Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system
In the stomatogastric nervous system (STNS) of the lobster Homarus gammarus, the rhythmic discharge of a pair of identified modulatory neurons (PS cells) is able to construct de novo a functional network from neurons otherwise belonging to other functional networks. The PS interneurons are electrica...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 1994-02, Vol.14 (2), p.630-644 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 644 |
---|---|
container_issue | 2 |
container_start_page | 630 |
container_title | The Journal of neuroscience |
container_volume | 14 |
creator | Meyrand, P Simmers, J Moulins, M |
description | In the stomatogastric nervous system (STNS) of the lobster Homarus gammarus, the rhythmic discharge of a pair of identified modulatory neurons (PS cells) is able to construct de novo a functional network from neurons otherwise belonging to other functional networks. The PS interneurons are electrically coupled and possess endogenous oscillatory properties that can be activated synaptically by stimulation of an identified sensory pathway. PS neurons themselves project synaptically onto the three major neural networks (esophageal, gastric mill, and pyloric) of the STNS. When a PS is rhythmically active in vitro, either spontaneously (rarely) or in response to direct stimulation, it dramatically restructures the otherwise independent activity patterns of all three target networks. This functional reconfiguration elicited by a single cell does not rely on changes in neuronal allegiance to pre-existing circuits, or on a simple merger of these different circuits. Rather, PS is responsible for the creation of an entirely new motor rhythm in that, via its widespread synaptic connections, the interneuron is able to subjugate the ongoing activity of the three STNS circuits and selectively appropriate individual elements to its own intrinsic rhythm. In addition, PS excites motor neurons that innervate dilator muscles of a valve situated between the esophagus and the stomach. The reorganization of the regional foregut motor rhythms by the interneuron is therefore coordinated to the opening of this valve, which itself carries sensory receptors that have been found to activate bursting in PS. Our data suggest that the role of PS in massively restructuring stomatogastric output is to generate a unique motor pattern appropriate for swallowing-like behavior. In a wider context, moreover, the results demonstrate that a neural network may not exist as a predefined entity within the CNS, but may be dynamically assembled according to changing behavioral circumstances. |
doi_str_mv | 10.1523/jneurosci.14-02-00630.1994 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6576824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76352000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-9ae01a1c88231aa2ad9c16e09116b094a2c7603eb269cf454aa28104348a0ad43</originalsourceid><addsrcrecordid>eNpVkUFvEzEQhVcIVNLCT0CyEPS2xfY69ppDJRQKFFVUAnq2Jo43cdm1g-1NlH_PhEQRnObwvnnP41dVrxm9YlPevHsMbkwxW3_FRE15TalsUNJaPKkmSOiaC8qeVhPKFa2lUOJ5dZ7zI6VUUabOqjM1pUq3fFJtPu4CDN4SG0MuabTFx0BiR4DsQ6DHUbYx_SJdigMZxr74de_IGkpxKZClCy5BiSkTH0hZOdLHeUaJ5BIHFJaAtuiP2CaOmeQdqsOL6lkHfXYvj_Oievh083P2pb67_3w7-3BXW9HSUmtwlAGzbcsbBsBhoS2TjmrG5JxqAdwqSRs351LbTkwFMi2johEtUFiI5qK6Pviux_ngFtaFgjeZdfIDpJ2J4M3_SvArs4wbI6dKtnxvcHk0SPH36HIxg8_W9T0Eh-cYJZspx39F8P0BtNhMTq47hTBq9q2Zr99uHr7f_5jdGiYM5eZva2bfGi6_-veZp9VjTai_OeqQLfRdgmB9PmGNllIpjdjbA7byy9XWJ2fyAH2Ppsxst1uM5QYzmz90JLO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76352000</pqid></control><display><type>article</type><title>Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Meyrand, P ; Simmers, J ; Moulins, M</creator><creatorcontrib>Meyrand, P ; Simmers, J ; Moulins, M</creatorcontrib><description>In the stomatogastric nervous system (STNS) of the lobster Homarus gammarus, the rhythmic discharge of a pair of identified modulatory neurons (PS cells) is able to construct de novo a functional network from neurons otherwise belonging to other functional networks. The PS interneurons are electrically coupled and possess endogenous oscillatory properties that can be activated synaptically by stimulation of an identified sensory pathway. PS neurons themselves project synaptically onto the three major neural networks (esophageal, gastric mill, and pyloric) of the STNS. When a PS is rhythmically active in vitro, either spontaneously (rarely) or in response to direct stimulation, it dramatically restructures the otherwise independent activity patterns of all three target networks. This functional reconfiguration elicited by a single cell does not rely on changes in neuronal allegiance to pre-existing circuits, or on a simple merger of these different circuits. Rather, PS is responsible for the creation of an entirely new motor rhythm in that, via its widespread synaptic connections, the interneuron is able to subjugate the ongoing activity of the three STNS circuits and selectively appropriate individual elements to its own intrinsic rhythm. In addition, PS excites motor neurons that innervate dilator muscles of a valve situated between the esophagus and the stomach. The reorganization of the regional foregut motor rhythms by the interneuron is therefore coordinated to the opening of this valve, which itself carries sensory receptors that have been found to activate bursting in PS. Our data suggest that the role of PS in massively restructuring stomatogastric output is to generate a unique motor pattern appropriate for swallowing-like behavior. In a wider context, moreover, the results demonstrate that a neural network may not exist as a predefined entity within the CNS, but may be dynamically assembled according to changing behavioral circumstances.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.14-02-00630.1994</identifier><identifier>PMID: 7507982</identifier><identifier>CODEN: JNRSDS</identifier><language>eng</language><publisher>Washington, DC: Soc Neuroscience</publisher><subject>Animals ; Axonal Transport ; Axons - physiology ; Biochemistry. Physiology. Immunology ; Biological and medical sciences ; Crustacea ; Digestive System - innervation ; Electric Stimulation ; Fundamental and applied biological sciences. Psychology ; In Vitro Techniques ; Invertebrates ; Models, Neurological ; Motor Neurons - physiology ; Muscle, Smooth - innervation ; Nephropidae ; Nerve Net - physiology ; Nervous System - anatomy & histology ; Nervous System Physiological Phenomena ; Neurons - physiology ; Neurons, Afferent - physiology ; Physiology. Development</subject><ispartof>The Journal of neuroscience, 1994-02, Vol.14 (2), p.630-644</ispartof><rights>1994 INIST-CNRS</rights><rights>1994 by Society for Neuroscience 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-9ae01a1c88231aa2ad9c16e09116b094a2c7603eb269cf454aa28104348a0ad43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6576824/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6576824/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3966779$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7507982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meyrand, P</creatorcontrib><creatorcontrib>Simmers, J</creatorcontrib><creatorcontrib>Moulins, M</creatorcontrib><title>Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>In the stomatogastric nervous system (STNS) of the lobster Homarus gammarus, the rhythmic discharge of a pair of identified modulatory neurons (PS cells) is able to construct de novo a functional network from neurons otherwise belonging to other functional networks. The PS interneurons are electrically coupled and possess endogenous oscillatory properties that can be activated synaptically by stimulation of an identified sensory pathway. PS neurons themselves project synaptically onto the three major neural networks (esophageal, gastric mill, and pyloric) of the STNS. When a PS is rhythmically active in vitro, either spontaneously (rarely) or in response to direct stimulation, it dramatically restructures the otherwise independent activity patterns of all three target networks. This functional reconfiguration elicited by a single cell does not rely on changes in neuronal allegiance to pre-existing circuits, or on a simple merger of these different circuits. Rather, PS is responsible for the creation of an entirely new motor rhythm in that, via its widespread synaptic connections, the interneuron is able to subjugate the ongoing activity of the three STNS circuits and selectively appropriate individual elements to its own intrinsic rhythm. In addition, PS excites motor neurons that innervate dilator muscles of a valve situated between the esophagus and the stomach. The reorganization of the regional foregut motor rhythms by the interneuron is therefore coordinated to the opening of this valve, which itself carries sensory receptors that have been found to activate bursting in PS. Our data suggest that the role of PS in massively restructuring stomatogastric output is to generate a unique motor pattern appropriate for swallowing-like behavior. In a wider context, moreover, the results demonstrate that a neural network may not exist as a predefined entity within the CNS, but may be dynamically assembled according to changing behavioral circumstances.</description><subject>Animals</subject><subject>Axonal Transport</subject><subject>Axons - physiology</subject><subject>Biochemistry. Physiology. Immunology</subject><subject>Biological and medical sciences</subject><subject>Crustacea</subject><subject>Digestive System - innervation</subject><subject>Electric Stimulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>In Vitro Techniques</subject><subject>Invertebrates</subject><subject>Models, Neurological</subject><subject>Motor Neurons - physiology</subject><subject>Muscle, Smooth - innervation</subject><subject>Nephropidae</subject><subject>Nerve Net - physiology</subject><subject>Nervous System - anatomy & histology</subject><subject>Nervous System Physiological Phenomena</subject><subject>Neurons - physiology</subject><subject>Neurons, Afferent - physiology</subject><subject>Physiology. Development</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFvEzEQhVcIVNLCT0CyEPS2xfY69ppDJRQKFFVUAnq2Jo43cdm1g-1NlH_PhEQRnObwvnnP41dVrxm9YlPevHsMbkwxW3_FRE15TalsUNJaPKkmSOiaC8qeVhPKFa2lUOJ5dZ7zI6VUUabOqjM1pUq3fFJtPu4CDN4SG0MuabTFx0BiR4DsQ6DHUbYx_SJdigMZxr74de_IGkpxKZClCy5BiSkTH0hZOdLHeUaJ5BIHFJaAtuiP2CaOmeQdqsOL6lkHfXYvj_Oievh083P2pb67_3w7-3BXW9HSUmtwlAGzbcsbBsBhoS2TjmrG5JxqAdwqSRs351LbTkwFMi2johEtUFiI5qK6Pviux_ngFtaFgjeZdfIDpJ2J4M3_SvArs4wbI6dKtnxvcHk0SPH36HIxg8_W9T0Eh-cYJZspx39F8P0BtNhMTq47hTBq9q2Zr99uHr7f_5jdGiYM5eZva2bfGi6_-veZp9VjTai_OeqQLfRdgmB9PmGNllIpjdjbA7byy9XWJ2fyAH2Ppsxst1uM5QYzmz90JLO8</recordid><startdate>19940201</startdate><enddate>19940201</enddate><creator>Meyrand, P</creator><creator>Simmers, J</creator><creator>Moulins, M</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19940201</creationdate><title>Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system</title><author>Meyrand, P ; Simmers, J ; Moulins, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-9ae01a1c88231aa2ad9c16e09116b094a2c7603eb269cf454aa28104348a0ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>Axonal Transport</topic><topic>Axons - physiology</topic><topic>Biochemistry. Physiology. Immunology</topic><topic>Biological and medical sciences</topic><topic>Crustacea</topic><topic>Digestive System - innervation</topic><topic>Electric Stimulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>In Vitro Techniques</topic><topic>Invertebrates</topic><topic>Models, Neurological</topic><topic>Motor Neurons - physiology</topic><topic>Muscle, Smooth - innervation</topic><topic>Nephropidae</topic><topic>Nerve Net - physiology</topic><topic>Nervous System - anatomy & histology</topic><topic>Nervous System Physiological Phenomena</topic><topic>Neurons - physiology</topic><topic>Neurons, Afferent - physiology</topic><topic>Physiology. Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyrand, P</creatorcontrib><creatorcontrib>Simmers, J</creatorcontrib><creatorcontrib>Moulins, M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyrand, P</au><au>Simmers, J</au><au>Moulins, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>1994-02-01</date><risdate>1994</risdate><volume>14</volume><issue>2</issue><spage>630</spage><epage>644</epage><pages>630-644</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><coden>JNRSDS</coden><abstract>In the stomatogastric nervous system (STNS) of the lobster Homarus gammarus, the rhythmic discharge of a pair of identified modulatory neurons (PS cells) is able to construct de novo a functional network from neurons otherwise belonging to other functional networks. The PS interneurons are electrically coupled and possess endogenous oscillatory properties that can be activated synaptically by stimulation of an identified sensory pathway. PS neurons themselves project synaptically onto the three major neural networks (esophageal, gastric mill, and pyloric) of the STNS. When a PS is rhythmically active in vitro, either spontaneously (rarely) or in response to direct stimulation, it dramatically restructures the otherwise independent activity patterns of all three target networks. This functional reconfiguration elicited by a single cell does not rely on changes in neuronal allegiance to pre-existing circuits, or on a simple merger of these different circuits. Rather, PS is responsible for the creation of an entirely new motor rhythm in that, via its widespread synaptic connections, the interneuron is able to subjugate the ongoing activity of the three STNS circuits and selectively appropriate individual elements to its own intrinsic rhythm. In addition, PS excites motor neurons that innervate dilator muscles of a valve situated between the esophagus and the stomach. The reorganization of the regional foregut motor rhythms by the interneuron is therefore coordinated to the opening of this valve, which itself carries sensory receptors that have been found to activate bursting in PS. Our data suggest that the role of PS in massively restructuring stomatogastric output is to generate a unique motor pattern appropriate for swallowing-like behavior. In a wider context, moreover, the results demonstrate that a neural network may not exist as a predefined entity within the CNS, but may be dynamically assembled according to changing behavioral circumstances.</abstract><cop>Washington, DC</cop><pub>Soc Neuroscience</pub><pmid>7507982</pmid><doi>10.1523/jneurosci.14-02-00630.1994</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 1994-02, Vol.14 (2), p.630-644 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6576824 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Axonal Transport Axons - physiology Biochemistry. Physiology. Immunology Biological and medical sciences Crustacea Digestive System - innervation Electric Stimulation Fundamental and applied biological sciences. Psychology In Vitro Techniques Invertebrates Models, Neurological Motor Neurons - physiology Muscle, Smooth - innervation Nephropidae Nerve Net - physiology Nervous System - anatomy & histology Nervous System Physiological Phenomena Neurons - physiology Neurons, Afferent - physiology Physiology. Development |
title | Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20construction%20of%20a%20neural%20network%20from%20multiple%20pattern%20generators%20in%20the%20lobster%20stomatogastric%20nervous%20system&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Meyrand,%20P&rft.date=1994-02-01&rft.volume=14&rft.issue=2&rft.spage=630&rft.epage=644&rft.pages=630-644&rft.issn=0270-6474&rft.eissn=1529-2401&rft.coden=JNRSDS&rft_id=info:doi/10.1523/jneurosci.14-02-00630.1994&rft_dat=%3Cproquest_pubme%3E76352000%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76352000&rft_id=info:pmid/7507982&rfr_iscdi=true |