The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits
Message-specific translational regulation mechanisms shape the biogenesis of multimeric oxidative phosphorylation (OXPHOS) enzyme in mitochondria from the yeast Saccharomyces cerevisiae. These mechanisms, driven mainly by the action of mRNA-specific translational activators, help to coordinate synth...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2019-06, Vol.47 (11), p.5746-5760 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5760 |
---|---|
container_issue | 11 |
container_start_page | 5746 |
container_title | Nucleic acids research |
container_volume | 47 |
creator | Mays, Jeffri-Noelle Camacho-Villasana, Yolanda Garcia-Villegas, Rodolfo Perez-Martinez, Xochitl Barrientos, Antoni Fontanesi, Flavia |
description | Message-specific translational regulation mechanisms shape the biogenesis of multimeric oxidative phosphorylation (OXPHOS) enzyme in mitochondria from the yeast Saccharomyces cerevisiae. These mechanisms, driven mainly by the action of mRNA-specific translational activators, help to coordinate synthesis of OXPHOS catalytic subunits by the mitoribosomes with both the import of their nucleus-encoded partners and their assembly to form the holocomplexes. However, little is known regarding the role that the mitoribosome itself may play in mRNA-specific translational regulation. Here, we show that the mitoribosome small subunit protein Cox24/mS38, known to be necessary for mitoribosome-specific intersubunit bridge formation and 15S rRNA H44 stabilization, is required for efficient mitoribogenesis. Consequently, mS38 is necessary to sustain the overall mitochondrial protein synthesis rate, despite an adaptive ∼2-fold increase in mitoribosome abundance in mS38-deleted cells. Additionally, the absence of mS38 preferentially disturbs translation initiation of COX1, COX2, and COX3 mRNAs, without affecting the levels of mRNA-specific translational activators. We propose that mS38 confers the mitochondrial ribosome an intrinsic capacity of translational regulation, probably acquired during evolution from bacterial ribosomes to facilitate the translation of mitochondrial mRNAs, which lack typical anti-Shine-Dalgarno sequences. |
doi_str_mv | 10.1093/nar/gkz266 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6582356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207158172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-54a3ed43d2187faeed00ce19220e2e3477ec70be8a4fdf31f4b167c7a2c7ac0d3</originalsourceid><addsrcrecordid>eNpVkU1LxDAQhoMo7rp68QdIjiJU89WmexFE_IIFD-o5pOnEjbZNN2nF9dcbWRU9DMMwD--8zIvQISWnlMz5WafD2fPrByuKLTSlvGCZmBdsG00JJ3lGiSgnaC_GF0KooLnYRRNO5kVJGZmi_nEJuHWDD67y0beQxR6Ms87gPvgBXIfbB15iF9MMFgJ0g9NNs8YBVqMLUGPrA47rblhCTJS32KwHb5YhiWGD_burdQQcx2rs3BD30Y7VTYSD7z5DT9dXj5e32eL-5u7yYpEZLsshy4XmUAteM1pKqwFqQgzQOWMEGHAhJRhJKii1sLXl1IqKFtJIzVIZUvMZOt_o9mPVQm2S76Ab1QfX6rBWXjv1f9O5pXr2b6rIS8bzIgkcfwsEvxohDqp10UDT6A78GFVyImleUskSerJBTfAxpjf9nqFEfUWkUkRqE1GCj_4a-0V_MuGfjRSSOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207158172</pqid></control><display><type>article</type><title>The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mays, Jeffri-Noelle ; Camacho-Villasana, Yolanda ; Garcia-Villegas, Rodolfo ; Perez-Martinez, Xochitl ; Barrientos, Antoni ; Fontanesi, Flavia</creator><creatorcontrib>Mays, Jeffri-Noelle ; Camacho-Villasana, Yolanda ; Garcia-Villegas, Rodolfo ; Perez-Martinez, Xochitl ; Barrientos, Antoni ; Fontanesi, Flavia</creatorcontrib><description>Message-specific translational regulation mechanisms shape the biogenesis of multimeric oxidative phosphorylation (OXPHOS) enzyme in mitochondria from the yeast Saccharomyces cerevisiae. These mechanisms, driven mainly by the action of mRNA-specific translational activators, help to coordinate synthesis of OXPHOS catalytic subunits by the mitoribosomes with both the import of their nucleus-encoded partners and their assembly to form the holocomplexes. However, little is known regarding the role that the mitoribosome itself may play in mRNA-specific translational regulation. Here, we show that the mitoribosome small subunit protein Cox24/mS38, known to be necessary for mitoribosome-specific intersubunit bridge formation and 15S rRNA H44 stabilization, is required for efficient mitoribogenesis. Consequently, mS38 is necessary to sustain the overall mitochondrial protein synthesis rate, despite an adaptive ∼2-fold increase in mitoribosome abundance in mS38-deleted cells. Additionally, the absence of mS38 preferentially disturbs translation initiation of COX1, COX2, and COX3 mRNAs, without affecting the levels of mRNA-specific translational activators. We propose that mS38 confers the mitochondrial ribosome an intrinsic capacity of translational regulation, probably acquired during evolution from bacterial ribosomes to facilitate the translation of mitochondrial mRNAs, which lack typical anti-Shine-Dalgarno sequences.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz266</identifier><identifier>PMID: 30968120</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Arabidopsis - metabolism ; DNA, Mitochondrial - metabolism ; Electron Transport Complex IV - chemistry ; Gene Expression Regulation ; Gene Expression Regulation, Fungal ; Humans ; Kluyveromyces - metabolism ; Mitochondrial Proteins - metabolism ; Mitochondrial Ribosomes - chemistry ; Mitochondrial Ribosomes - metabolism ; Molecular Biology ; Oryza - metabolism ; Oxidative Phosphorylation ; Polyribosomes - metabolism ; Protein Biosynthesis ; RNA, Messenger - metabolism ; RNA, Mitochondrial ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Yarrowia - metabolism</subject><ispartof>Nucleic acids research, 2019-06, Vol.47 (11), p.5746-5760</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-54a3ed43d2187faeed00ce19220e2e3477ec70be8a4fdf31f4b167c7a2c7ac0d3</citedby><cites>FETCH-LOGICAL-c378t-54a3ed43d2187faeed00ce19220e2e3477ec70be8a4fdf31f4b167c7a2c7ac0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582356/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582356/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30968120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mays, Jeffri-Noelle</creatorcontrib><creatorcontrib>Camacho-Villasana, Yolanda</creatorcontrib><creatorcontrib>Garcia-Villegas, Rodolfo</creatorcontrib><creatorcontrib>Perez-Martinez, Xochitl</creatorcontrib><creatorcontrib>Barrientos, Antoni</creatorcontrib><creatorcontrib>Fontanesi, Flavia</creatorcontrib><title>The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Message-specific translational regulation mechanisms shape the biogenesis of multimeric oxidative phosphorylation (OXPHOS) enzyme in mitochondria from the yeast Saccharomyces cerevisiae. These mechanisms, driven mainly by the action of mRNA-specific translational activators, help to coordinate synthesis of OXPHOS catalytic subunits by the mitoribosomes with both the import of their nucleus-encoded partners and their assembly to form the holocomplexes. However, little is known regarding the role that the mitoribosome itself may play in mRNA-specific translational regulation. Here, we show that the mitoribosome small subunit protein Cox24/mS38, known to be necessary for mitoribosome-specific intersubunit bridge formation and 15S rRNA H44 stabilization, is required for efficient mitoribogenesis. Consequently, mS38 is necessary to sustain the overall mitochondrial protein synthesis rate, despite an adaptive ∼2-fold increase in mitoribosome abundance in mS38-deleted cells. Additionally, the absence of mS38 preferentially disturbs translation initiation of COX1, COX2, and COX3 mRNAs, without affecting the levels of mRNA-specific translational activators. We propose that mS38 confers the mitochondrial ribosome an intrinsic capacity of translational regulation, probably acquired during evolution from bacterial ribosomes to facilitate the translation of mitochondrial mRNAs, which lack typical anti-Shine-Dalgarno sequences.</description><subject>Arabidopsis - metabolism</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Electron Transport Complex IV - chemistry</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Humans</subject><subject>Kluyveromyces - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mitochondrial Ribosomes - chemistry</subject><subject>Mitochondrial Ribosomes - metabolism</subject><subject>Molecular Biology</subject><subject>Oryza - metabolism</subject><subject>Oxidative Phosphorylation</subject><subject>Polyribosomes - metabolism</subject><subject>Protein Biosynthesis</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Mitochondrial</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Yarrowia - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1LxDAQhoMo7rp68QdIjiJU89WmexFE_IIFD-o5pOnEjbZNN2nF9dcbWRU9DMMwD--8zIvQISWnlMz5WafD2fPrByuKLTSlvGCZmBdsG00JJ3lGiSgnaC_GF0KooLnYRRNO5kVJGZmi_nEJuHWDD67y0beQxR6Ms87gPvgBXIfbB15iF9MMFgJ0g9NNs8YBVqMLUGPrA47rblhCTJS32KwHb5YhiWGD_burdQQcx2rs3BD30Y7VTYSD7z5DT9dXj5e32eL-5u7yYpEZLsshy4XmUAteM1pKqwFqQgzQOWMEGHAhJRhJKii1sLXl1IqKFtJIzVIZUvMZOt_o9mPVQm2S76Ab1QfX6rBWXjv1f9O5pXr2b6rIS8bzIgkcfwsEvxohDqp10UDT6A78GFVyImleUskSerJBTfAxpjf9nqFEfUWkUkRqE1GCj_4a-0V_MuGfjRSSOA</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Mays, Jeffri-Noelle</creator><creator>Camacho-Villasana, Yolanda</creator><creator>Garcia-Villegas, Rodolfo</creator><creator>Perez-Martinez, Xochitl</creator><creator>Barrientos, Antoni</creator><creator>Fontanesi, Flavia</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190620</creationdate><title>The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits</title><author>Mays, Jeffri-Noelle ; Camacho-Villasana, Yolanda ; Garcia-Villegas, Rodolfo ; Perez-Martinez, Xochitl ; Barrientos, Antoni ; Fontanesi, Flavia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-54a3ed43d2187faeed00ce19220e2e3477ec70be8a4fdf31f4b167c7a2c7ac0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arabidopsis - metabolism</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Electron Transport Complex IV - chemistry</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Humans</topic><topic>Kluyveromyces - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mitochondrial Ribosomes - chemistry</topic><topic>Mitochondrial Ribosomes - metabolism</topic><topic>Molecular Biology</topic><topic>Oryza - metabolism</topic><topic>Oxidative Phosphorylation</topic><topic>Polyribosomes - metabolism</topic><topic>Protein Biosynthesis</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Mitochondrial</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Yarrowia - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mays, Jeffri-Noelle</creatorcontrib><creatorcontrib>Camacho-Villasana, Yolanda</creatorcontrib><creatorcontrib>Garcia-Villegas, Rodolfo</creatorcontrib><creatorcontrib>Perez-Martinez, Xochitl</creatorcontrib><creatorcontrib>Barrientos, Antoni</creatorcontrib><creatorcontrib>Fontanesi, Flavia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mays, Jeffri-Noelle</au><au>Camacho-Villasana, Yolanda</au><au>Garcia-Villegas, Rodolfo</au><au>Perez-Martinez, Xochitl</au><au>Barrientos, Antoni</au><au>Fontanesi, Flavia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-06-20</date><risdate>2019</risdate><volume>47</volume><issue>11</issue><spage>5746</spage><epage>5760</epage><pages>5746-5760</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Message-specific translational regulation mechanisms shape the biogenesis of multimeric oxidative phosphorylation (OXPHOS) enzyme in mitochondria from the yeast Saccharomyces cerevisiae. These mechanisms, driven mainly by the action of mRNA-specific translational activators, help to coordinate synthesis of OXPHOS catalytic subunits by the mitoribosomes with both the import of their nucleus-encoded partners and their assembly to form the holocomplexes. However, little is known regarding the role that the mitoribosome itself may play in mRNA-specific translational regulation. Here, we show that the mitoribosome small subunit protein Cox24/mS38, known to be necessary for mitoribosome-specific intersubunit bridge formation and 15S rRNA H44 stabilization, is required for efficient mitoribogenesis. Consequently, mS38 is necessary to sustain the overall mitochondrial protein synthesis rate, despite an adaptive ∼2-fold increase in mitoribosome abundance in mS38-deleted cells. Additionally, the absence of mS38 preferentially disturbs translation initiation of COX1, COX2, and COX3 mRNAs, without affecting the levels of mRNA-specific translational activators. We propose that mS38 confers the mitochondrial ribosome an intrinsic capacity of translational regulation, probably acquired during evolution from bacterial ribosomes to facilitate the translation of mitochondrial mRNAs, which lack typical anti-Shine-Dalgarno sequences.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30968120</pmid><doi>10.1093/nar/gkz266</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2019-06, Vol.47 (11), p.5746-5760 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6582356 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Arabidopsis - metabolism DNA, Mitochondrial - metabolism Electron Transport Complex IV - chemistry Gene Expression Regulation Gene Expression Regulation, Fungal Humans Kluyveromyces - metabolism Mitochondrial Proteins - metabolism Mitochondrial Ribosomes - chemistry Mitochondrial Ribosomes - metabolism Molecular Biology Oryza - metabolism Oxidative Phosphorylation Polyribosomes - metabolism Protein Biosynthesis RNA, Messenger - metabolism RNA, Mitochondrial Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Yarrowia - metabolism |
title | The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mitoribosome-specific%20protein%20mS38%20is%20preferentially%20required%20for%20synthesis%20of%20cytochrome%20c%20oxidase%20subunits&rft.jtitle=Nucleic%20acids%20research&rft.au=Mays,%20Jeffri-Noelle&rft.date=2019-06-20&rft.volume=47&rft.issue=11&rft.spage=5746&rft.epage=5760&rft.pages=5746-5760&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz266&rft_dat=%3Cproquest_pubme%3E2207158172%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207158172&rft_id=info:pmid/30968120&rfr_iscdi=true |