The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits

Message-specific translational regulation mechanisms shape the biogenesis of multimeric oxidative phosphorylation (OXPHOS) enzyme in mitochondria from the yeast Saccharomyces cerevisiae. These mechanisms, driven mainly by the action of mRNA-specific translational activators, help to coordinate synth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2019-06, Vol.47 (11), p.5746-5760
Hauptverfasser: Mays, Jeffri-Noelle, Camacho-Villasana, Yolanda, Garcia-Villegas, Rodolfo, Perez-Martinez, Xochitl, Barrientos, Antoni, Fontanesi, Flavia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5760
container_issue 11
container_start_page 5746
container_title Nucleic acids research
container_volume 47
creator Mays, Jeffri-Noelle
Camacho-Villasana, Yolanda
Garcia-Villegas, Rodolfo
Perez-Martinez, Xochitl
Barrientos, Antoni
Fontanesi, Flavia
description Message-specific translational regulation mechanisms shape the biogenesis of multimeric oxidative phosphorylation (OXPHOS) enzyme in mitochondria from the yeast Saccharomyces cerevisiae. These mechanisms, driven mainly by the action of mRNA-specific translational activators, help to coordinate synthesis of OXPHOS catalytic subunits by the mitoribosomes with both the import of their nucleus-encoded partners and their assembly to form the holocomplexes. However, little is known regarding the role that the mitoribosome itself may play in mRNA-specific translational regulation. Here, we show that the mitoribosome small subunit protein Cox24/mS38, known to be necessary for mitoribosome-specific intersubunit bridge formation and 15S rRNA H44 stabilization, is required for efficient mitoribogenesis. Consequently, mS38 is necessary to sustain the overall mitochondrial protein synthesis rate, despite an adaptive ∼2-fold increase in mitoribosome abundance in mS38-deleted cells. Additionally, the absence of mS38 preferentially disturbs translation initiation of COX1, COX2, and COX3 mRNAs, without affecting the levels of mRNA-specific translational activators. We propose that mS38 confers the mitochondrial ribosome an intrinsic capacity of translational regulation, probably acquired during evolution from bacterial ribosomes to facilitate the translation of mitochondrial mRNAs, which lack typical anti-Shine-Dalgarno sequences.
doi_str_mv 10.1093/nar/gkz266
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6582356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207158172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-54a3ed43d2187faeed00ce19220e2e3477ec70be8a4fdf31f4b167c7a2c7ac0d3</originalsourceid><addsrcrecordid>eNpVkU1LxDAQhoMo7rp68QdIjiJU89WmexFE_IIFD-o5pOnEjbZNN2nF9dcbWRU9DMMwD--8zIvQISWnlMz5WafD2fPrByuKLTSlvGCZmBdsG00JJ3lGiSgnaC_GF0KooLnYRRNO5kVJGZmi_nEJuHWDD67y0beQxR6Ms87gPvgBXIfbB15iF9MMFgJ0g9NNs8YBVqMLUGPrA47rblhCTJS32KwHb5YhiWGD_burdQQcx2rs3BD30Y7VTYSD7z5DT9dXj5e32eL-5u7yYpEZLsshy4XmUAteM1pKqwFqQgzQOWMEGHAhJRhJKii1sLXl1IqKFtJIzVIZUvMZOt_o9mPVQm2S76Ab1QfX6rBWXjv1f9O5pXr2b6rIS8bzIgkcfwsEvxohDqp10UDT6A78GFVyImleUskSerJBTfAxpjf9nqFEfUWkUkRqE1GCj_4a-0V_MuGfjRSSOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207158172</pqid></control><display><type>article</type><title>The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mays, Jeffri-Noelle ; Camacho-Villasana, Yolanda ; Garcia-Villegas, Rodolfo ; Perez-Martinez, Xochitl ; Barrientos, Antoni ; Fontanesi, Flavia</creator><creatorcontrib>Mays, Jeffri-Noelle ; Camacho-Villasana, Yolanda ; Garcia-Villegas, Rodolfo ; Perez-Martinez, Xochitl ; Barrientos, Antoni ; Fontanesi, Flavia</creatorcontrib><description>Message-specific translational regulation mechanisms shape the biogenesis of multimeric oxidative phosphorylation (OXPHOS) enzyme in mitochondria from the yeast Saccharomyces cerevisiae. These mechanisms, driven mainly by the action of mRNA-specific translational activators, help to coordinate synthesis of OXPHOS catalytic subunits by the mitoribosomes with both the import of their nucleus-encoded partners and their assembly to form the holocomplexes. However, little is known regarding the role that the mitoribosome itself may play in mRNA-specific translational regulation. Here, we show that the mitoribosome small subunit protein Cox24/mS38, known to be necessary for mitoribosome-specific intersubunit bridge formation and 15S rRNA H44 stabilization, is required for efficient mitoribogenesis. Consequently, mS38 is necessary to sustain the overall mitochondrial protein synthesis rate, despite an adaptive ∼2-fold increase in mitoribosome abundance in mS38-deleted cells. Additionally, the absence of mS38 preferentially disturbs translation initiation of COX1, COX2, and COX3 mRNAs, without affecting the levels of mRNA-specific translational activators. We propose that mS38 confers the mitochondrial ribosome an intrinsic capacity of translational regulation, probably acquired during evolution from bacterial ribosomes to facilitate the translation of mitochondrial mRNAs, which lack typical anti-Shine-Dalgarno sequences.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz266</identifier><identifier>PMID: 30968120</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Arabidopsis - metabolism ; DNA, Mitochondrial - metabolism ; Electron Transport Complex IV - chemistry ; Gene Expression Regulation ; Gene Expression Regulation, Fungal ; Humans ; Kluyveromyces - metabolism ; Mitochondrial Proteins - metabolism ; Mitochondrial Ribosomes - chemistry ; Mitochondrial Ribosomes - metabolism ; Molecular Biology ; Oryza - metabolism ; Oxidative Phosphorylation ; Polyribosomes - metabolism ; Protein Biosynthesis ; RNA, Messenger - metabolism ; RNA, Mitochondrial ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Yarrowia - metabolism</subject><ispartof>Nucleic acids research, 2019-06, Vol.47 (11), p.5746-5760</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-54a3ed43d2187faeed00ce19220e2e3477ec70be8a4fdf31f4b167c7a2c7ac0d3</citedby><cites>FETCH-LOGICAL-c378t-54a3ed43d2187faeed00ce19220e2e3477ec70be8a4fdf31f4b167c7a2c7ac0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582356/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582356/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30968120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mays, Jeffri-Noelle</creatorcontrib><creatorcontrib>Camacho-Villasana, Yolanda</creatorcontrib><creatorcontrib>Garcia-Villegas, Rodolfo</creatorcontrib><creatorcontrib>Perez-Martinez, Xochitl</creatorcontrib><creatorcontrib>Barrientos, Antoni</creatorcontrib><creatorcontrib>Fontanesi, Flavia</creatorcontrib><title>The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Message-specific translational regulation mechanisms shape the biogenesis of multimeric oxidative phosphorylation (OXPHOS) enzyme in mitochondria from the yeast Saccharomyces cerevisiae. These mechanisms, driven mainly by the action of mRNA-specific translational activators, help to coordinate synthesis of OXPHOS catalytic subunits by the mitoribosomes with both the import of their nucleus-encoded partners and their assembly to form the holocomplexes. However, little is known regarding the role that the mitoribosome itself may play in mRNA-specific translational regulation. Here, we show that the mitoribosome small subunit protein Cox24/mS38, known to be necessary for mitoribosome-specific intersubunit bridge formation and 15S rRNA H44 stabilization, is required for efficient mitoribogenesis. Consequently, mS38 is necessary to sustain the overall mitochondrial protein synthesis rate, despite an adaptive ∼2-fold increase in mitoribosome abundance in mS38-deleted cells. Additionally, the absence of mS38 preferentially disturbs translation initiation of COX1, COX2, and COX3 mRNAs, without affecting the levels of mRNA-specific translational activators. We propose that mS38 confers the mitochondrial ribosome an intrinsic capacity of translational regulation, probably acquired during evolution from bacterial ribosomes to facilitate the translation of mitochondrial mRNAs, which lack typical anti-Shine-Dalgarno sequences.</description><subject>Arabidopsis - metabolism</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Electron Transport Complex IV - chemistry</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Humans</subject><subject>Kluyveromyces - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mitochondrial Ribosomes - chemistry</subject><subject>Mitochondrial Ribosomes - metabolism</subject><subject>Molecular Biology</subject><subject>Oryza - metabolism</subject><subject>Oxidative Phosphorylation</subject><subject>Polyribosomes - metabolism</subject><subject>Protein Biosynthesis</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Mitochondrial</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Yarrowia - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1LxDAQhoMo7rp68QdIjiJU89WmexFE_IIFD-o5pOnEjbZNN2nF9dcbWRU9DMMwD--8zIvQISWnlMz5WafD2fPrByuKLTSlvGCZmBdsG00JJ3lGiSgnaC_GF0KooLnYRRNO5kVJGZmi_nEJuHWDD67y0beQxR6Ms87gPvgBXIfbB15iF9MMFgJ0g9NNs8YBVqMLUGPrA47rblhCTJS32KwHb5YhiWGD_burdQQcx2rs3BD30Y7VTYSD7z5DT9dXj5e32eL-5u7yYpEZLsshy4XmUAteM1pKqwFqQgzQOWMEGHAhJRhJKii1sLXl1IqKFtJIzVIZUvMZOt_o9mPVQm2S76Ab1QfX6rBWXjv1f9O5pXr2b6rIS8bzIgkcfwsEvxohDqp10UDT6A78GFVyImleUskSerJBTfAxpjf9nqFEfUWkUkRqE1GCj_4a-0V_MuGfjRSSOA</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Mays, Jeffri-Noelle</creator><creator>Camacho-Villasana, Yolanda</creator><creator>Garcia-Villegas, Rodolfo</creator><creator>Perez-Martinez, Xochitl</creator><creator>Barrientos, Antoni</creator><creator>Fontanesi, Flavia</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190620</creationdate><title>The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits</title><author>Mays, Jeffri-Noelle ; Camacho-Villasana, Yolanda ; Garcia-Villegas, Rodolfo ; Perez-Martinez, Xochitl ; Barrientos, Antoni ; Fontanesi, Flavia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-54a3ed43d2187faeed00ce19220e2e3477ec70be8a4fdf31f4b167c7a2c7ac0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arabidopsis - metabolism</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Electron Transport Complex IV - chemistry</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Humans</topic><topic>Kluyveromyces - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mitochondrial Ribosomes - chemistry</topic><topic>Mitochondrial Ribosomes - metabolism</topic><topic>Molecular Biology</topic><topic>Oryza - metabolism</topic><topic>Oxidative Phosphorylation</topic><topic>Polyribosomes - metabolism</topic><topic>Protein Biosynthesis</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Mitochondrial</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Yarrowia - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mays, Jeffri-Noelle</creatorcontrib><creatorcontrib>Camacho-Villasana, Yolanda</creatorcontrib><creatorcontrib>Garcia-Villegas, Rodolfo</creatorcontrib><creatorcontrib>Perez-Martinez, Xochitl</creatorcontrib><creatorcontrib>Barrientos, Antoni</creatorcontrib><creatorcontrib>Fontanesi, Flavia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mays, Jeffri-Noelle</au><au>Camacho-Villasana, Yolanda</au><au>Garcia-Villegas, Rodolfo</au><au>Perez-Martinez, Xochitl</au><au>Barrientos, Antoni</au><au>Fontanesi, Flavia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-06-20</date><risdate>2019</risdate><volume>47</volume><issue>11</issue><spage>5746</spage><epage>5760</epage><pages>5746-5760</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Message-specific translational regulation mechanisms shape the biogenesis of multimeric oxidative phosphorylation (OXPHOS) enzyme in mitochondria from the yeast Saccharomyces cerevisiae. These mechanisms, driven mainly by the action of mRNA-specific translational activators, help to coordinate synthesis of OXPHOS catalytic subunits by the mitoribosomes with both the import of their nucleus-encoded partners and their assembly to form the holocomplexes. However, little is known regarding the role that the mitoribosome itself may play in mRNA-specific translational regulation. Here, we show that the mitoribosome small subunit protein Cox24/mS38, known to be necessary for mitoribosome-specific intersubunit bridge formation and 15S rRNA H44 stabilization, is required for efficient mitoribogenesis. Consequently, mS38 is necessary to sustain the overall mitochondrial protein synthesis rate, despite an adaptive ∼2-fold increase in mitoribosome abundance in mS38-deleted cells. Additionally, the absence of mS38 preferentially disturbs translation initiation of COX1, COX2, and COX3 mRNAs, without affecting the levels of mRNA-specific translational activators. We propose that mS38 confers the mitochondrial ribosome an intrinsic capacity of translational regulation, probably acquired during evolution from bacterial ribosomes to facilitate the translation of mitochondrial mRNAs, which lack typical anti-Shine-Dalgarno sequences.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30968120</pmid><doi>10.1093/nar/gkz266</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2019-06, Vol.47 (11), p.5746-5760
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6582356
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry
subjects Arabidopsis - metabolism
DNA, Mitochondrial - metabolism
Electron Transport Complex IV - chemistry
Gene Expression Regulation
Gene Expression Regulation, Fungal
Humans
Kluyveromyces - metabolism
Mitochondrial Proteins - metabolism
Mitochondrial Ribosomes - chemistry
Mitochondrial Ribosomes - metabolism
Molecular Biology
Oryza - metabolism
Oxidative Phosphorylation
Polyribosomes - metabolism
Protein Biosynthesis
RNA, Messenger - metabolism
RNA, Mitochondrial
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Yarrowia - metabolism
title The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mitoribosome-specific%20protein%20mS38%20is%20preferentially%20required%20for%20synthesis%20of%20cytochrome%20c%20oxidase%20subunits&rft.jtitle=Nucleic%20acids%20research&rft.au=Mays,%20Jeffri-Noelle&rft.date=2019-06-20&rft.volume=47&rft.issue=11&rft.spage=5746&rft.epage=5760&rft.pages=5746-5760&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz266&rft_dat=%3Cproquest_pubme%3E2207158172%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207158172&rft_id=info:pmid/30968120&rfr_iscdi=true