Magnetic resonance imaging of stem cell–macrophage interactions with ferumoxytol and ferumoxytol‐derived nanoparticles

“Off the shelf” allogeneic stem cell transplants and stem cell nano‐composites are being used for the treatment of degenerative bone diseases. However, major and minor histocompatibility antigens of therapeutic cell transplants can be recognized as foreign and lead to their rejection by the host imm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2019-07, Vol.11 (4), p.e1552-n/a
Hauptverfasser: Nejadnik, Hossein, Tseng, Jessica, Daldrup‐Link, Heike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e1552
container_title Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
container_volume 11
creator Nejadnik, Hossein
Tseng, Jessica
Daldrup‐Link, Heike
description “Off the shelf” allogeneic stem cell transplants and stem cell nano‐composites are being used for the treatment of degenerative bone diseases. However, major and minor histocompatibility antigens of therapeutic cell transplants can be recognized as foreign and lead to their rejection by the host immune system. If a host immune response is identified within the first week post‐transplant, immune modulating therapies could be applied to prevent graft failure and support engraftment. Ferumoxytol (Feraheme™) is an FDA approved iron oxide nanoparticle preparation for the treatment of anemia in patients. Ferumoxytol can be used “off label” as an magnetic resonance (MR) contrast agent, as these nanoparticles provide measurable signal changes on magnetic resonance imaging (MRI). In this focused review article, we will discuss three methods to localize and identify innate immune responses to stem cell transplants using ferumoxytol‐enhanced MRI, which are based on tracking stem cells, tracking macrophages or detecting mediators of cell death: (a) monitor MRI signal changes of ferumoxytol‐labeled stem cells in the presence or absence of innate immune responses, (b) monitor influx of ferumoxytol‐labeled macrophages into stem cell implants, and (c) monitor apoptosis of stem cell implants with caspase‐3 activatable nanoparticles. These techniques can detect transplant failure at an early stage, when immune‐modulating interventions can potentially preserve the viability of the cell transplants and thereby improve bone and cartilage repair outcomes. Approaches 1 and 2 are immediately translatable to clinical practice. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Cells at the Nanoscale Diagnostic Tools > Biosensing Concept of in vivo and ex vivo stem cell labeling, and value of MR tracking of labeled cells in arthritic joints: (a) ex vivo labelling and (b) in vivo labeling of stem cells before implantation. (c) A failed engraftment of therapeutic cells can be diagnosed 1–2 weeks after the cell transplant based on loss of iron signal at the transplant site (red circle).
doi_str_mv 10.1002/wnan.1552
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6579657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2241516290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4432-91b28cb7f488811e709c30c03238588171c4016b3d7c62ae68992fddd19d6d0e3</originalsourceid><addsrcrecordid>eNp1kctuEzEUhi1ERa8LXgBZYsUirW_jGW-QqgoKUikbqi4txz4zcTVjB3vSkK76CJV4wz4JDkmrsmBh-fbpO8f-EXpLyTElhJ0sgwnHtKrYK7RHFVcTQgR9vV1XlMpdtJ_zDSFSSFa9Qbuc1FxUgu2hu2-mCzB6ixPkWDwWsB9M50OHY4vzCAO20PeP978HY1Ocz0xXiDBCMnb0MWS89OMMt5AWQ_y1GmOPTXAv94_3Dw6SvwWHiz_OTSrlesiHaKc1fYaj7XyArj5_-nH2ZXLx_fzr2enFxArB2UTRKWvstG5F0zSUQk2U5cQSznhTlZOaWkGonHJXW8kMyEYp1jrnqHLSEeAH6OPGO19MB3AWwphMr-epvDOtdDRe_3sT_Ex38VbLqlZlFMH7rSDFnwvIo76JixRKz5oxQSsqmSKF-rChyi_lnKB9rkCJXsek1zHpdUyFffeypWfyKZcCnGyApe9h9X-Tvr48vfyr_AOb2aKz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2241516290</pqid></control><display><type>article</type><title>Magnetic resonance imaging of stem cell–macrophage interactions with ferumoxytol and ferumoxytol‐derived nanoparticles</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nejadnik, Hossein ; Tseng, Jessica ; Daldrup‐Link, Heike</creator><creatorcontrib>Nejadnik, Hossein ; Tseng, Jessica ; Daldrup‐Link, Heike</creatorcontrib><description>“Off the shelf” allogeneic stem cell transplants and stem cell nano‐composites are being used for the treatment of degenerative bone diseases. However, major and minor histocompatibility antigens of therapeutic cell transplants can be recognized as foreign and lead to their rejection by the host immune system. If a host immune response is identified within the first week post‐transplant, immune modulating therapies could be applied to prevent graft failure and support engraftment. Ferumoxytol (Feraheme™) is an FDA approved iron oxide nanoparticle preparation for the treatment of anemia in patients. Ferumoxytol can be used “off label” as an magnetic resonance (MR) contrast agent, as these nanoparticles provide measurable signal changes on magnetic resonance imaging (MRI). In this focused review article, we will discuss three methods to localize and identify innate immune responses to stem cell transplants using ferumoxytol‐enhanced MRI, which are based on tracking stem cells, tracking macrophages or detecting mediators of cell death: (a) monitor MRI signal changes of ferumoxytol‐labeled stem cells in the presence or absence of innate immune responses, (b) monitor influx of ferumoxytol‐labeled macrophages into stem cell implants, and (c) monitor apoptosis of stem cell implants with caspase‐3 activatable nanoparticles. These techniques can detect transplant failure at an early stage, when immune‐modulating interventions can potentially preserve the viability of the cell transplants and thereby improve bone and cartilage repair outcomes. Approaches 1 and 2 are immediately translatable to clinical practice. This article is categorized under: Diagnostic Tools &gt; in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology &gt; Cells at the Nanoscale Diagnostic Tools &gt; Biosensing Concept of in vivo and ex vivo stem cell labeling, and value of MR tracking of labeled cells in arthritic joints: (a) ex vivo labelling and (b) in vivo labeling of stem cells before implantation. (c) A failed engraftment of therapeutic cells can be diagnosed 1–2 weeks after the cell transplant based on loss of iron signal at the transplant site (red circle).</description><identifier>ISSN: 1939-5116</identifier><identifier>EISSN: 1939-0041</identifier><identifier>DOI: 10.1002/wnan.1552</identifier><identifier>PMID: 30734542</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Anemia ; Antigens ; Apoptosis ; Biosensors ; Bone diseases ; Cartilage ; Caspase ; Cell death ; Contrast agents ; Contrast Media - chemistry ; Contrast Media - therapeutic use ; Diagnostic software ; Diagnostic systems ; Ferrosoferric Oxide - chemistry ; Ferrosoferric Oxide - therapeutic use ; Ferumoxytol ; Graft rejection ; Grafts ; Histocompatibility ; Humans ; Identification methods ; Immune response ; Immune system ; Innate immunity ; Iron oxides ; macrophage ; Macrophages ; Macrophages - cytology ; Macrophages - metabolism ; Magnetic Resonance Imaging ; Magnetite Nanoparticles - chemistry ; Magnetite Nanoparticles - therapeutic use ; Medical imaging ; Medical treatment ; Minor histocompatibility antigens ; Molecular Imaging ; Nanoparticles ; Nanotechnology ; NMR ; Nuclear magnetic resonance ; Resonance ; stem cell ; Stem Cell Transplantation ; Stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Surgical implants ; Tracking ; Transplants ; Transplants &amp; implants</subject><ispartof>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2019-07, Vol.11 (4), p.e1552-n/a</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4432-91b28cb7f488811e709c30c03238588171c4016b3d7c62ae68992fddd19d6d0e3</citedby><cites>FETCH-LOGICAL-c4432-91b28cb7f488811e709c30c03238588171c4016b3d7c62ae68992fddd19d6d0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwnan.1552$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwnan.1552$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30734542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nejadnik, Hossein</creatorcontrib><creatorcontrib>Tseng, Jessica</creatorcontrib><creatorcontrib>Daldrup‐Link, Heike</creatorcontrib><title>Magnetic resonance imaging of stem cell–macrophage interactions with ferumoxytol and ferumoxytol‐derived nanoparticles</title><title>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</title><addtitle>Wiley Interdiscip Rev Nanomed Nanobiotechnol</addtitle><description>“Off the shelf” allogeneic stem cell transplants and stem cell nano‐composites are being used for the treatment of degenerative bone diseases. However, major and minor histocompatibility antigens of therapeutic cell transplants can be recognized as foreign and lead to their rejection by the host immune system. If a host immune response is identified within the first week post‐transplant, immune modulating therapies could be applied to prevent graft failure and support engraftment. Ferumoxytol (Feraheme™) is an FDA approved iron oxide nanoparticle preparation for the treatment of anemia in patients. Ferumoxytol can be used “off label” as an magnetic resonance (MR) contrast agent, as these nanoparticles provide measurable signal changes on magnetic resonance imaging (MRI). In this focused review article, we will discuss three methods to localize and identify innate immune responses to stem cell transplants using ferumoxytol‐enhanced MRI, which are based on tracking stem cells, tracking macrophages or detecting mediators of cell death: (a) monitor MRI signal changes of ferumoxytol‐labeled stem cells in the presence or absence of innate immune responses, (b) monitor influx of ferumoxytol‐labeled macrophages into stem cell implants, and (c) monitor apoptosis of stem cell implants with caspase‐3 activatable nanoparticles. These techniques can detect transplant failure at an early stage, when immune‐modulating interventions can potentially preserve the viability of the cell transplants and thereby improve bone and cartilage repair outcomes. Approaches 1 and 2 are immediately translatable to clinical practice. This article is categorized under: Diagnostic Tools &gt; in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology &gt; Cells at the Nanoscale Diagnostic Tools &gt; Biosensing Concept of in vivo and ex vivo stem cell labeling, and value of MR tracking of labeled cells in arthritic joints: (a) ex vivo labelling and (b) in vivo labeling of stem cells before implantation. (c) A failed engraftment of therapeutic cells can be diagnosed 1–2 weeks after the cell transplant based on loss of iron signal at the transplant site (red circle).</description><subject>Anemia</subject><subject>Antigens</subject><subject>Apoptosis</subject><subject>Biosensors</subject><subject>Bone diseases</subject><subject>Cartilage</subject><subject>Caspase</subject><subject>Cell death</subject><subject>Contrast agents</subject><subject>Contrast Media - chemistry</subject><subject>Contrast Media - therapeutic use</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Ferrosoferric Oxide - chemistry</subject><subject>Ferrosoferric Oxide - therapeutic use</subject><subject>Ferumoxytol</subject><subject>Graft rejection</subject><subject>Grafts</subject><subject>Histocompatibility</subject><subject>Humans</subject><subject>Identification methods</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Innate immunity</subject><subject>Iron oxides</subject><subject>macrophage</subject><subject>Macrophages</subject><subject>Macrophages - cytology</subject><subject>Macrophages - metabolism</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Magnetite Nanoparticles - therapeutic use</subject><subject>Medical imaging</subject><subject>Medical treatment</subject><subject>Minor histocompatibility antigens</subject><subject>Molecular Imaging</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Resonance</subject><subject>stem cell</subject><subject>Stem Cell Transplantation</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Surgical implants</subject><subject>Tracking</subject><subject>Transplants</subject><subject>Transplants &amp; implants</subject><issn>1939-5116</issn><issn>1939-0041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctuEzEUhi1ERa8LXgBZYsUirW_jGW-QqgoKUikbqi4txz4zcTVjB3vSkK76CJV4wz4JDkmrsmBh-fbpO8f-EXpLyTElhJ0sgwnHtKrYK7RHFVcTQgR9vV1XlMpdtJ_zDSFSSFa9Qbuc1FxUgu2hu2-mCzB6ixPkWDwWsB9M50OHY4vzCAO20PeP978HY1Ocz0xXiDBCMnb0MWS89OMMt5AWQ_y1GmOPTXAv94_3Dw6SvwWHiz_OTSrlesiHaKc1fYaj7XyArj5_-nH2ZXLx_fzr2enFxArB2UTRKWvstG5F0zSUQk2U5cQSznhTlZOaWkGonHJXW8kMyEYp1jrnqHLSEeAH6OPGO19MB3AWwphMr-epvDOtdDRe_3sT_Ex38VbLqlZlFMH7rSDFnwvIo76JixRKz5oxQSsqmSKF-rChyi_lnKB9rkCJXsek1zHpdUyFffeypWfyKZcCnGyApe9h9X-Tvr48vfyr_AOb2aKz</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Nejadnik, Hossein</creator><creator>Tseng, Jessica</creator><creator>Daldrup‐Link, Heike</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201907</creationdate><title>Magnetic resonance imaging of stem cell–macrophage interactions with ferumoxytol and ferumoxytol‐derived nanoparticles</title><author>Nejadnik, Hossein ; Tseng, Jessica ; Daldrup‐Link, Heike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4432-91b28cb7f488811e709c30c03238588171c4016b3d7c62ae68992fddd19d6d0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anemia</topic><topic>Antigens</topic><topic>Apoptosis</topic><topic>Biosensors</topic><topic>Bone diseases</topic><topic>Cartilage</topic><topic>Caspase</topic><topic>Cell death</topic><topic>Contrast agents</topic><topic>Contrast Media - chemistry</topic><topic>Contrast Media - therapeutic use</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Ferrosoferric Oxide - chemistry</topic><topic>Ferrosoferric Oxide - therapeutic use</topic><topic>Ferumoxytol</topic><topic>Graft rejection</topic><topic>Grafts</topic><topic>Histocompatibility</topic><topic>Humans</topic><topic>Identification methods</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Innate immunity</topic><topic>Iron oxides</topic><topic>macrophage</topic><topic>Macrophages</topic><topic>Macrophages - cytology</topic><topic>Macrophages - metabolism</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Magnetite Nanoparticles - therapeutic use</topic><topic>Medical imaging</topic><topic>Medical treatment</topic><topic>Minor histocompatibility antigens</topic><topic>Molecular Imaging</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Resonance</topic><topic>stem cell</topic><topic>Stem Cell Transplantation</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Surgical implants</topic><topic>Tracking</topic><topic>Transplants</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nejadnik, Hossein</creatorcontrib><creatorcontrib>Tseng, Jessica</creatorcontrib><creatorcontrib>Daldrup‐Link, Heike</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nejadnik, Hossein</au><au>Tseng, Jessica</au><au>Daldrup‐Link, Heike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic resonance imaging of stem cell–macrophage interactions with ferumoxytol and ferumoxytol‐derived nanoparticles</atitle><jtitle>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</jtitle><addtitle>Wiley Interdiscip Rev Nanomed Nanobiotechnol</addtitle><date>2019-07</date><risdate>2019</risdate><volume>11</volume><issue>4</issue><spage>e1552</spage><epage>n/a</epage><pages>e1552-n/a</pages><issn>1939-5116</issn><eissn>1939-0041</eissn><abstract>“Off the shelf” allogeneic stem cell transplants and stem cell nano‐composites are being used for the treatment of degenerative bone diseases. However, major and minor histocompatibility antigens of therapeutic cell transplants can be recognized as foreign and lead to their rejection by the host immune system. If a host immune response is identified within the first week post‐transplant, immune modulating therapies could be applied to prevent graft failure and support engraftment. Ferumoxytol (Feraheme™) is an FDA approved iron oxide nanoparticle preparation for the treatment of anemia in patients. Ferumoxytol can be used “off label” as an magnetic resonance (MR) contrast agent, as these nanoparticles provide measurable signal changes on magnetic resonance imaging (MRI). In this focused review article, we will discuss three methods to localize and identify innate immune responses to stem cell transplants using ferumoxytol‐enhanced MRI, which are based on tracking stem cells, tracking macrophages or detecting mediators of cell death: (a) monitor MRI signal changes of ferumoxytol‐labeled stem cells in the presence or absence of innate immune responses, (b) monitor influx of ferumoxytol‐labeled macrophages into stem cell implants, and (c) monitor apoptosis of stem cell implants with caspase‐3 activatable nanoparticles. These techniques can detect transplant failure at an early stage, when immune‐modulating interventions can potentially preserve the viability of the cell transplants and thereby improve bone and cartilage repair outcomes. Approaches 1 and 2 are immediately translatable to clinical practice. This article is categorized under: Diagnostic Tools &gt; in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology &gt; Cells at the Nanoscale Diagnostic Tools &gt; Biosensing Concept of in vivo and ex vivo stem cell labeling, and value of MR tracking of labeled cells in arthritic joints: (a) ex vivo labelling and (b) in vivo labeling of stem cells before implantation. (c) A failed engraftment of therapeutic cells can be diagnosed 1–2 weeks after the cell transplant based on loss of iron signal at the transplant site (red circle).</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30734542</pmid><doi>10.1002/wnan.1552</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-5116
ispartof Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2019-07, Vol.11 (4), p.e1552-n/a
issn 1939-5116
1939-0041
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6579657
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Anemia
Antigens
Apoptosis
Biosensors
Bone diseases
Cartilage
Caspase
Cell death
Contrast agents
Contrast Media - chemistry
Contrast Media - therapeutic use
Diagnostic software
Diagnostic systems
Ferrosoferric Oxide - chemistry
Ferrosoferric Oxide - therapeutic use
Ferumoxytol
Graft rejection
Grafts
Histocompatibility
Humans
Identification methods
Immune response
Immune system
Innate immunity
Iron oxides
macrophage
Macrophages
Macrophages - cytology
Macrophages - metabolism
Magnetic Resonance Imaging
Magnetite Nanoparticles - chemistry
Magnetite Nanoparticles - therapeutic use
Medical imaging
Medical treatment
Minor histocompatibility antigens
Molecular Imaging
Nanoparticles
Nanotechnology
NMR
Nuclear magnetic resonance
Resonance
stem cell
Stem Cell Transplantation
Stem cells
Stem Cells - cytology
Stem Cells - metabolism
Surgical implants
Tracking
Transplants
Transplants & implants
title Magnetic resonance imaging of stem cell–macrophage interactions with ferumoxytol and ferumoxytol‐derived nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20resonance%20imaging%20of%20stem%20cell%E2%80%93macrophage%20interactions%20with%20ferumoxytol%20and%20ferumoxytol%E2%80%90derived%20nanoparticles&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Nanomedicine%20and%20nanobiotechnology&rft.au=Nejadnik,%20Hossein&rft.date=2019-07&rft.volume=11&rft.issue=4&rft.spage=e1552&rft.epage=n/a&rft.pages=e1552-n/a&rft.issn=1939-5116&rft.eissn=1939-0041&rft_id=info:doi/10.1002/wnan.1552&rft_dat=%3Cproquest_pubme%3E2241516290%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2241516290&rft_id=info:pmid/30734542&rfr_iscdi=true