Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system

In the stomatogastric nervous system (STNS) of the lobster Homarus gammarus, the rhythmic discharge of a pair of identified modulatory neurons (PS cells) is able to construct de novo a functional network from neurons otherwise belonging to other functional networks. The PS interneurons are electrica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 1994-02, Vol.14 (2), p.630-644
Hauptverfasser: Meyrand, P, Simmers, J, Moulins, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 644
container_issue 2
container_start_page 630
container_title The Journal of neuroscience
container_volume 14
creator Meyrand, P
Simmers, J
Moulins, M
description In the stomatogastric nervous system (STNS) of the lobster Homarus gammarus, the rhythmic discharge of a pair of identified modulatory neurons (PS cells) is able to construct de novo a functional network from neurons otherwise belonging to other functional networks. The PS interneurons are electrically coupled and possess endogenous oscillatory properties that can be activated synaptically by stimulation of an identified sensory pathway. PS neurons themselves project synaptically onto the three major neural networks (esophageal, gastric mill, and pyloric) of the STNS. When a PS is rhythmically active in vitro, either spontaneously (rarely) or in response to direct stimulation, it dramatically restructures the otherwise independent activity patterns of all three target networks. This functional reconfiguration elicited by a single cell does not rely on changes in neuronal allegiance to pre-existing circuits, or on a simple merger of these different circuits. Rather, PS is responsible for the creation of an entirely new motor rhythm in that, via its widespread synaptic connections, the interneuron is able to subjugate the ongoing activity of the three STNS circuits and selectively appropriate individual elements to its own intrinsic rhythm. In addition, PS excites motor neurons that innervate dilator muscles of a valve situated between the esophagus and the stomach. The reorganization of the regional foregut motor rhythms by the interneuron is therefore coordinated to the opening of this valve, which itself carries sensory receptors that have been found to activate bursting in PS. Our data suggest that the role of PS in massively restructuring stomatogastric output is to generate a unique motor pattern appropriate for swallowing-like behavior. In a wider context, moreover, the results demonstrate that a neural network may not exist as a predefined entity within the CNS, but may be dynamically assembled according to changing behavioral circumstances.
doi_str_mv 10.1523/jneurosci.14-02-00630.1994
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6576824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76352000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-9ae01a1c88231aa2ad9c16e09116b094a2c7603eb269cf454aa28104348a0ad43</originalsourceid><addsrcrecordid>eNpVkUFvEzEQhVcIVNLCT0CyEPS2xfY69ppDJRQKFFVUAnq2Jo43cdm1g-1NlH_PhEQRnObwvnnP41dVrxm9YlPevHsMbkwxW3_FRE15TalsUNJaPKkmSOiaC8qeVhPKFa2lUOJ5dZ7zI6VUUabOqjM1pUq3fFJtPu4CDN4SG0MuabTFx0BiR4DsQ6DHUbYx_SJdigMZxr74de_IGkpxKZClCy5BiSkTH0hZOdLHeUaJ5BIHFJaAtuiP2CaOmeQdqsOL6lkHfXYvj_Oievh083P2pb67_3w7-3BXW9HSUmtwlAGzbcsbBsBhoS2TjmrG5JxqAdwqSRs351LbTkwFMi2johEtUFiI5qK6Pviux_ngFtaFgjeZdfIDpJ2J4M3_SvArs4wbI6dKtnxvcHk0SPH36HIxg8_W9T0Eh-cYJZspx39F8P0BtNhMTq47hTBq9q2Zr99uHr7f_5jdGiYM5eZva2bfGi6_-veZp9VjTai_OeqQLfRdgmB9PmGNllIpjdjbA7byy9XWJ2fyAH2Ppsxst1uM5QYzmz90JLO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76352000</pqid></control><display><type>article</type><title>Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Meyrand, P ; Simmers, J ; Moulins, M</creator><creatorcontrib>Meyrand, P ; Simmers, J ; Moulins, M</creatorcontrib><description>In the stomatogastric nervous system (STNS) of the lobster Homarus gammarus, the rhythmic discharge of a pair of identified modulatory neurons (PS cells) is able to construct de novo a functional network from neurons otherwise belonging to other functional networks. The PS interneurons are electrically coupled and possess endogenous oscillatory properties that can be activated synaptically by stimulation of an identified sensory pathway. PS neurons themselves project synaptically onto the three major neural networks (esophageal, gastric mill, and pyloric) of the STNS. When a PS is rhythmically active in vitro, either spontaneously (rarely) or in response to direct stimulation, it dramatically restructures the otherwise independent activity patterns of all three target networks. This functional reconfiguration elicited by a single cell does not rely on changes in neuronal allegiance to pre-existing circuits, or on a simple merger of these different circuits. Rather, PS is responsible for the creation of an entirely new motor rhythm in that, via its widespread synaptic connections, the interneuron is able to subjugate the ongoing activity of the three STNS circuits and selectively appropriate individual elements to its own intrinsic rhythm. In addition, PS excites motor neurons that innervate dilator muscles of a valve situated between the esophagus and the stomach. The reorganization of the regional foregut motor rhythms by the interneuron is therefore coordinated to the opening of this valve, which itself carries sensory receptors that have been found to activate bursting in PS. Our data suggest that the role of PS in massively restructuring stomatogastric output is to generate a unique motor pattern appropriate for swallowing-like behavior. In a wider context, moreover, the results demonstrate that a neural network may not exist as a predefined entity within the CNS, but may be dynamically assembled according to changing behavioral circumstances.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.14-02-00630.1994</identifier><identifier>PMID: 7507982</identifier><identifier>CODEN: JNRSDS</identifier><language>eng</language><publisher>Washington, DC: Soc Neuroscience</publisher><subject>Animals ; Axonal Transport ; Axons - physiology ; Biochemistry. Physiology. Immunology ; Biological and medical sciences ; Crustacea ; Digestive System - innervation ; Electric Stimulation ; Fundamental and applied biological sciences. Psychology ; In Vitro Techniques ; Invertebrates ; Models, Neurological ; Motor Neurons - physiology ; Muscle, Smooth - innervation ; Nephropidae ; Nerve Net - physiology ; Nervous System - anatomy &amp; histology ; Nervous System Physiological Phenomena ; Neurons - physiology ; Neurons, Afferent - physiology ; Physiology. Development</subject><ispartof>The Journal of neuroscience, 1994-02, Vol.14 (2), p.630-644</ispartof><rights>1994 INIST-CNRS</rights><rights>1994 by Society for Neuroscience 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-9ae01a1c88231aa2ad9c16e09116b094a2c7603eb269cf454aa28104348a0ad43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6576824/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6576824/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3966779$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7507982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meyrand, P</creatorcontrib><creatorcontrib>Simmers, J</creatorcontrib><creatorcontrib>Moulins, M</creatorcontrib><title>Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>In the stomatogastric nervous system (STNS) of the lobster Homarus gammarus, the rhythmic discharge of a pair of identified modulatory neurons (PS cells) is able to construct de novo a functional network from neurons otherwise belonging to other functional networks. The PS interneurons are electrically coupled and possess endogenous oscillatory properties that can be activated synaptically by stimulation of an identified sensory pathway. PS neurons themselves project synaptically onto the three major neural networks (esophageal, gastric mill, and pyloric) of the STNS. When a PS is rhythmically active in vitro, either spontaneously (rarely) or in response to direct stimulation, it dramatically restructures the otherwise independent activity patterns of all three target networks. This functional reconfiguration elicited by a single cell does not rely on changes in neuronal allegiance to pre-existing circuits, or on a simple merger of these different circuits. Rather, PS is responsible for the creation of an entirely new motor rhythm in that, via its widespread synaptic connections, the interneuron is able to subjugate the ongoing activity of the three STNS circuits and selectively appropriate individual elements to its own intrinsic rhythm. In addition, PS excites motor neurons that innervate dilator muscles of a valve situated between the esophagus and the stomach. The reorganization of the regional foregut motor rhythms by the interneuron is therefore coordinated to the opening of this valve, which itself carries sensory receptors that have been found to activate bursting in PS. Our data suggest that the role of PS in massively restructuring stomatogastric output is to generate a unique motor pattern appropriate for swallowing-like behavior. In a wider context, moreover, the results demonstrate that a neural network may not exist as a predefined entity within the CNS, but may be dynamically assembled according to changing behavioral circumstances.</description><subject>Animals</subject><subject>Axonal Transport</subject><subject>Axons - physiology</subject><subject>Biochemistry. Physiology. Immunology</subject><subject>Biological and medical sciences</subject><subject>Crustacea</subject><subject>Digestive System - innervation</subject><subject>Electric Stimulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>In Vitro Techniques</subject><subject>Invertebrates</subject><subject>Models, Neurological</subject><subject>Motor Neurons - physiology</subject><subject>Muscle, Smooth - innervation</subject><subject>Nephropidae</subject><subject>Nerve Net - physiology</subject><subject>Nervous System - anatomy &amp; histology</subject><subject>Nervous System Physiological Phenomena</subject><subject>Neurons - physiology</subject><subject>Neurons, Afferent - physiology</subject><subject>Physiology. Development</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFvEzEQhVcIVNLCT0CyEPS2xfY69ppDJRQKFFVUAnq2Jo43cdm1g-1NlH_PhEQRnObwvnnP41dVrxm9YlPevHsMbkwxW3_FRE15TalsUNJaPKkmSOiaC8qeVhPKFa2lUOJ5dZ7zI6VUUabOqjM1pUq3fFJtPu4CDN4SG0MuabTFx0BiR4DsQ6DHUbYx_SJdigMZxr74de_IGkpxKZClCy5BiSkTH0hZOdLHeUaJ5BIHFJaAtuiP2CaOmeQdqsOL6lkHfXYvj_Oievh083P2pb67_3w7-3BXW9HSUmtwlAGzbcsbBsBhoS2TjmrG5JxqAdwqSRs351LbTkwFMi2johEtUFiI5qK6Pviux_ngFtaFgjeZdfIDpJ2J4M3_SvArs4wbI6dKtnxvcHk0SPH36HIxg8_W9T0Eh-cYJZspx39F8P0BtNhMTq47hTBq9q2Zr99uHr7f_5jdGiYM5eZva2bfGi6_-veZp9VjTai_OeqQLfRdgmB9PmGNllIpjdjbA7byy9XWJ2fyAH2Ppsxst1uM5QYzmz90JLO8</recordid><startdate>19940201</startdate><enddate>19940201</enddate><creator>Meyrand, P</creator><creator>Simmers, J</creator><creator>Moulins, M</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19940201</creationdate><title>Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system</title><author>Meyrand, P ; Simmers, J ; Moulins, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-9ae01a1c88231aa2ad9c16e09116b094a2c7603eb269cf454aa28104348a0ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>Axonal Transport</topic><topic>Axons - physiology</topic><topic>Biochemistry. Physiology. Immunology</topic><topic>Biological and medical sciences</topic><topic>Crustacea</topic><topic>Digestive System - innervation</topic><topic>Electric Stimulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>In Vitro Techniques</topic><topic>Invertebrates</topic><topic>Models, Neurological</topic><topic>Motor Neurons - physiology</topic><topic>Muscle, Smooth - innervation</topic><topic>Nephropidae</topic><topic>Nerve Net - physiology</topic><topic>Nervous System - anatomy &amp; histology</topic><topic>Nervous System Physiological Phenomena</topic><topic>Neurons - physiology</topic><topic>Neurons, Afferent - physiology</topic><topic>Physiology. Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyrand, P</creatorcontrib><creatorcontrib>Simmers, J</creatorcontrib><creatorcontrib>Moulins, M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyrand, P</au><au>Simmers, J</au><au>Moulins, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>1994-02-01</date><risdate>1994</risdate><volume>14</volume><issue>2</issue><spage>630</spage><epage>644</epage><pages>630-644</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><coden>JNRSDS</coden><abstract>In the stomatogastric nervous system (STNS) of the lobster Homarus gammarus, the rhythmic discharge of a pair of identified modulatory neurons (PS cells) is able to construct de novo a functional network from neurons otherwise belonging to other functional networks. The PS interneurons are electrically coupled and possess endogenous oscillatory properties that can be activated synaptically by stimulation of an identified sensory pathway. PS neurons themselves project synaptically onto the three major neural networks (esophageal, gastric mill, and pyloric) of the STNS. When a PS is rhythmically active in vitro, either spontaneously (rarely) or in response to direct stimulation, it dramatically restructures the otherwise independent activity patterns of all three target networks. This functional reconfiguration elicited by a single cell does not rely on changes in neuronal allegiance to pre-existing circuits, or on a simple merger of these different circuits. Rather, PS is responsible for the creation of an entirely new motor rhythm in that, via its widespread synaptic connections, the interneuron is able to subjugate the ongoing activity of the three STNS circuits and selectively appropriate individual elements to its own intrinsic rhythm. In addition, PS excites motor neurons that innervate dilator muscles of a valve situated between the esophagus and the stomach. The reorganization of the regional foregut motor rhythms by the interneuron is therefore coordinated to the opening of this valve, which itself carries sensory receptors that have been found to activate bursting in PS. Our data suggest that the role of PS in massively restructuring stomatogastric output is to generate a unique motor pattern appropriate for swallowing-like behavior. In a wider context, moreover, the results demonstrate that a neural network may not exist as a predefined entity within the CNS, but may be dynamically assembled according to changing behavioral circumstances.</abstract><cop>Washington, DC</cop><pub>Soc Neuroscience</pub><pmid>7507982</pmid><doi>10.1523/jneurosci.14-02-00630.1994</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 1994-02, Vol.14 (2), p.630-644
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6576824
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Axonal Transport
Axons - physiology
Biochemistry. Physiology. Immunology
Biological and medical sciences
Crustacea
Digestive System - innervation
Electric Stimulation
Fundamental and applied biological sciences. Psychology
In Vitro Techniques
Invertebrates
Models, Neurological
Motor Neurons - physiology
Muscle, Smooth - innervation
Nephropidae
Nerve Net - physiology
Nervous System - anatomy & histology
Nervous System Physiological Phenomena
Neurons - physiology
Neurons, Afferent - physiology
Physiology. Development
title Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20construction%20of%20a%20neural%20network%20from%20multiple%20pattern%20generators%20in%20the%20lobster%20stomatogastric%20nervous%20system&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Meyrand,%20P&rft.date=1994-02-01&rft.volume=14&rft.issue=2&rft.spage=630&rft.epage=644&rft.pages=630-644&rft.issn=0270-6474&rft.eissn=1529-2401&rft.coden=JNRSDS&rft_id=info:doi/10.1523/jneurosci.14-02-00630.1994&rft_dat=%3Cproquest_pubme%3E76352000%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76352000&rft_id=info:pmid/7507982&rfr_iscdi=true