Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores

Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-06, Vol.116 (24), p.11806-11811
Hauptverfasser: Lewis, Victor M., Saunders, Lauren M., Larson, Tracy A., Bain, Emily J., Sturiale, Samantha L., Gur, Dvir, Chowdhury, Sarwat, Flynn, Jessica D., Allen, Michael C., Deheyn, Dimitri D., Lee, Jennifer C., Simon, Julian A., Lippincott-Schwartz, Jennifer, Raible, David W., Parichy, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11811
container_issue 24
container_start_page 11806
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Lewis, Victor M.
Saunders, Lauren M.
Larson, Tracy A.
Bain, Emily J.
Sturiale, Samantha L.
Gur, Dvir
Chowdhury, Sarwat
Flynn, Jessica D.
Allen, Michael C.
Deheyn, Dimitri D.
Lee, Jennifer C.
Simon, Julian A.
Lippincott-Schwartz, Jennifer
Raible, David W.
Parichy, David M.
description Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including the zebrafish Danio rerio, we identified two populations of white pigment cells—leucophores—one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow–orange xanthophore or xanthophorelike progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type–specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, andwe showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.
doi_str_mv 10.1073/pnas.1901021116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6575160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26743486</jstor_id><sourcerecordid>26743486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-6044e2c2a3dc03e7c697f04da8cab06a5b392a7fe12bfa5d58f18d2129dc881e3</originalsourceid><addsrcrecordid>eNpVkc1P3DAQxa2qVdlCz5yoLHEOjD_iOBekCkqLhNQLXLhYs46zeJW1g-0g7X9PVku37WkO7zdvnuYRcsrggkEjLseA-YK1wIAzxtQHsmDQskrJFj6SBQBvKi25PCJfcl4DQFtr-EyOBGNCN6AW5OkWi6PjgLl468uWYuhocmOKq4SbjQ8r6gNdueBmHYdhSzs_o8EWOsZxGrD4GDKNPb3B4CMd3GTj-ByTyyfkU49Ddl_f5zF5vP3xcP2ruv_98-76-31lpRSlUiCl45aj6CwI11jVNj3IDrXFJSisl6Ll2PSO8WWPdVfrnumOM952VmvmxDG52vuO03LjOutCSTiYMfkNpq2J6M3_SvDPZhVfjaqbmimYDc7fDVJ8mVwuZh2nFObMhnNZq5q3Ykdd7imbYs7J9YcLDMyuDLMrw_wtY9749m-wA__n-zNwtgfWucR00LlqpJBaiTf1yZJH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245652930</pqid></control><display><type>article</type><title>Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lewis, Victor M. ; Saunders, Lauren M. ; Larson, Tracy A. ; Bain, Emily J. ; Sturiale, Samantha L. ; Gur, Dvir ; Chowdhury, Sarwat ; Flynn, Jessica D. ; Allen, Michael C. ; Deheyn, Dimitri D. ; Lee, Jennifer C. ; Simon, Julian A. ; Lippincott-Schwartz, Jennifer ; Raible, David W. ; Parichy, David M.</creator><creatorcontrib>Lewis, Victor M. ; Saunders, Lauren M. ; Larson, Tracy A. ; Bain, Emily J. ; Sturiale, Samantha L. ; Gur, Dvir ; Chowdhury, Sarwat ; Flynn, Jessica D. ; Allen, Michael C. ; Deheyn, Dimitri D. ; Lee, Jennifer C. ; Simon, Julian A. ; Lippincott-Schwartz, Jennifer ; Raible, David W. ; Parichy, David M.</creatorcontrib><description>Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including the zebrafish Danio rerio, we identified two populations of white pigment cells—leucophores—one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow–orange xanthophore or xanthophorelike progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type–specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, andwe showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1901021116</identifier><identifier>PMID: 31138706</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological evolution ; Biological Sciences ; Cell Plasticity - genetics ; Chemical composition ; Danio ; Danio rerio ; Ecological monitoring ; Embryo, Nonmammalian - physiology ; Embryos ; Gene Expression Regulation, Developmental - genetics ; Genetics, Population - methods ; Melanophores - physiology ; Mutation - genetics ; Neural crest ; Neural Crest - physiology ; Organic chemistry ; Pattern formation ; Phenotype ; Phenotypes ; Physiological responses ; Pigmentation - genetics ; Population genetics ; Populations ; Skin ; Transcriptome - genetics ; Vertebrates ; Zebrafish ; Zebrafish - genetics ; Zebrafish - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (24), p.11806-11811</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jun 11, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-6044e2c2a3dc03e7c697f04da8cab06a5b392a7fe12bfa5d58f18d2129dc881e3</citedby><cites>FETCH-LOGICAL-c443t-6044e2c2a3dc03e7c697f04da8cab06a5b392a7fe12bfa5d58f18d2129dc881e3</cites><orcidid>0000-0003-0506-8349 ; 0000-0003-2771-6095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26743486$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26743486$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31138706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, Victor M.</creatorcontrib><creatorcontrib>Saunders, Lauren M.</creatorcontrib><creatorcontrib>Larson, Tracy A.</creatorcontrib><creatorcontrib>Bain, Emily J.</creatorcontrib><creatorcontrib>Sturiale, Samantha L.</creatorcontrib><creatorcontrib>Gur, Dvir</creatorcontrib><creatorcontrib>Chowdhury, Sarwat</creatorcontrib><creatorcontrib>Flynn, Jessica D.</creatorcontrib><creatorcontrib>Allen, Michael C.</creatorcontrib><creatorcontrib>Deheyn, Dimitri D.</creatorcontrib><creatorcontrib>Lee, Jennifer C.</creatorcontrib><creatorcontrib>Simon, Julian A.</creatorcontrib><creatorcontrib>Lippincott-Schwartz, Jennifer</creatorcontrib><creatorcontrib>Raible, David W.</creatorcontrib><creatorcontrib>Parichy, David M.</creatorcontrib><title>Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including the zebrafish Danio rerio, we identified two populations of white pigment cells—leucophores—one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow–orange xanthophore or xanthophorelike progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type–specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, andwe showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.</description><subject>Animals</subject><subject>Biological evolution</subject><subject>Biological Sciences</subject><subject>Cell Plasticity - genetics</subject><subject>Chemical composition</subject><subject>Danio</subject><subject>Danio rerio</subject><subject>Ecological monitoring</subject><subject>Embryo, Nonmammalian - physiology</subject><subject>Embryos</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Genetics, Population - methods</subject><subject>Melanophores - physiology</subject><subject>Mutation - genetics</subject><subject>Neural crest</subject><subject>Neural Crest - physiology</subject><subject>Organic chemistry</subject><subject>Pattern formation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physiological responses</subject><subject>Pigmentation - genetics</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Skin</subject><subject>Transcriptome - genetics</subject><subject>Vertebrates</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1P3DAQxa2qVdlCz5yoLHEOjD_iOBekCkqLhNQLXLhYs46zeJW1g-0g7X9PVku37WkO7zdvnuYRcsrggkEjLseA-YK1wIAzxtQHsmDQskrJFj6SBQBvKi25PCJfcl4DQFtr-EyOBGNCN6AW5OkWi6PjgLl468uWYuhocmOKq4SbjQ8r6gNdueBmHYdhSzs_o8EWOsZxGrD4GDKNPb3B4CMd3GTj-ByTyyfkU49Ddl_f5zF5vP3xcP2ruv_98-76-31lpRSlUiCl45aj6CwI11jVNj3IDrXFJSisl6Ll2PSO8WWPdVfrnumOM952VmvmxDG52vuO03LjOutCSTiYMfkNpq2J6M3_SvDPZhVfjaqbmimYDc7fDVJ8mVwuZh2nFObMhnNZq5q3Ykdd7imbYs7J9YcLDMyuDLMrw_wtY9749m-wA__n-zNwtgfWucR00LlqpJBaiTf1yZJH</recordid><startdate>20190611</startdate><enddate>20190611</enddate><creator>Lewis, Victor M.</creator><creator>Saunders, Lauren M.</creator><creator>Larson, Tracy A.</creator><creator>Bain, Emily J.</creator><creator>Sturiale, Samantha L.</creator><creator>Gur, Dvir</creator><creator>Chowdhury, Sarwat</creator><creator>Flynn, Jessica D.</creator><creator>Allen, Michael C.</creator><creator>Deheyn, Dimitri D.</creator><creator>Lee, Jennifer C.</creator><creator>Simon, Julian A.</creator><creator>Lippincott-Schwartz, Jennifer</creator><creator>Raible, David W.</creator><creator>Parichy, David M.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0506-8349</orcidid><orcidid>https://orcid.org/0000-0003-2771-6095</orcidid></search><sort><creationdate>20190611</creationdate><title>Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores</title><author>Lewis, Victor M. ; Saunders, Lauren M. ; Larson, Tracy A. ; Bain, Emily J. ; Sturiale, Samantha L. ; Gur, Dvir ; Chowdhury, Sarwat ; Flynn, Jessica D. ; Allen, Michael C. ; Deheyn, Dimitri D. ; Lee, Jennifer C. ; Simon, Julian A. ; Lippincott-Schwartz, Jennifer ; Raible, David W. ; Parichy, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-6044e2c2a3dc03e7c697f04da8cab06a5b392a7fe12bfa5d58f18d2129dc881e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biological evolution</topic><topic>Biological Sciences</topic><topic>Cell Plasticity - genetics</topic><topic>Chemical composition</topic><topic>Danio</topic><topic>Danio rerio</topic><topic>Ecological monitoring</topic><topic>Embryo, Nonmammalian - physiology</topic><topic>Embryos</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Genetics, Population - methods</topic><topic>Melanophores - physiology</topic><topic>Mutation - genetics</topic><topic>Neural crest</topic><topic>Neural Crest - physiology</topic><topic>Organic chemistry</topic><topic>Pattern formation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physiological responses</topic><topic>Pigmentation - genetics</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Skin</topic><topic>Transcriptome - genetics</topic><topic>Vertebrates</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Victor M.</creatorcontrib><creatorcontrib>Saunders, Lauren M.</creatorcontrib><creatorcontrib>Larson, Tracy A.</creatorcontrib><creatorcontrib>Bain, Emily J.</creatorcontrib><creatorcontrib>Sturiale, Samantha L.</creatorcontrib><creatorcontrib>Gur, Dvir</creatorcontrib><creatorcontrib>Chowdhury, Sarwat</creatorcontrib><creatorcontrib>Flynn, Jessica D.</creatorcontrib><creatorcontrib>Allen, Michael C.</creatorcontrib><creatorcontrib>Deheyn, Dimitri D.</creatorcontrib><creatorcontrib>Lee, Jennifer C.</creatorcontrib><creatorcontrib>Simon, Julian A.</creatorcontrib><creatorcontrib>Lippincott-Schwartz, Jennifer</creatorcontrib><creatorcontrib>Raible, David W.</creatorcontrib><creatorcontrib>Parichy, David M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Victor M.</au><au>Saunders, Lauren M.</au><au>Larson, Tracy A.</au><au>Bain, Emily J.</au><au>Sturiale, Samantha L.</au><au>Gur, Dvir</au><au>Chowdhury, Sarwat</au><au>Flynn, Jessica D.</au><au>Allen, Michael C.</au><au>Deheyn, Dimitri D.</au><au>Lee, Jennifer C.</au><au>Simon, Julian A.</au><au>Lippincott-Schwartz, Jennifer</au><au>Raible, David W.</au><au>Parichy, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-06-11</date><risdate>2019</risdate><volume>116</volume><issue>24</issue><spage>11806</spage><epage>11811</epage><pages>11806-11811</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including the zebrafish Danio rerio, we identified two populations of white pigment cells—leucophores—one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow–orange xanthophore or xanthophorelike progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type–specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, andwe showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31138706</pmid><doi>10.1073/pnas.1901021116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0506-8349</orcidid><orcidid>https://orcid.org/0000-0003-2771-6095</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (24), p.11806-11811
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6575160
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological evolution
Biological Sciences
Cell Plasticity - genetics
Chemical composition
Danio
Danio rerio
Ecological monitoring
Embryo, Nonmammalian - physiology
Embryos
Gene Expression Regulation, Developmental - genetics
Genetics, Population - methods
Melanophores - physiology
Mutation - genetics
Neural crest
Neural Crest - physiology
Organic chemistry
Pattern formation
Phenotype
Phenotypes
Physiological responses
Pigmentation - genetics
Population genetics
Populations
Skin
Transcriptome - genetics
Vertebrates
Zebrafish
Zebrafish - genetics
Zebrafish - physiology
title Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fate%20plasticity%20and%20reprogramming%20in%20genetically%20distinct%20populations%20of%20Danio%20leucophores&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lewis,%20Victor%20M.&rft.date=2019-06-11&rft.volume=116&rft.issue=24&rft.spage=11806&rft.epage=11811&rft.pages=11806-11811&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1901021116&rft_dat=%3Cjstor_pubme%3E26743486%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2245652930&rft_id=info:pmid/31138706&rft_jstor_id=26743486&rfr_iscdi=true