Can Gut Microbiota Composition Predict Response to Dietary Treatments?

Dietary intervention is a challenge in clinical practice because of inter-individual variability in clinical response. Gut microbiota is mechanistically relevant for a number of disease states and consequently has been incorporated as a key variable in personalised nutrition models within the resear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2019-05, Vol.11 (5), p.1134
Hauptverfasser: Biesiekierski, Jessica R, Jalanka, Jonna, Staudacher, Heidi M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1134
container_title Nutrients
container_volume 11
creator Biesiekierski, Jessica R
Jalanka, Jonna
Staudacher, Heidi M
description Dietary intervention is a challenge in clinical practice because of inter-individual variability in clinical response. Gut microbiota is mechanistically relevant for a number of disease states and consequently has been incorporated as a key variable in personalised nutrition models within the research context. This paper aims to review the evidence related to the predictive capacity of baseline microbiota for clinical response to dietary intervention in two specific health conditions, namely, obesity and irritable bowel syndrome (IBS). Clinical trials and larger predictive modelling studies were identified and critically evaluated. The findings reveal inconsistent evidence to support baseline microbiota as an accurate predictor of weight loss or glycaemic response in obesity, or as a predictor of symptom improvement in irritable bowel syndrome, in dietary intervention trials. Despite advancement in quantification methodologies, research in this area remains challenging and larger scale studies are needed until personalised nutrition is realistically achievable and can be translated to clinical practice.
doi_str_mv 10.3390/nu11051134
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6566829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286905364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-35e95c0723e2baf8f78ddc7a358d9c8c573cc38c94d4c4f30d4a07052ac9ed173</originalsourceid><addsrcrecordid>eNqFkV1LwzAYhYMobszd-AOk4I0I0yRv048bRaabwkSReR2yNNWMtqlJKvjvzdjU6Y2BkEAezntyDkKHBJ8B5Pi86QjBjBCId1Cf4pSOkiSG3a17Dw2dW-LVSnGawD7qASGUZIT20WQsmmja-eheS2sW2ngRjU3dGqe9Nk30aFWhpY-elGtN41TkTXStlRf2I5pbJXytGu8uD9BeKSqnhptzgJ4nN_Px7Wj2ML0bX81GMobcj4CpnMlgDBRdiDIr06woZCqAZUUuM8lSkBIymcdFLOMScBGLYJpRIXNVkBQG6GKt23aLWhUyDLei4q3VdXDEjdD890ujX_mLeecJS5KM5kHgZCNgzVunnOe1dlJVlWiU6RynNEtyzCDk9j8KlBAWRAN6_Addms42IQlOAVMgYa8ET9dUSNo5q8pv3wTzVZn8p8wAH23_9Bv9qg4-AWs8mPY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302310234</pqid></control><display><type>article</type><title>Can Gut Microbiota Composition Predict Response to Dietary Treatments?</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Biesiekierski, Jessica R ; Jalanka, Jonna ; Staudacher, Heidi M</creator><creatorcontrib>Biesiekierski, Jessica R ; Jalanka, Jonna ; Staudacher, Heidi M</creatorcontrib><description>Dietary intervention is a challenge in clinical practice because of inter-individual variability in clinical response. Gut microbiota is mechanistically relevant for a number of disease states and consequently has been incorporated as a key variable in personalised nutrition models within the research context. This paper aims to review the evidence related to the predictive capacity of baseline microbiota for clinical response to dietary intervention in two specific health conditions, namely, obesity and irritable bowel syndrome (IBS). Clinical trials and larger predictive modelling studies were identified and critically evaluated. The findings reveal inconsistent evidence to support baseline microbiota as an accurate predictor of weight loss or glycaemic response in obesity, or as a predictor of symptom improvement in irritable bowel syndrome, in dietary intervention trials. Despite advancement in quantification methodologies, research in this area remains challenging and larger scale studies are needed until personalised nutrition is realistically achievable and can be translated to clinical practice.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu11051134</identifier><identifier>PMID: 31121812</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Bacteria - classification ; Bacteria - isolation &amp; purification ; Blood Glucose - analysis ; clinical trials ; Diet ; Gastrointestinal Microbiome - physiology ; glycemic effect ; Humans ; intestinal microorganisms ; irritable bowel syndrome ; Irritable Bowel Syndrome - diet therapy ; Irritable Bowel Syndrome - microbiology ; Mice ; Microbiota ; nutrition ; nutritional intervention ; obesity ; Obesity - diet therapy ; Obesity - microbiology ; Review ; Treatment Outcome ; Weight Loss</subject><ispartof>Nutrients, 2019-05, Vol.11 (5), p.1134</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-35e95c0723e2baf8f78ddc7a358d9c8c573cc38c94d4c4f30d4a07052ac9ed173</citedby><cites>FETCH-LOGICAL-c439t-35e95c0723e2baf8f78ddc7a358d9c8c573cc38c94d4c4f30d4a07052ac9ed173</cites><orcidid>0000-0002-3847-8136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566829/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566829/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31121812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Biesiekierski, Jessica R</creatorcontrib><creatorcontrib>Jalanka, Jonna</creatorcontrib><creatorcontrib>Staudacher, Heidi M</creatorcontrib><title>Can Gut Microbiota Composition Predict Response to Dietary Treatments?</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>Dietary intervention is a challenge in clinical practice because of inter-individual variability in clinical response. Gut microbiota is mechanistically relevant for a number of disease states and consequently has been incorporated as a key variable in personalised nutrition models within the research context. This paper aims to review the evidence related to the predictive capacity of baseline microbiota for clinical response to dietary intervention in two specific health conditions, namely, obesity and irritable bowel syndrome (IBS). Clinical trials and larger predictive modelling studies were identified and critically evaluated. The findings reveal inconsistent evidence to support baseline microbiota as an accurate predictor of weight loss or glycaemic response in obesity, or as a predictor of symptom improvement in irritable bowel syndrome, in dietary intervention trials. Despite advancement in quantification methodologies, research in this area remains challenging and larger scale studies are needed until personalised nutrition is realistically achievable and can be translated to clinical practice.</description><subject>Animals</subject><subject>Bacteria - classification</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Blood Glucose - analysis</subject><subject>clinical trials</subject><subject>Diet</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>glycemic effect</subject><subject>Humans</subject><subject>intestinal microorganisms</subject><subject>irritable bowel syndrome</subject><subject>Irritable Bowel Syndrome - diet therapy</subject><subject>Irritable Bowel Syndrome - microbiology</subject><subject>Mice</subject><subject>Microbiota</subject><subject>nutrition</subject><subject>nutritional intervention</subject><subject>obesity</subject><subject>Obesity - diet therapy</subject><subject>Obesity - microbiology</subject><subject>Review</subject><subject>Treatment Outcome</subject><subject>Weight Loss</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkV1LwzAYhYMobszd-AOk4I0I0yRv048bRaabwkSReR2yNNWMtqlJKvjvzdjU6Y2BkEAezntyDkKHBJ8B5Pi86QjBjBCId1Cf4pSOkiSG3a17Dw2dW-LVSnGawD7qASGUZIT20WQsmmja-eheS2sW2ngRjU3dGqe9Nk30aFWhpY-elGtN41TkTXStlRf2I5pbJXytGu8uD9BeKSqnhptzgJ4nN_Px7Wj2ML0bX81GMobcj4CpnMlgDBRdiDIr06woZCqAZUUuM8lSkBIymcdFLOMScBGLYJpRIXNVkBQG6GKt23aLWhUyDLei4q3VdXDEjdD890ujX_mLeecJS5KM5kHgZCNgzVunnOe1dlJVlWiU6RynNEtyzCDk9j8KlBAWRAN6_Addms42IQlOAVMgYa8ET9dUSNo5q8pv3wTzVZn8p8wAH23_9Bv9qg4-AWs8mPY</recordid><startdate>20190522</startdate><enddate>20190522</enddate><creator>Biesiekierski, Jessica R</creator><creator>Jalanka, Jonna</creator><creator>Staudacher, Heidi M</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3847-8136</orcidid></search><sort><creationdate>20190522</creationdate><title>Can Gut Microbiota Composition Predict Response to Dietary Treatments?</title><author>Biesiekierski, Jessica R ; Jalanka, Jonna ; Staudacher, Heidi M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-35e95c0723e2baf8f78ddc7a358d9c8c573cc38c94d4c4f30d4a07052ac9ed173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Bacteria - classification</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Blood Glucose - analysis</topic><topic>clinical trials</topic><topic>Diet</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>glycemic effect</topic><topic>Humans</topic><topic>intestinal microorganisms</topic><topic>irritable bowel syndrome</topic><topic>Irritable Bowel Syndrome - diet therapy</topic><topic>Irritable Bowel Syndrome - microbiology</topic><topic>Mice</topic><topic>Microbiota</topic><topic>nutrition</topic><topic>nutritional intervention</topic><topic>obesity</topic><topic>Obesity - diet therapy</topic><topic>Obesity - microbiology</topic><topic>Review</topic><topic>Treatment Outcome</topic><topic>Weight Loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biesiekierski, Jessica R</creatorcontrib><creatorcontrib>Jalanka, Jonna</creatorcontrib><creatorcontrib>Staudacher, Heidi M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biesiekierski, Jessica R</au><au>Jalanka, Jonna</au><au>Staudacher, Heidi M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can Gut Microbiota Composition Predict Response to Dietary Treatments?</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2019-05-22</date><risdate>2019</risdate><volume>11</volume><issue>5</issue><spage>1134</spage><pages>1134-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>Dietary intervention is a challenge in clinical practice because of inter-individual variability in clinical response. Gut microbiota is mechanistically relevant for a number of disease states and consequently has been incorporated as a key variable in personalised nutrition models within the research context. This paper aims to review the evidence related to the predictive capacity of baseline microbiota for clinical response to dietary intervention in two specific health conditions, namely, obesity and irritable bowel syndrome (IBS). Clinical trials and larger predictive modelling studies were identified and critically evaluated. The findings reveal inconsistent evidence to support baseline microbiota as an accurate predictor of weight loss or glycaemic response in obesity, or as a predictor of symptom improvement in irritable bowel syndrome, in dietary intervention trials. Despite advancement in quantification methodologies, research in this area remains challenging and larger scale studies are needed until personalised nutrition is realistically achievable and can be translated to clinical practice.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31121812</pmid><doi>10.3390/nu11051134</doi><orcidid>https://orcid.org/0000-0002-3847-8136</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6643
ispartof Nutrients, 2019-05, Vol.11 (5), p.1134
issn 2072-6643
2072-6643
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6566829
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Animals
Bacteria - classification
Bacteria - isolation & purification
Blood Glucose - analysis
clinical trials
Diet
Gastrointestinal Microbiome - physiology
glycemic effect
Humans
intestinal microorganisms
irritable bowel syndrome
Irritable Bowel Syndrome - diet therapy
Irritable Bowel Syndrome - microbiology
Mice
Microbiota
nutrition
nutritional intervention
obesity
Obesity - diet therapy
Obesity - microbiology
Review
Treatment Outcome
Weight Loss
title Can Gut Microbiota Composition Predict Response to Dietary Treatments?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20Gut%20Microbiota%20Composition%20Predict%20Response%20to%20Dietary%20Treatments?&rft.jtitle=Nutrients&rft.au=Biesiekierski,%20Jessica%20R&rft.date=2019-05-22&rft.volume=11&rft.issue=5&rft.spage=1134&rft.pages=1134-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu11051134&rft_dat=%3Cproquest_pubme%3E2286905364%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302310234&rft_id=info:pmid/31121812&rfr_iscdi=true