Using Tablet-Based Assessment to Characterize Speech for Individuals with Dementia and Mild Cognitive Impairment: Preliminary Results
Early detection of dementia as well as improvement in diagnosis coverage has been increasingly important. Previous studies involved extracting speech features during neuropsychological assessments by humans, such as medical pro- fessionals, and succeeded in detecting patients with dementia and mild...
Gespeichert in:
Veröffentlicht in: | AMIA Summits on Translational Science proceedings 2019, Vol.2019, p.34-43 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | |
container_start_page | 34 |
container_title | AMIA Summits on Translational Science proceedings |
container_volume | 2019 |
creator | Hall, Aidan O Shinkawa, Kaoru Kosugi, Akihiro Takase, Toshiro Kobayashi, Masatomo Nishimura, Masafumi Nemoto, Miyuki Watanabe, Ryohei Tsukada, Eriko Ota, Miho Higashi, Shinji Nemoto, Kiyotaka Arai, Tetsuaki Yamada, Yasunori |
description | Early detection of dementia as well as improvement in diagnosis coverage has been increasingly important. Previous studies involved extracting speech features during neuropsychological assessments by humans, such as medical pro- fessionals, and succeeded in detecting patients with dementia and mild cognitive impairment (MCI). Enabling such assessment in an automated fashion by using computer devices would extend the range of application. In this study, we developed a tablet-based application for neuropsychological assessments and collected speech data from 44 Japanese native speakers including healthy controls (HCs) and those with MCI and dementia. We first extracted acoustic and phonetic features and showed that several features exhibited significant difference between HC vs. MCI and HC vs. dementia. We then constructed classification models by using these features and demonstrated that these models could differentiate MCI and dementia from HC with up to 82.4 and 92.6% accuracy, respectively. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6568131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250619434</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1111-1359a5f5e63cd5785990193bddb30506992a714cd67f1f4ed4006c68735a4fe53</originalsourceid><addsrcrecordid>eNpVUMtOwzAQjBCIVqW_gHzkEimOH0k4IJXyqlQEgvYcOfGmMXKcYCdFcOe_ccVDZS470uzOjPYgGMeYkZBGnBzu8VEwde4l8qCUZ4weByOCY5Z6Og4-106ZDVqJQkMfXgoHEs2cA-caMD3qWzSvhRVlD1Z9AHruAMoaVa1FCyPVVslBaIfeVF-jK9idKIGEkeheaYnm7caoXm0BLZpOKLvTz9GjBa0aZYR9R0_gBt27k-Co8j4w_ZmTYH1zvZrfhcuH28V8tgw77BFiwjLBKgaclJIlKcuyCGekkLIgEYt4lsUiwbSUPKlwRUHSKOIlTxPCBK2AkUlw8e3bDUUDsvR9rNB5Z1Xj2-StUPl_xag637TbnDOeYoK9wdmPgW1fB3B93ihXgtbCQDu4PI59DZxRQv3q6X7WX8jv78kXVyKEQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250619434</pqid></control><display><type>article</type><title>Using Tablet-Based Assessment to Characterize Speech for Individuals with Dementia and Mild Cognitive Impairment: Preliminary Results</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hall, Aidan O ; Shinkawa, Kaoru ; Kosugi, Akihiro ; Takase, Toshiro ; Kobayashi, Masatomo ; Nishimura, Masafumi ; Nemoto, Miyuki ; Watanabe, Ryohei ; Tsukada, Eriko ; Ota, Miho ; Higashi, Shinji ; Nemoto, Kiyotaka ; Arai, Tetsuaki ; Yamada, Yasunori</creator><creatorcontrib>Hall, Aidan O ; Shinkawa, Kaoru ; Kosugi, Akihiro ; Takase, Toshiro ; Kobayashi, Masatomo ; Nishimura, Masafumi ; Nemoto, Miyuki ; Watanabe, Ryohei ; Tsukada, Eriko ; Ota, Miho ; Higashi, Shinji ; Nemoto, Kiyotaka ; Arai, Tetsuaki ; Yamada, Yasunori</creatorcontrib><description>Early detection of dementia as well as improvement in diagnosis coverage has been increasingly important. Previous studies involved extracting speech features during neuropsychological assessments by humans, such as medical pro- fessionals, and succeeded in detecting patients with dementia and mild cognitive impairment (MCI). Enabling such assessment in an automated fashion by using computer devices would extend the range of application. In this study, we developed a tablet-based application for neuropsychological assessments and collected speech data from 44 Japanese native speakers including healthy controls (HCs) and those with MCI and dementia. We first extracted acoustic and phonetic features and showed that several features exhibited significant difference between HC vs. MCI and HC vs. dementia. We then constructed classification models by using these features and demonstrated that these models could differentiate MCI and dementia from HC with up to 82.4 and 92.6% accuracy, respectively.</description><identifier>ISSN: 2153-4063</identifier><identifier>EISSN: 2153-4063</identifier><identifier>PMID: 31258954</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><ispartof>AMIA Summits on Translational Science proceedings, 2019, Vol.2019, p.34-43</ispartof><rights>2019 AMIA - All rights reserved. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6568131/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6568131/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31258954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Aidan O</creatorcontrib><creatorcontrib>Shinkawa, Kaoru</creatorcontrib><creatorcontrib>Kosugi, Akihiro</creatorcontrib><creatorcontrib>Takase, Toshiro</creatorcontrib><creatorcontrib>Kobayashi, Masatomo</creatorcontrib><creatorcontrib>Nishimura, Masafumi</creatorcontrib><creatorcontrib>Nemoto, Miyuki</creatorcontrib><creatorcontrib>Watanabe, Ryohei</creatorcontrib><creatorcontrib>Tsukada, Eriko</creatorcontrib><creatorcontrib>Ota, Miho</creatorcontrib><creatorcontrib>Higashi, Shinji</creatorcontrib><creatorcontrib>Nemoto, Kiyotaka</creatorcontrib><creatorcontrib>Arai, Tetsuaki</creatorcontrib><creatorcontrib>Yamada, Yasunori</creatorcontrib><title>Using Tablet-Based Assessment to Characterize Speech for Individuals with Dementia and Mild Cognitive Impairment: Preliminary Results</title><title>AMIA Summits on Translational Science proceedings</title><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><description>Early detection of dementia as well as improvement in diagnosis coverage has been increasingly important. Previous studies involved extracting speech features during neuropsychological assessments by humans, such as medical pro- fessionals, and succeeded in detecting patients with dementia and mild cognitive impairment (MCI). Enabling such assessment in an automated fashion by using computer devices would extend the range of application. In this study, we developed a tablet-based application for neuropsychological assessments and collected speech data from 44 Japanese native speakers including healthy controls (HCs) and those with MCI and dementia. We first extracted acoustic and phonetic features and showed that several features exhibited significant difference between HC vs. MCI and HC vs. dementia. We then constructed classification models by using these features and demonstrated that these models could differentiate MCI and dementia from HC with up to 82.4 and 92.6% accuracy, respectively.</description><issn>2153-4063</issn><issn>2153-4063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUMtOwzAQjBCIVqW_gHzkEimOH0k4IJXyqlQEgvYcOfGmMXKcYCdFcOe_ccVDZS470uzOjPYgGMeYkZBGnBzu8VEwde4l8qCUZ4weByOCY5Z6Og4-106ZDVqJQkMfXgoHEs2cA-caMD3qWzSvhRVlD1Z9AHruAMoaVa1FCyPVVslBaIfeVF-jK9idKIGEkeheaYnm7caoXm0BLZpOKLvTz9GjBa0aZYR9R0_gBt27k-Co8j4w_ZmTYH1zvZrfhcuH28V8tgw77BFiwjLBKgaclJIlKcuyCGekkLIgEYt4lsUiwbSUPKlwRUHSKOIlTxPCBK2AkUlw8e3bDUUDsvR9rNB5Z1Xj2-StUPl_xag637TbnDOeYoK9wdmPgW1fB3B93ihXgtbCQDu4PI59DZxRQv3q6X7WX8jv78kXVyKEQw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Hall, Aidan O</creator><creator>Shinkawa, Kaoru</creator><creator>Kosugi, Akihiro</creator><creator>Takase, Toshiro</creator><creator>Kobayashi, Masatomo</creator><creator>Nishimura, Masafumi</creator><creator>Nemoto, Miyuki</creator><creator>Watanabe, Ryohei</creator><creator>Tsukada, Eriko</creator><creator>Ota, Miho</creator><creator>Higashi, Shinji</creator><creator>Nemoto, Kiyotaka</creator><creator>Arai, Tetsuaki</creator><creator>Yamada, Yasunori</creator><general>American Medical Informatics Association</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2019</creationdate><title>Using Tablet-Based Assessment to Characterize Speech for Individuals with Dementia and Mild Cognitive Impairment: Preliminary Results</title><author>Hall, Aidan O ; Shinkawa, Kaoru ; Kosugi, Akihiro ; Takase, Toshiro ; Kobayashi, Masatomo ; Nishimura, Masafumi ; Nemoto, Miyuki ; Watanabe, Ryohei ; Tsukada, Eriko ; Ota, Miho ; Higashi, Shinji ; Nemoto, Kiyotaka ; Arai, Tetsuaki ; Yamada, Yasunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1111-1359a5f5e63cd5785990193bddb30506992a714cd67f1f4ed4006c68735a4fe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hall, Aidan O</creatorcontrib><creatorcontrib>Shinkawa, Kaoru</creatorcontrib><creatorcontrib>Kosugi, Akihiro</creatorcontrib><creatorcontrib>Takase, Toshiro</creatorcontrib><creatorcontrib>Kobayashi, Masatomo</creatorcontrib><creatorcontrib>Nishimura, Masafumi</creatorcontrib><creatorcontrib>Nemoto, Miyuki</creatorcontrib><creatorcontrib>Watanabe, Ryohei</creatorcontrib><creatorcontrib>Tsukada, Eriko</creatorcontrib><creatorcontrib>Ota, Miho</creatorcontrib><creatorcontrib>Higashi, Shinji</creatorcontrib><creatorcontrib>Nemoto, Kiyotaka</creatorcontrib><creatorcontrib>Arai, Tetsuaki</creatorcontrib><creatorcontrib>Yamada, Yasunori</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA Summits on Translational Science proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Aidan O</au><au>Shinkawa, Kaoru</au><au>Kosugi, Akihiro</au><au>Takase, Toshiro</au><au>Kobayashi, Masatomo</au><au>Nishimura, Masafumi</au><au>Nemoto, Miyuki</au><au>Watanabe, Ryohei</au><au>Tsukada, Eriko</au><au>Ota, Miho</au><au>Higashi, Shinji</au><au>Nemoto, Kiyotaka</au><au>Arai, Tetsuaki</au><au>Yamada, Yasunori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Tablet-Based Assessment to Characterize Speech for Individuals with Dementia and Mild Cognitive Impairment: Preliminary Results</atitle><jtitle>AMIA Summits on Translational Science proceedings</jtitle><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><spage>34</spage><epage>43</epage><pages>34-43</pages><issn>2153-4063</issn><eissn>2153-4063</eissn><abstract>Early detection of dementia as well as improvement in diagnosis coverage has been increasingly important. Previous studies involved extracting speech features during neuropsychological assessments by humans, such as medical pro- fessionals, and succeeded in detecting patients with dementia and mild cognitive impairment (MCI). Enabling such assessment in an automated fashion by using computer devices would extend the range of application. In this study, we developed a tablet-based application for neuropsychological assessments and collected speech data from 44 Japanese native speakers including healthy controls (HCs) and those with MCI and dementia. We first extracted acoustic and phonetic features and showed that several features exhibited significant difference between HC vs. MCI and HC vs. dementia. We then constructed classification models by using these features and demonstrated that these models could differentiate MCI and dementia from HC with up to 82.4 and 92.6% accuracy, respectively.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>31258954</pmid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2153-4063 |
ispartof | AMIA Summits on Translational Science proceedings, 2019, Vol.2019, p.34-43 |
issn | 2153-4063 2153-4063 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6568131 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
title | Using Tablet-Based Assessment to Characterize Speech for Individuals with Dementia and Mild Cognitive Impairment: Preliminary Results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Tablet-Based%20Assessment%20to%20Characterize%20Speech%20for%20Individuals%20with%20Dementia%20and%20Mild%20Cognitive%20Impairment:%20Preliminary%20Results&rft.jtitle=AMIA%20Summits%20on%20Translational%20Science%20proceedings&rft.au=Hall,%20Aidan%20O&rft.date=2019&rft.volume=2019&rft.spage=34&rft.epage=43&rft.pages=34-43&rft.issn=2153-4063&rft.eissn=2153-4063&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2250619434%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250619434&rft_id=info:pmid/31258954&rfr_iscdi=true |