Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores
Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern f...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-06, Vol.116 (24), p.11806-11811 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11811 |
---|---|
container_issue | 24 |
container_start_page | 11806 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Lewis, Victor M. Saunders, Lauren M. Larson, Tracy A. Bain, Emily J. Sturiale, Samantha L. Gur, Dvir Chowdhury, Sarwat Flynn, Jessica D. Allen, Michael C. Deheyn, Dimitri D. Lee, Jennifer C. Simon, Julian A. Lippincott-Schwartz, Jennifer Raible, David W. Parichy, David M. |
description | Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including the zebrafish Danio rerio, we identified two populations of white pigment cells—leucophores—one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow–orange xanthophore or xanthophorelike progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type–specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, andwe showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution. |
doi_str_mv | 10.1073/pnas.1901021116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6575160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26743486</jstor_id><sourcerecordid>26743486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-6044e2c2a3dc03e7c697f04da8cab06a5b392a7fe12bfa5d58f18d2129dc881e3</originalsourceid><addsrcrecordid>eNpVkc1P3DAQxa2qVdlCz5yoLHEOjD_iOBekCkqLhNQLXLhYs46zeJW1g-0g7X9PVku37WkO7zdvnuYRcsrggkEjLseA-YK1wIAzxtQHsmDQskrJFj6SBQBvKi25PCJfcl4DQFtr-EyOBGNCN6AW5OkWi6PjgLl468uWYuhocmOKq4SbjQ8r6gNdueBmHYdhSzs_o8EWOsZxGrD4GDKNPb3B4CMd3GTj-ByTyyfkU49Ddl_f5zF5vP3xcP2ruv_98-76-31lpRSlUiCl45aj6CwI11jVNj3IDrXFJSisl6Ll2PSO8WWPdVfrnumOM952VmvmxDG52vuO03LjOutCSTiYMfkNpq2J6M3_SvDPZhVfjaqbmimYDc7fDVJ8mVwuZh2nFObMhnNZq5q3Ykdd7imbYs7J9YcLDMyuDLMrw_wtY9749m-wA__n-zNwtgfWucR00LlqpJBaiTf1yZJH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245652930</pqid></control><display><type>article</type><title>Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lewis, Victor M. ; Saunders, Lauren M. ; Larson, Tracy A. ; Bain, Emily J. ; Sturiale, Samantha L. ; Gur, Dvir ; Chowdhury, Sarwat ; Flynn, Jessica D. ; Allen, Michael C. ; Deheyn, Dimitri D. ; Lee, Jennifer C. ; Simon, Julian A. ; Lippincott-Schwartz, Jennifer ; Raible, David W. ; Parichy, David M.</creator><creatorcontrib>Lewis, Victor M. ; Saunders, Lauren M. ; Larson, Tracy A. ; Bain, Emily J. ; Sturiale, Samantha L. ; Gur, Dvir ; Chowdhury, Sarwat ; Flynn, Jessica D. ; Allen, Michael C. ; Deheyn, Dimitri D. ; Lee, Jennifer C. ; Simon, Julian A. ; Lippincott-Schwartz, Jennifer ; Raible, David W. ; Parichy, David M.</creatorcontrib><description>Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including the zebrafish Danio rerio, we identified two populations of white pigment cells—leucophores—one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow–orange xanthophore or xanthophorelike progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type–specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, andwe showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1901021116</identifier><identifier>PMID: 31138706</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological evolution ; Biological Sciences ; Cell Plasticity - genetics ; Chemical composition ; Danio ; Danio rerio ; Ecological monitoring ; Embryo, Nonmammalian - physiology ; Embryos ; Gene Expression Regulation, Developmental - genetics ; Genetics, Population - methods ; Melanophores - physiology ; Mutation - genetics ; Neural crest ; Neural Crest - physiology ; Organic chemistry ; Pattern formation ; Phenotype ; Phenotypes ; Physiological responses ; Pigmentation - genetics ; Population genetics ; Populations ; Skin ; Transcriptome - genetics ; Vertebrates ; Zebrafish ; Zebrafish - genetics ; Zebrafish - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (24), p.11806-11811</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jun 11, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-6044e2c2a3dc03e7c697f04da8cab06a5b392a7fe12bfa5d58f18d2129dc881e3</citedby><cites>FETCH-LOGICAL-c443t-6044e2c2a3dc03e7c697f04da8cab06a5b392a7fe12bfa5d58f18d2129dc881e3</cites><orcidid>0000-0003-0506-8349 ; 0000-0003-2771-6095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26743486$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26743486$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31138706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, Victor M.</creatorcontrib><creatorcontrib>Saunders, Lauren M.</creatorcontrib><creatorcontrib>Larson, Tracy A.</creatorcontrib><creatorcontrib>Bain, Emily J.</creatorcontrib><creatorcontrib>Sturiale, Samantha L.</creatorcontrib><creatorcontrib>Gur, Dvir</creatorcontrib><creatorcontrib>Chowdhury, Sarwat</creatorcontrib><creatorcontrib>Flynn, Jessica D.</creatorcontrib><creatorcontrib>Allen, Michael C.</creatorcontrib><creatorcontrib>Deheyn, Dimitri D.</creatorcontrib><creatorcontrib>Lee, Jennifer C.</creatorcontrib><creatorcontrib>Simon, Julian A.</creatorcontrib><creatorcontrib>Lippincott-Schwartz, Jennifer</creatorcontrib><creatorcontrib>Raible, David W.</creatorcontrib><creatorcontrib>Parichy, David M.</creatorcontrib><title>Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including the zebrafish Danio rerio, we identified two populations of white pigment cells—leucophores—one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow–orange xanthophore or xanthophorelike progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type–specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, andwe showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.</description><subject>Animals</subject><subject>Biological evolution</subject><subject>Biological Sciences</subject><subject>Cell Plasticity - genetics</subject><subject>Chemical composition</subject><subject>Danio</subject><subject>Danio rerio</subject><subject>Ecological monitoring</subject><subject>Embryo, Nonmammalian - physiology</subject><subject>Embryos</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Genetics, Population - methods</subject><subject>Melanophores - physiology</subject><subject>Mutation - genetics</subject><subject>Neural crest</subject><subject>Neural Crest - physiology</subject><subject>Organic chemistry</subject><subject>Pattern formation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physiological responses</subject><subject>Pigmentation - genetics</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Skin</subject><subject>Transcriptome - genetics</subject><subject>Vertebrates</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1P3DAQxa2qVdlCz5yoLHEOjD_iOBekCkqLhNQLXLhYs46zeJW1g-0g7X9PVku37WkO7zdvnuYRcsrggkEjLseA-YK1wIAzxtQHsmDQskrJFj6SBQBvKi25PCJfcl4DQFtr-EyOBGNCN6AW5OkWi6PjgLl468uWYuhocmOKq4SbjQ8r6gNdueBmHYdhSzs_o8EWOsZxGrD4GDKNPb3B4CMd3GTj-ByTyyfkU49Ddl_f5zF5vP3xcP2ruv_98-76-31lpRSlUiCl45aj6CwI11jVNj3IDrXFJSisl6Ll2PSO8WWPdVfrnumOM952VmvmxDG52vuO03LjOutCSTiYMfkNpq2J6M3_SvDPZhVfjaqbmimYDc7fDVJ8mVwuZh2nFObMhnNZq5q3Ykdd7imbYs7J9YcLDMyuDLMrw_wtY9749m-wA__n-zNwtgfWucR00LlqpJBaiTf1yZJH</recordid><startdate>20190611</startdate><enddate>20190611</enddate><creator>Lewis, Victor M.</creator><creator>Saunders, Lauren M.</creator><creator>Larson, Tracy A.</creator><creator>Bain, Emily J.</creator><creator>Sturiale, Samantha L.</creator><creator>Gur, Dvir</creator><creator>Chowdhury, Sarwat</creator><creator>Flynn, Jessica D.</creator><creator>Allen, Michael C.</creator><creator>Deheyn, Dimitri D.</creator><creator>Lee, Jennifer C.</creator><creator>Simon, Julian A.</creator><creator>Lippincott-Schwartz, Jennifer</creator><creator>Raible, David W.</creator><creator>Parichy, David M.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0506-8349</orcidid><orcidid>https://orcid.org/0000-0003-2771-6095</orcidid></search><sort><creationdate>20190611</creationdate><title>Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores</title><author>Lewis, Victor M. ; Saunders, Lauren M. ; Larson, Tracy A. ; Bain, Emily J. ; Sturiale, Samantha L. ; Gur, Dvir ; Chowdhury, Sarwat ; Flynn, Jessica D. ; Allen, Michael C. ; Deheyn, Dimitri D. ; Lee, Jennifer C. ; Simon, Julian A. ; Lippincott-Schwartz, Jennifer ; Raible, David W. ; Parichy, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-6044e2c2a3dc03e7c697f04da8cab06a5b392a7fe12bfa5d58f18d2129dc881e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biological evolution</topic><topic>Biological Sciences</topic><topic>Cell Plasticity - genetics</topic><topic>Chemical composition</topic><topic>Danio</topic><topic>Danio rerio</topic><topic>Ecological monitoring</topic><topic>Embryo, Nonmammalian - physiology</topic><topic>Embryos</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Genetics, Population - methods</topic><topic>Melanophores - physiology</topic><topic>Mutation - genetics</topic><topic>Neural crest</topic><topic>Neural Crest - physiology</topic><topic>Organic chemistry</topic><topic>Pattern formation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physiological responses</topic><topic>Pigmentation - genetics</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Skin</topic><topic>Transcriptome - genetics</topic><topic>Vertebrates</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Victor M.</creatorcontrib><creatorcontrib>Saunders, Lauren M.</creatorcontrib><creatorcontrib>Larson, Tracy A.</creatorcontrib><creatorcontrib>Bain, Emily J.</creatorcontrib><creatorcontrib>Sturiale, Samantha L.</creatorcontrib><creatorcontrib>Gur, Dvir</creatorcontrib><creatorcontrib>Chowdhury, Sarwat</creatorcontrib><creatorcontrib>Flynn, Jessica D.</creatorcontrib><creatorcontrib>Allen, Michael C.</creatorcontrib><creatorcontrib>Deheyn, Dimitri D.</creatorcontrib><creatorcontrib>Lee, Jennifer C.</creatorcontrib><creatorcontrib>Simon, Julian A.</creatorcontrib><creatorcontrib>Lippincott-Schwartz, Jennifer</creatorcontrib><creatorcontrib>Raible, David W.</creatorcontrib><creatorcontrib>Parichy, David M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Victor M.</au><au>Saunders, Lauren M.</au><au>Larson, Tracy A.</au><au>Bain, Emily J.</au><au>Sturiale, Samantha L.</au><au>Gur, Dvir</au><au>Chowdhury, Sarwat</au><au>Flynn, Jessica D.</au><au>Allen, Michael C.</au><au>Deheyn, Dimitri D.</au><au>Lee, Jennifer C.</au><au>Simon, Julian A.</au><au>Lippincott-Schwartz, Jennifer</au><au>Raible, David W.</au><au>Parichy, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-06-11</date><risdate>2019</risdate><volume>116</volume><issue>24</issue><spage>11806</spage><epage>11811</epage><pages>11806-11811</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including the zebrafish Danio rerio, we identified two populations of white pigment cells—leucophores—one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow–orange xanthophore or xanthophorelike progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type–specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, andwe showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31138706</pmid><doi>10.1073/pnas.1901021116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0506-8349</orcidid><orcidid>https://orcid.org/0000-0003-2771-6095</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (24), p.11806-11811 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6575160 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological evolution Biological Sciences Cell Plasticity - genetics Chemical composition Danio Danio rerio Ecological monitoring Embryo, Nonmammalian - physiology Embryos Gene Expression Regulation, Developmental - genetics Genetics, Population - methods Melanophores - physiology Mutation - genetics Neural crest Neural Crest - physiology Organic chemistry Pattern formation Phenotype Phenotypes Physiological responses Pigmentation - genetics Population genetics Populations Skin Transcriptome - genetics Vertebrates Zebrafish Zebrafish - genetics Zebrafish - physiology |
title | Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fate%20plasticity%20and%20reprogramming%20in%20genetically%20distinct%20populations%20of%20Danio%20leucophores&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lewis,%20Victor%20M.&rft.date=2019-06-11&rft.volume=116&rft.issue=24&rft.spage=11806&rft.epage=11811&rft.pages=11806-11811&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1901021116&rft_dat=%3Cjstor_pubme%3E26743486%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2245652930&rft_id=info:pmid/31138706&rft_jstor_id=26743486&rfr_iscdi=true |