, Jiaqi</creator><creator>Li, Lin</creator><creator>Rong, Tianhua</creator><creator>Lin, Youxi</creator><creator>Sun, Peiyu</creator><creator>Liang, Jinqian</creator><creator>Jiao, Yang</creator><creator>Li, Zheng</creator><creator>Sun, Liang</creator><creator>Shen, Jianxiong</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6024-0194</orcidid><orcidid>https://orcid.org/0000-0003-1824-6116</orcidid><orcidid>https://orcid.org/0000-0002-1606-4370</orcidid></search><sort><creationdate>201907</creationdate><title>LncRNA‐SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno‐miR‐466c‐5p through PI3K‐ATK signalling</title><author>Chen, Chong ; Tan, Haining ; Bi, Jiaqi ; Li, Lin ; Rong, Tianhua ; Lin, Youxi ; Sun, Peiyu ; Liang, Jinqian ; Jiao, Yang ; Li, Zheng ; Sun, Liang ; Shen, Jianxiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4485-8015736b394f01efae80dd69f151ac2cf5f73069918e3a40b77b87123ba761ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>3' Untranslated Regions - genetics</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>congenital scoliosis (CS)</topic><topic>Diet</topic><topic>Down-Regulation - genetics</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Embryos</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Foxo4</topic><topic>FOXO4 protein</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genes</topic><topic>Genes, Reporter</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Luciferases - metabolism</topic><topic>MicroRNAs</topic><topic>Models, Biological</topic><topic>Organogenesis - genetics</topic><topic>Original</topic><topic>Pathogenesis</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>PI3K‐AKT</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>rno‐miR‐466c‐5p</topic><topic>Rodents</topic><topic>Scoliosis</topic><topic>Scoliosis - congenital</topic><topic>Scoliosis - genetics</topic><topic>Signal Transduction</topic><topic>siRNA</topic><topic>Somites - embryology</topic><topic>Somitogenesis</topic><topic>Sox9 protein</topic><topic>Spine</topic><topic>SULT1C2A</topic><topic>Vertebrae</topic><topic>Vitamin A</topic><topic>Vitamin A Deficiency - embryology</topic><topic>Vitamin A Deficiency - genetics</topic><topic>Vitamin deficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chong</creatorcontrib><creatorcontrib>Tan, Haining</creatorcontrib><creatorcontrib>Bi, Jiaqi</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Rong, Tianhua</creatorcontrib><creatorcontrib>Lin, Youxi</creatorcontrib><creatorcontrib>Sun, Peiyu</creatorcontrib><creatorcontrib>Liang, Jinqian</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Sun, Liang</creatorcontrib><creatorcontrib>Shen, Jianxiong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chong</au><au>Tan, Haining</au><au>Bi, Jiaqi</au><au>Li, Lin</au><au>Rong, Tianhua</au><au>Lin, Youxi</au><au>Sun, Peiyu</au><au>Liang, Jinqian</au><au>Jiao, Yang</au><au>Li, Zheng</au><au>Sun, Liang</au><au>Shen, Jianxiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LncRNA‐SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno‐miR‐466c‐5p through PI3K‐ATK signalling</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2019-07</date><risdate>2019</risdate><volume>23</volume><issue>7</issue><spage>4582</spage><epage>4591</epage><pages>4582-4591</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specific lncRNA, SULT1C2A, in somitogenesis in a rat model of vitamin A deficiency (VAD)‐induced CS. Bioinformatics analysis and quantitative real‐time PCR (qRT‐PCR) indicated that SULT1C2A expression was down‐regulated in VAD group, accompanied by increased expression of rno‐miR‐466c‐5p but decreased expression of Foxo4 and somitogenesis‐related genes such as Pax1, Nkx3‐2 and Sox9 on gestational day (GD) 9. Luciferase reporter and small interfering RNA (siRNA) assays showed that SULT1C2A functioned as a competing endogenous RNA to inhibit rno‐miR‐466c‐5p expression by direct binding, and rno‐miR‐466c‐5p inhibited Foxo4 expression by binding to its 3′ untranslated region (UTR). The spatiotemporal expression of SULT1C2A, rno‐miR‐466c‐5p and Foxo4 axis was dynamically altered on GDs 3, 8, 11, 15 and 21 as detected by qRT‐PCR and northern blot analyses, with parallel changes in Protein kinase B (AKT) phosphorylation and PI3K expression. Taken together, our findings indicate that SULT1C2A enhanced Foxo4 expression by negatively modulating rno‐miR‐466c‐5p expression via the PI3K‐ATK signalling pathway in the rat model of VAD‐CS. Thus, SULT1C2A may be a potential target for treating CS.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>31044535</pmid><doi>10.1111/jcmm.14355</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6024-0194</orcidid><orcidid>https://orcid.org/0000-0003-1824-6116</orcidid><orcidid>https://orcid.org/0000-0002-1606-4370</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2019-07, Vol.23 (7), p.4582-4591 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6584475 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | 1-Phosphatidylinositol 3-kinase 3' Untranslated Regions - genetics AKT protein Animals Base Sequence Binding sites Bioinformatics congenital scoliosis (CS) Diet Down-Regulation - genetics Embryo, Mammalian - metabolism Embryos Forkhead Transcription Factors - genetics Forkhead Transcription Factors - metabolism Foxo4 FOXO4 protein Gene Expression Regulation, Developmental Genes Genes, Reporter HEK293 Cells Humans Kinases Laboratory animals Luciferases - metabolism MicroRNAs Models, Biological Organogenesis - genetics Original Pathogenesis Phosphatidylinositol 3-Kinases - metabolism Phosphorylation PI3K‐AKT Proto-Oncogene Proteins c-akt - metabolism Rats, Sprague-Dawley RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism rno‐miR‐466c‐5p Rodents Scoliosis Scoliosis - congenital Scoliosis - genetics Signal Transduction siRNA Somites - embryology Somitogenesis Sox9 protein Spine SULT1C2A Vertebrae Vitamin A Vitamin A Deficiency - embryology Vitamin A Deficiency - genetics Vitamin deficiency |
title | LncRNA‐SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno‐miR‐466c‐5p through PI3K‐ATK signalling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LncRNA%E2%80%90SULT1C2A%20regulates%20Foxo4%20in%20congenital%20scoliosis%20by%20targeting%20rno%E2%80%90miR%E2%80%90466c%E2%80%905p%20through%20PI3K%E2%80%90ATK%20signalling&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Chen,%20Chong&rft.date=2019-07&rft.volume=23&rft.issue=7&rft.spage=4582&rft.epage=4591&rft.pages=4582-4591&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.14355&rft_dat=%3Cproquest_pubme%3E2247638973%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2247638973&rft_id=info:pmid/31044535&rfr_iscdi=true |