CD22 blockade restores homeostatic microglial phagocytosis in ageing brains

Microglia maintain homeostasis in the central nervous system through phagocytic clearance of protein aggregates and cellular debris. This function deteriorates during ageing and neurodegenerative disease, concomitant with cognitive decline. However, the mechanisms of impaired microglial homeostatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2019-04, Vol.568 (7751), p.187-192
Hauptverfasser: Pluvinage, John V., Haney, Michael S., Smith, Benjamin A. H., Sun, Jerry, Iram, Tal, Bonanno, Liana, Li, Lulin, Lee, Davis P., Morgens, David W., Yang, Andrew C., Shuken, Steven R., Gate, David, Scott, Madeleine, Khatri, Purvesh, Luo, Jian, Bertozzi, Carolyn R., Bassik, Michael C., Wyss-Coray, Tony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 7751
container_start_page 187
container_title Nature (London)
container_volume 568
creator Pluvinage, John V.
Haney, Michael S.
Smith, Benjamin A. H.
Sun, Jerry
Iram, Tal
Bonanno, Liana
Li, Lulin
Lee, Davis P.
Morgens, David W.
Yang, Andrew C.
Shuken, Steven R.
Gate, David
Scott, Madeleine
Khatri, Purvesh
Luo, Jian
Bertozzi, Carolyn R.
Bassik, Michael C.
Wyss-Coray, Tony
description Microglia maintain homeostasis in the central nervous system through phagocytic clearance of protein aggregates and cellular debris. This function deteriorates during ageing and neurodegenerative disease, concomitant with cognitive decline. However, the mechanisms of impaired microglial homeostatic function and the cognitive effects of restoring this function remain unknown. We combined CRISPR–Cas9 knockout screens with RNA sequencing analysis to discover age-related genetic modifiers of microglial phagocytosis. These screens identified CD22, a canonical B cell receptor, as a negative regulator of phagocytosis that is upregulated on aged microglia. CD22 mediates the anti-phagocytic effect of α2,6-linked sialic acid, and inhibition of CD22 promotes the clearance of myelin debris, amyloid-β oligomers and α-synuclein fibrils in vivo. Long-term central nervous system delivery of an antibody that blocks CD22 function reprograms microglia towards a homeostatic transcriptional state and improves cognitive function in aged mice. These findings elucidate a mechanism of age-related microglial impairment and a strategy to restore homeostasis in the ageing brain. CD22 inhibits microglial phagocytosis in the ageing brain, and treatment with a CD22-blocking antibody restores microglial homeostasis and cognitive function in ageing mice.
doi_str_mv 10.1038/s41586-019-1088-4
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6574119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A582020483</galeid><sourcerecordid>A582020483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c709t-b32c6a6b084ee198c1a78b504972953b29ed1ae1d45b16560d8ff92a4b3568153</originalsourceid><addsrcrecordid>eNp1kl-L1DAUxYMo7jj6AXyRoi-KdE3SNE1ehGH8t7go6IqPIU1vO1nbZDZpxf32Zph1dyuzBBLI_d2TXM5B6CnBxwQX4k1kpBQ8x0TmBAuRs3toQVjFc8ZFdR8tMKYix6LgR-hRjOcY45JU7CE6KrBkjFVigT6v31Ga1b03v3QDWYA4-rRlGz-Aj6MerckGa4Lveqv7bLvRnTeXo482ZtZlugPruqwO2rr4GD1odR_hydW5RD8-vD9bf8pPv348Wa9Oc1NhOeZ1QQ3XvMaCARApDNGVqEvMZEVlWdRUQkM0kIaVNeElx41oW0k1q4uSC1IWS_R2r7ud6gEaA24MulfbYAcdLpXXVs0rzm5U538rXlaMEJkEXl4JBH8xpZHVYKOBvtcO_BQVpbgghaRpW6IX_6HnfgoujZeopEU4Z8UN1ekelHWtT--anahalYJiipnYUfkBqgMH6ZPeQWvT9Yx_foA3W3uhbkPHB6C0Gki-HVR9NWtIzAh_xk5PMaqT79_m7Ou72dXZz_WXOU32dIpLjAHaa0sIVrvAqn1gVQqs2gVWsdTz7LaX1x3_EpoAugdiKrkOwo0Bd6v-BUJp8Hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211916643</pqid></control><display><type>article</type><title>CD22 blockade restores homeostatic microglial phagocytosis in ageing brains</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Pluvinage, John V. ; Haney, Michael S. ; Smith, Benjamin A. H. ; Sun, Jerry ; Iram, Tal ; Bonanno, Liana ; Li, Lulin ; Lee, Davis P. ; Morgens, David W. ; Yang, Andrew C. ; Shuken, Steven R. ; Gate, David ; Scott, Madeleine ; Khatri, Purvesh ; Luo, Jian ; Bertozzi, Carolyn R. ; Bassik, Michael C. ; Wyss-Coray, Tony</creator><creatorcontrib>Pluvinage, John V. ; Haney, Michael S. ; Smith, Benjamin A. H. ; Sun, Jerry ; Iram, Tal ; Bonanno, Liana ; Li, Lulin ; Lee, Davis P. ; Morgens, David W. ; Yang, Andrew C. ; Shuken, Steven R. ; Gate, David ; Scott, Madeleine ; Khatri, Purvesh ; Luo, Jian ; Bertozzi, Carolyn R. ; Bassik, Michael C. ; Wyss-Coray, Tony</creatorcontrib><description>Microglia maintain homeostasis in the central nervous system through phagocytic clearance of protein aggregates and cellular debris. This function deteriorates during ageing and neurodegenerative disease, concomitant with cognitive decline. However, the mechanisms of impaired microglial homeostatic function and the cognitive effects of restoring this function remain unknown. We combined CRISPR–Cas9 knockout screens with RNA sequencing analysis to discover age-related genetic modifiers of microglial phagocytosis. These screens identified CD22, a canonical B cell receptor, as a negative regulator of phagocytosis that is upregulated on aged microglia. CD22 mediates the anti-phagocytic effect of α2,6-linked sialic acid, and inhibition of CD22 promotes the clearance of myelin debris, amyloid-β oligomers and α-synuclein fibrils in vivo. Long-term central nervous system delivery of an antibody that blocks CD22 function reprograms microglia towards a homeostatic transcriptional state and improves cognitive function in aged mice. These findings elucidate a mechanism of age-related microglial impairment and a strategy to restore homeostasis in the ageing brain. CD22 inhibits microglial phagocytosis in the ageing brain, and treatment with a CD22-blocking antibody restores microglial homeostasis and cognitive function in ageing mice.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1088-4</identifier><identifier>PMID: 30944478</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Age ; Aging ; Aging (Biology) ; Aging - drug effects ; Aging - genetics ; Aging - physiology ; Alzheimer's disease ; Amyloid ; Animals ; Antibodies ; B cells ; Brain ; Brain - cytology ; Brain - drug effects ; Brain - physiology ; Brain research ; CD22 antigen ; Cell receptors ; Central nervous system ; Cognition - drug effects ; Cognition - physiology ; Cognitive ability ; CRISPR ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Cas Systems - genetics ; Debris ; Female ; Fibrils ; Flow cytometry ; Gene sequencing ; Genes ; Genetic analysis ; Genetic research ; Homeostasis ; Homeostasis - drug effects ; Homeostasis - genetics ; Humanities and Social Sciences ; Lymphocytes B ; Male ; Mice ; Mice, Inbred C57BL ; Microglia ; Microglia - cytology ; Microglia - drug effects ; multidisciplinary ; Myelin ; N-Acetylneuraminic Acid - chemistry ; N-Acetylneuraminic Acid - pharmacology ; Nervous system ; Nervous system diseases ; Neurodegeneration ; Neurodegenerative diseases ; Neurological diseases ; Oligomers ; Organic acids ; Phagocytes ; Phagocytosis ; Phagocytosis - drug effects ; Phagocytosis - genetics ; Physiological aspects ; Proteins ; Ribonucleic acid ; RNA ; RNA sequencing ; Science ; Science (multidisciplinary) ; Screens ; Sequence Analysis, RNA ; Sialic Acid Binding Ig-like Lectin 2 - antagonists &amp; inhibitors ; Sialic Acid Binding Ig-like Lectin 2 - genetics ; Sialic Acid Binding Ig-like Lectin 2 - metabolism ; Synuclein ; Transcription</subject><ispartof>Nature (London), 2019-04, Vol.568 (7751), p.187-192</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 11, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c709t-b32c6a6b084ee198c1a78b504972953b29ed1ae1d45b16560d8ff92a4b3568153</citedby><cites>FETCH-LOGICAL-c709t-b32c6a6b084ee198c1a78b504972953b29ed1ae1d45b16560d8ff92a4b3568153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1088-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1088-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30944478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pluvinage, John V.</creatorcontrib><creatorcontrib>Haney, Michael S.</creatorcontrib><creatorcontrib>Smith, Benjamin A. H.</creatorcontrib><creatorcontrib>Sun, Jerry</creatorcontrib><creatorcontrib>Iram, Tal</creatorcontrib><creatorcontrib>Bonanno, Liana</creatorcontrib><creatorcontrib>Li, Lulin</creatorcontrib><creatorcontrib>Lee, Davis P.</creatorcontrib><creatorcontrib>Morgens, David W.</creatorcontrib><creatorcontrib>Yang, Andrew C.</creatorcontrib><creatorcontrib>Shuken, Steven R.</creatorcontrib><creatorcontrib>Gate, David</creatorcontrib><creatorcontrib>Scott, Madeleine</creatorcontrib><creatorcontrib>Khatri, Purvesh</creatorcontrib><creatorcontrib>Luo, Jian</creatorcontrib><creatorcontrib>Bertozzi, Carolyn R.</creatorcontrib><creatorcontrib>Bassik, Michael C.</creatorcontrib><creatorcontrib>Wyss-Coray, Tony</creatorcontrib><title>CD22 blockade restores homeostatic microglial phagocytosis in ageing brains</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Microglia maintain homeostasis in the central nervous system through phagocytic clearance of protein aggregates and cellular debris. This function deteriorates during ageing and neurodegenerative disease, concomitant with cognitive decline. However, the mechanisms of impaired microglial homeostatic function and the cognitive effects of restoring this function remain unknown. We combined CRISPR–Cas9 knockout screens with RNA sequencing analysis to discover age-related genetic modifiers of microglial phagocytosis. These screens identified CD22, a canonical B cell receptor, as a negative regulator of phagocytosis that is upregulated on aged microglia. CD22 mediates the anti-phagocytic effect of α2,6-linked sialic acid, and inhibition of CD22 promotes the clearance of myelin debris, amyloid-β oligomers and α-synuclein fibrils in vivo. Long-term central nervous system delivery of an antibody that blocks CD22 function reprograms microglia towards a homeostatic transcriptional state and improves cognitive function in aged mice. These findings elucidate a mechanism of age-related microglial impairment and a strategy to restore homeostasis in the ageing brain. CD22 inhibits microglial phagocytosis in the ageing brain, and treatment with a CD22-blocking antibody restores microglial homeostasis and cognitive function in ageing mice.</description><subject>Age</subject><subject>Aging</subject><subject>Aging (Biology)</subject><subject>Aging - drug effects</subject><subject>Aging - genetics</subject><subject>Aging - physiology</subject><subject>Alzheimer's disease</subject><subject>Amyloid</subject><subject>Animals</subject><subject>Antibodies</subject><subject>B cells</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - drug effects</subject><subject>Brain - physiology</subject><subject>Brain research</subject><subject>CD22 antigen</subject><subject>Cell receptors</subject><subject>Central nervous system</subject><subject>Cognition - drug effects</subject><subject>Cognition - physiology</subject><subject>Cognitive ability</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Debris</subject><subject>Female</subject><subject>Fibrils</subject><subject>Flow cytometry</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genetic research</subject><subject>Homeostasis</subject><subject>Homeostasis - drug effects</subject><subject>Homeostasis - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Lymphocytes B</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microglia</subject><subject>Microglia - cytology</subject><subject>Microglia - drug effects</subject><subject>multidisciplinary</subject><subject>Myelin</subject><subject>N-Acetylneuraminic Acid - chemistry</subject><subject>N-Acetylneuraminic Acid - pharmacology</subject><subject>Nervous system</subject><subject>Nervous system diseases</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Oligomers</subject><subject>Organic acids</subject><subject>Phagocytes</subject><subject>Phagocytosis</subject><subject>Phagocytosis - drug effects</subject><subject>Phagocytosis - genetics</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Screens</subject><subject>Sequence Analysis, RNA</subject><subject>Sialic Acid Binding Ig-like Lectin 2 - antagonists &amp; inhibitors</subject><subject>Sialic Acid Binding Ig-like Lectin 2 - genetics</subject><subject>Sialic Acid Binding Ig-like Lectin 2 - metabolism</subject><subject>Synuclein</subject><subject>Transcription</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kl-L1DAUxYMo7jj6AXyRoi-KdE3SNE1ehGH8t7go6IqPIU1vO1nbZDZpxf32Zph1dyuzBBLI_d2TXM5B6CnBxwQX4k1kpBQ8x0TmBAuRs3toQVjFc8ZFdR8tMKYix6LgR-hRjOcY45JU7CE6KrBkjFVigT6v31Ga1b03v3QDWYA4-rRlGz-Aj6MerckGa4Lveqv7bLvRnTeXo482ZtZlugPruqwO2rr4GD1odR_hydW5RD8-vD9bf8pPv348Wa9Oc1NhOeZ1QQ3XvMaCARApDNGVqEvMZEVlWdRUQkM0kIaVNeElx41oW0k1q4uSC1IWS_R2r7ud6gEaA24MulfbYAcdLpXXVs0rzm5U538rXlaMEJkEXl4JBH8xpZHVYKOBvtcO_BQVpbgghaRpW6IX_6HnfgoujZeopEU4Z8UN1ekelHWtT--anahalYJiipnYUfkBqgMH6ZPeQWvT9Yx_foA3W3uhbkPHB6C0Gki-HVR9NWtIzAh_xk5PMaqT79_m7Ou72dXZz_WXOU32dIpLjAHaa0sIVrvAqn1gVQqs2gVWsdTz7LaX1x3_EpoAugdiKrkOwo0Bd6v-BUJp8Hw</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Pluvinage, John V.</creator><creator>Haney, Michael S.</creator><creator>Smith, Benjamin A. H.</creator><creator>Sun, Jerry</creator><creator>Iram, Tal</creator><creator>Bonanno, Liana</creator><creator>Li, Lulin</creator><creator>Lee, Davis P.</creator><creator>Morgens, David W.</creator><creator>Yang, Andrew C.</creator><creator>Shuken, Steven R.</creator><creator>Gate, David</creator><creator>Scott, Madeleine</creator><creator>Khatri, Purvesh</creator><creator>Luo, Jian</creator><creator>Bertozzi, Carolyn R.</creator><creator>Bassik, Michael C.</creator><creator>Wyss-Coray, Tony</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190401</creationdate><title>CD22 blockade restores homeostatic microglial phagocytosis in ageing brains</title><author>Pluvinage, John V. ; Haney, Michael S. ; Smith, Benjamin A. H. ; Sun, Jerry ; Iram, Tal ; Bonanno, Liana ; Li, Lulin ; Lee, Davis P. ; Morgens, David W. ; Yang, Andrew C. ; Shuken, Steven R. ; Gate, David ; Scott, Madeleine ; Khatri, Purvesh ; Luo, Jian ; Bertozzi, Carolyn R. ; Bassik, Michael C. ; Wyss-Coray, Tony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c709t-b32c6a6b084ee198c1a78b504972953b29ed1ae1d45b16560d8ff92a4b3568153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Age</topic><topic>Aging</topic><topic>Aging (Biology)</topic><topic>Aging - drug effects</topic><topic>Aging - genetics</topic><topic>Aging - physiology</topic><topic>Alzheimer's disease</topic><topic>Amyloid</topic><topic>Animals</topic><topic>Antibodies</topic><topic>B cells</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - drug effects</topic><topic>Brain - physiology</topic><topic>Brain research</topic><topic>CD22 antigen</topic><topic>Cell receptors</topic><topic>Central nervous system</topic><topic>Cognition - drug effects</topic><topic>Cognition - physiology</topic><topic>Cognitive ability</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Debris</topic><topic>Female</topic><topic>Fibrils</topic><topic>Flow cytometry</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genetic research</topic><topic>Homeostasis</topic><topic>Homeostasis - drug effects</topic><topic>Homeostasis - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Lymphocytes B</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microglia</topic><topic>Microglia - cytology</topic><topic>Microglia - drug effects</topic><topic>multidisciplinary</topic><topic>Myelin</topic><topic>N-Acetylneuraminic Acid - chemistry</topic><topic>N-Acetylneuraminic Acid - pharmacology</topic><topic>Nervous system</topic><topic>Nervous system diseases</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Oligomers</topic><topic>Organic acids</topic><topic>Phagocytes</topic><topic>Phagocytosis</topic><topic>Phagocytosis - drug effects</topic><topic>Phagocytosis - genetics</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Screens</topic><topic>Sequence Analysis, RNA</topic><topic>Sialic Acid Binding Ig-like Lectin 2 - antagonists &amp; inhibitors</topic><topic>Sialic Acid Binding Ig-like Lectin 2 - genetics</topic><topic>Sialic Acid Binding Ig-like Lectin 2 - metabolism</topic><topic>Synuclein</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pluvinage, John V.</creatorcontrib><creatorcontrib>Haney, Michael S.</creatorcontrib><creatorcontrib>Smith, Benjamin A. H.</creatorcontrib><creatorcontrib>Sun, Jerry</creatorcontrib><creatorcontrib>Iram, Tal</creatorcontrib><creatorcontrib>Bonanno, Liana</creatorcontrib><creatorcontrib>Li, Lulin</creatorcontrib><creatorcontrib>Lee, Davis P.</creatorcontrib><creatorcontrib>Morgens, David W.</creatorcontrib><creatorcontrib>Yang, Andrew C.</creatorcontrib><creatorcontrib>Shuken, Steven R.</creatorcontrib><creatorcontrib>Gate, David</creatorcontrib><creatorcontrib>Scott, Madeleine</creatorcontrib><creatorcontrib>Khatri, Purvesh</creatorcontrib><creatorcontrib>Luo, Jian</creatorcontrib><creatorcontrib>Bertozzi, Carolyn R.</creatorcontrib><creatorcontrib>Bassik, Michael C.</creatorcontrib><creatorcontrib>Wyss-Coray, Tony</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pluvinage, John V.</au><au>Haney, Michael S.</au><au>Smith, Benjamin A. H.</au><au>Sun, Jerry</au><au>Iram, Tal</au><au>Bonanno, Liana</au><au>Li, Lulin</au><au>Lee, Davis P.</au><au>Morgens, David W.</au><au>Yang, Andrew C.</au><au>Shuken, Steven R.</au><au>Gate, David</au><au>Scott, Madeleine</au><au>Khatri, Purvesh</au><au>Luo, Jian</au><au>Bertozzi, Carolyn R.</au><au>Bassik, Michael C.</au><au>Wyss-Coray, Tony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CD22 blockade restores homeostatic microglial phagocytosis in ageing brains</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>568</volume><issue>7751</issue><spage>187</spage><epage>192</epage><pages>187-192</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Microglia maintain homeostasis in the central nervous system through phagocytic clearance of protein aggregates and cellular debris. This function deteriorates during ageing and neurodegenerative disease, concomitant with cognitive decline. However, the mechanisms of impaired microglial homeostatic function and the cognitive effects of restoring this function remain unknown. We combined CRISPR–Cas9 knockout screens with RNA sequencing analysis to discover age-related genetic modifiers of microglial phagocytosis. These screens identified CD22, a canonical B cell receptor, as a negative regulator of phagocytosis that is upregulated on aged microglia. CD22 mediates the anti-phagocytic effect of α2,6-linked sialic acid, and inhibition of CD22 promotes the clearance of myelin debris, amyloid-β oligomers and α-synuclein fibrils in vivo. Long-term central nervous system delivery of an antibody that blocks CD22 function reprograms microglia towards a homeostatic transcriptional state and improves cognitive function in aged mice. These findings elucidate a mechanism of age-related microglial impairment and a strategy to restore homeostasis in the ageing brain. CD22 inhibits microglial phagocytosis in the ageing brain, and treatment with a CD22-blocking antibody restores microglial homeostasis and cognitive function in ageing mice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30944478</pmid><doi>10.1038/s41586-019-1088-4</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2019-04, Vol.568 (7751), p.187-192
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6574119
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects Age
Aging
Aging (Biology)
Aging - drug effects
Aging - genetics
Aging - physiology
Alzheimer's disease
Amyloid
Animals
Antibodies
B cells
Brain
Brain - cytology
Brain - drug effects
Brain - physiology
Brain research
CD22 antigen
Cell receptors
Central nervous system
Cognition - drug effects
Cognition - physiology
Cognitive ability
CRISPR
CRISPR-Associated Protein 9 - metabolism
CRISPR-Cas Systems - genetics
Debris
Female
Fibrils
Flow cytometry
Gene sequencing
Genes
Genetic analysis
Genetic research
Homeostasis
Homeostasis - drug effects
Homeostasis - genetics
Humanities and Social Sciences
Lymphocytes B
Male
Mice
Mice, Inbred C57BL
Microglia
Microglia - cytology
Microglia - drug effects
multidisciplinary
Myelin
N-Acetylneuraminic Acid - chemistry
N-Acetylneuraminic Acid - pharmacology
Nervous system
Nervous system diseases
Neurodegeneration
Neurodegenerative diseases
Neurological diseases
Oligomers
Organic acids
Phagocytes
Phagocytosis
Phagocytosis - drug effects
Phagocytosis - genetics
Physiological aspects
Proteins
Ribonucleic acid
RNA
RNA sequencing
Science
Science (multidisciplinary)
Screens
Sequence Analysis, RNA
Sialic Acid Binding Ig-like Lectin 2 - antagonists & inhibitors
Sialic Acid Binding Ig-like Lectin 2 - genetics
Sialic Acid Binding Ig-like Lectin 2 - metabolism
Synuclein
Transcription
title CD22 blockade restores homeostatic microglial phagocytosis in ageing brains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CD22%20blockade%20restores%20homeostatic%20microglial%20phagocytosis%20in%20ageing%20brains&rft.jtitle=Nature%20(London)&rft.au=Pluvinage,%20John%20V.&rft.date=2019-04-01&rft.volume=568&rft.issue=7751&rft.spage=187&rft.epage=192&rft.pages=187-192&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1088-4&rft_dat=%3Cgale_pubme%3EA582020483%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211916643&rft_id=info:pmid/30944478&rft_galeid=A582020483&rfr_iscdi=true