Corticospinal control during reach, grasp, and precision lift in man

Transcranial magnetic brain stimulation (TMS) was used to assess the influence of the corticospinal system on motor output in seven human subjects during a task in which they had to reach out, grasp, and lift an object. Stimuli, directed at the hand area of the motor cortex, were delivered at eight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 1995-09, Vol.15 (9), p.6145-6156
Hauptverfasser: Lemon, RN, Johansson, RS, Westling, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6156
container_issue 9
container_start_page 6145
container_title The Journal of neuroscience
container_volume 15
creator Lemon, RN
Johansson, RS
Westling, G
description Transcranial magnetic brain stimulation (TMS) was used to assess the influence of the corticospinal system on motor output in seven human subjects during a task in which they had to reach out, grasp, and lift an object. Stimuli, directed at the hand area of the motor cortex, were delivered at eight defined points during the task: during reach, at grip closure, during object manipulation, during the parallel isometric increase in grip and load forces, during the lifting movement, and while the object was held in air. The amplitudes of short-latency EMG responses evoked by TMS in six arm and hand muscles showed a striking modulation across the different phases of the task. This modulation may well reflect phasic changes in corticospinal excitability because: (1) it did not simply reflect phasic changes in muscular activity associated with task performance, (2) it could vary inversely with the amplitude of the background EMG, and (3) it was only obtained with weak TMS intensities, below threshold for evoking responses in hand muscles of the relaxed subject. Our results suggest that the cortical representations of extrinsic hand muscles, which act to orientate the hand and finger tips, were subjected to a strong excitatory drive throughout the reach. This drive was also observed for brachioradialis and anterior deltoid, which contribute to transport of the hand. In contrast, the intrinsic hand muscles appear to receive their strongest cortical input as the digits closed around the object, and just after the subject first touched the object at the onset of manipulation. The isometric parallel increase in load and grip forces necessary to lift the object, which is normally triggered by tactile contact, was delayed by TMS delivered late during the reach. TMS at this time may disrupt processing necessary to control this critical phase of the task.
doi_str_mv 10.1523/jneurosci.15-09-06145.1995
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6577682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77494053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-5fa8f922f558f96c963e24abe8082a515286d8fdbd34a79d263e554f1e4b86ca3</originalsourceid><addsrcrecordid>eNqFkd1LHDEUxYNY7Gr9E4TQB58cm2TyMelDQbbWD6RCq88hm8nsRjLJmMx08b9vVhdtn3y6HO7vHs7lAPAZo1PMSP3lIdgpxWxckRWSFeKYslMsJdsBs0LIilCEd8EMEYEqTgX9CPZzfkAICYTFHtgTnHMsxQx8n8c0OhPz4IL20MQwpuhhOyUXljBZbVYncJl0Hk6gDi0ckjUuuxigd90IXYC9Dp_Ah077bA-38wDc_zi_m19WN7cXV_Ozm8pwxMeKdbrpJCEdY2VyI3ltCdUL26CGaFaCN7xtunbR1lQL2ZKyZ4x22NJFw42uD8C3F99hWvS2NbaE1V4NyfU6Pamonfp_E9xKLeMfxZkQvCHF4HhrkOLjZPOoepeN9V4HG6eshKCSIla_C2IuZU1rXMCvL6ApheRku9c0GKlNWer65_n9r9vf86siFZLquSy1KascH_37z-vptp23FCu3XK1dsir32vtCY7Ver4ufVBu3-i-SeaD_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16993431</pqid></control><display><type>article</type><title>Corticospinal control during reach, grasp, and precision lift in man</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lemon, RN ; Johansson, RS ; Westling, G</creator><creatorcontrib>Lemon, RN ; Johansson, RS ; Westling, G</creatorcontrib><description>Transcranial magnetic brain stimulation (TMS) was used to assess the influence of the corticospinal system on motor output in seven human subjects during a task in which they had to reach out, grasp, and lift an object. Stimuli, directed at the hand area of the motor cortex, were delivered at eight defined points during the task: during reach, at grip closure, during object manipulation, during the parallel isometric increase in grip and load forces, during the lifting movement, and while the object was held in air. The amplitudes of short-latency EMG responses evoked by TMS in six arm and hand muscles showed a striking modulation across the different phases of the task. This modulation may well reflect phasic changes in corticospinal excitability because: (1) it did not simply reflect phasic changes in muscular activity associated with task performance, (2) it could vary inversely with the amplitude of the background EMG, and (3) it was only obtained with weak TMS intensities, below threshold for evoking responses in hand muscles of the relaxed subject. Our results suggest that the cortical representations of extrinsic hand muscles, which act to orientate the hand and finger tips, were subjected to a strong excitatory drive throughout the reach. This drive was also observed for brachioradialis and anterior deltoid, which contribute to transport of the hand. In contrast, the intrinsic hand muscles appear to receive their strongest cortical input as the digits closed around the object, and just after the subject first touched the object at the onset of manipulation. The isometric parallel increase in load and grip forces necessary to lift the object, which is normally triggered by tactile contact, was delayed by TMS delivered late during the reach. TMS at this time may disrupt processing necessary to control this critical phase of the task.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.15-09-06145.1995</identifier><identifier>PMID: 7666197</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Adult ; Arm - physiology ; Electric Stimulation - methods ; Electromyography ; Female ; Hand - physiology ; Hand Strength - physiology ; Humans ; Lifting ; Magnetics ; Male ; Motor Activity - physiology ; Pyramidal Tracts - physiology ; Space life sciences</subject><ispartof>The Journal of neuroscience, 1995-09, Vol.15 (9), p.6145-6156</ispartof><rights>1995 by Society for Neuroscience 1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-5fa8f922f558f96c963e24abe8082a515286d8fdbd34a79d263e554f1e4b86ca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6577682/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6577682/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7666197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lemon, RN</creatorcontrib><creatorcontrib>Johansson, RS</creatorcontrib><creatorcontrib>Westling, G</creatorcontrib><title>Corticospinal control during reach, grasp, and precision lift in man</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Transcranial magnetic brain stimulation (TMS) was used to assess the influence of the corticospinal system on motor output in seven human subjects during a task in which they had to reach out, grasp, and lift an object. Stimuli, directed at the hand area of the motor cortex, were delivered at eight defined points during the task: during reach, at grip closure, during object manipulation, during the parallel isometric increase in grip and load forces, during the lifting movement, and while the object was held in air. The amplitudes of short-latency EMG responses evoked by TMS in six arm and hand muscles showed a striking modulation across the different phases of the task. This modulation may well reflect phasic changes in corticospinal excitability because: (1) it did not simply reflect phasic changes in muscular activity associated with task performance, (2) it could vary inversely with the amplitude of the background EMG, and (3) it was only obtained with weak TMS intensities, below threshold for evoking responses in hand muscles of the relaxed subject. Our results suggest that the cortical representations of extrinsic hand muscles, which act to orientate the hand and finger tips, were subjected to a strong excitatory drive throughout the reach. This drive was also observed for brachioradialis and anterior deltoid, which contribute to transport of the hand. In contrast, the intrinsic hand muscles appear to receive their strongest cortical input as the digits closed around the object, and just after the subject first touched the object at the onset of manipulation. The isometric parallel increase in load and grip forces necessary to lift the object, which is normally triggered by tactile contact, was delayed by TMS delivered late during the reach. TMS at this time may disrupt processing necessary to control this critical phase of the task.</description><subject>Adult</subject><subject>Arm - physiology</subject><subject>Electric Stimulation - methods</subject><subject>Electromyography</subject><subject>Female</subject><subject>Hand - physiology</subject><subject>Hand Strength - physiology</subject><subject>Humans</subject><subject>Lifting</subject><subject>Magnetics</subject><subject>Male</subject><subject>Motor Activity - physiology</subject><subject>Pyramidal Tracts - physiology</subject><subject>Space life sciences</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1LHDEUxYNY7Gr9E4TQB58cm2TyMelDQbbWD6RCq88hm8nsRjLJmMx08b9vVhdtn3y6HO7vHs7lAPAZo1PMSP3lIdgpxWxckRWSFeKYslMsJdsBs0LIilCEd8EMEYEqTgX9CPZzfkAICYTFHtgTnHMsxQx8n8c0OhPz4IL20MQwpuhhOyUXljBZbVYncJl0Hk6gDi0ckjUuuxigd90IXYC9Dp_Ah077bA-38wDc_zi_m19WN7cXV_Ozm8pwxMeKdbrpJCEdY2VyI3ltCdUL26CGaFaCN7xtunbR1lQL2ZKyZ4x22NJFw42uD8C3F99hWvS2NbaE1V4NyfU6Pamonfp_E9xKLeMfxZkQvCHF4HhrkOLjZPOoepeN9V4HG6eshKCSIla_C2IuZU1rXMCvL6ApheRku9c0GKlNWer65_n9r9vf86siFZLquSy1KascH_37z-vptp23FCu3XK1dsir32vtCY7Ver4ufVBu3-i-SeaD_</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>Lemon, RN</creator><creator>Johansson, RS</creator><creator>Westling, G</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19950901</creationdate><title>Corticospinal control during reach, grasp, and precision lift in man</title><author>Lemon, RN ; Johansson, RS ; Westling, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-5fa8f922f558f96c963e24abe8082a515286d8fdbd34a79d263e554f1e4b86ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Adult</topic><topic>Arm - physiology</topic><topic>Electric Stimulation - methods</topic><topic>Electromyography</topic><topic>Female</topic><topic>Hand - physiology</topic><topic>Hand Strength - physiology</topic><topic>Humans</topic><topic>Lifting</topic><topic>Magnetics</topic><topic>Male</topic><topic>Motor Activity - physiology</topic><topic>Pyramidal Tracts - physiology</topic><topic>Space life sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemon, RN</creatorcontrib><creatorcontrib>Johansson, RS</creatorcontrib><creatorcontrib>Westling, G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemon, RN</au><au>Johansson, RS</au><au>Westling, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corticospinal control during reach, grasp, and precision lift in man</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>1995-09-01</date><risdate>1995</risdate><volume>15</volume><issue>9</issue><spage>6145</spage><epage>6156</epage><pages>6145-6156</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Transcranial magnetic brain stimulation (TMS) was used to assess the influence of the corticospinal system on motor output in seven human subjects during a task in which they had to reach out, grasp, and lift an object. Stimuli, directed at the hand area of the motor cortex, were delivered at eight defined points during the task: during reach, at grip closure, during object manipulation, during the parallel isometric increase in grip and load forces, during the lifting movement, and while the object was held in air. The amplitudes of short-latency EMG responses evoked by TMS in six arm and hand muscles showed a striking modulation across the different phases of the task. This modulation may well reflect phasic changes in corticospinal excitability because: (1) it did not simply reflect phasic changes in muscular activity associated with task performance, (2) it could vary inversely with the amplitude of the background EMG, and (3) it was only obtained with weak TMS intensities, below threshold for evoking responses in hand muscles of the relaxed subject. Our results suggest that the cortical representations of extrinsic hand muscles, which act to orientate the hand and finger tips, were subjected to a strong excitatory drive throughout the reach. This drive was also observed for brachioradialis and anterior deltoid, which contribute to transport of the hand. In contrast, the intrinsic hand muscles appear to receive their strongest cortical input as the digits closed around the object, and just after the subject first touched the object at the onset of manipulation. The isometric parallel increase in load and grip forces necessary to lift the object, which is normally triggered by tactile contact, was delayed by TMS delivered late during the reach. TMS at this time may disrupt processing necessary to control this critical phase of the task.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>7666197</pmid><doi>10.1523/jneurosci.15-09-06145.1995</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 1995-09, Vol.15 (9), p.6145-6156
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6577682
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adult
Arm - physiology
Electric Stimulation - methods
Electromyography
Female
Hand - physiology
Hand Strength - physiology
Humans
Lifting
Magnetics
Male
Motor Activity - physiology
Pyramidal Tracts - physiology
Space life sciences
title Corticospinal control during reach, grasp, and precision lift in man
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corticospinal%20control%20during%20reach,%20grasp,%20and%20precision%20lift%20in%20man&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Lemon,%20RN&rft.date=1995-09-01&rft.volume=15&rft.issue=9&rft.spage=6145&rft.epage=6156&rft.pages=6145-6156&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.15-09-06145.1995&rft_dat=%3Cproquest_pubme%3E77494053%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16993431&rft_id=info:pmid/7666197&rfr_iscdi=true