Caveolin1 interacts with the glucocorticoid receptor in the lung but is dispensable for its anti-inflammatory actions in lung inflammation and Trichuris Muris infection
Glucocorticoids (Gcs) are widely prescribed anti-inflammatory compounds, which act through the glucocorticoid receptor (GR). Using an unbiased proteomics screen in lung tissue, we identified the membrane protein caveolin -1 (Cav1) as a direct interaction partner of the GR. In Cav1 knockout mice GR t...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-06, Vol.9 (1), p.8581-8581, Article 8581 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8581 |
---|---|
container_issue | 1 |
container_start_page | 8581 |
container_title | Scientific reports |
container_volume | 9 |
creator | Caratti, G. Poolman, T. Hurst, R. J. Ince, L. Knight, A. Krakowiak, K. Durrington, H. J. Gibbs, J. Else, K. J. Matthews, L. C. Ray, D. W. |
description | Glucocorticoids (Gcs) are widely prescribed anti-inflammatory compounds, which act through the glucocorticoid receptor (GR). Using an unbiased proteomics screen in lung tissue, we identified the membrane protein caveolin -1 (Cav1) as a direct interaction partner of the GR. In
Cav1
knockout mice GR transactivates anti-inflammatory genes, including
Dusp1
, more than in controls. We therefore determined the role of Cav1 in modulating Gc action in two models of pulmonary inflammation. We first tested innate responses in lung. Loss of
Cav1
impaired the inflammatory response to nebulized LPS, increasing cytokine/chemokine secretion from lung, but impairing neutrophil infiltration. Despite these changes to the inflammatory response, there was no
Cav1
effect on anti-inflammatory capacity of Gcs. We also tested GR/Cav1 crosstalk in a model of allergic airway inflammation.
Cav1
had a very mild effect on the inflammatory response, but no effect on the Gc response – with comparable immune cell infiltrate (macrophage, eosinophils, neutrophils), pathological score and PAS positive cells observed between both genotypes. Pursuing the Th2 adaptive immune response further we demonstrate that
Cav1
knockout mice retained their ability to expel the intestinal nematode parasite
T.muris
, which requires adaptive Th2 immune response for elimination. Therefore, Cav1 regulates innate immune responses in the lung, but does not have an effect on Th2-mediated adaptive immunity in lung or gut. Although we demonstrate that Cav1 regulates GR transactivation of anti-inflammatory genes, this does not translate to an effect on suppression of inflammation
in vivo
. |
doi_str_mv | 10.1038/s41598-019-44963-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6562044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2245654740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-5de2860d5cbff0c3b7ea532efbc6b97990c1b4f701ef8a5bd7243f3cd48cd2943</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAltiwCfiaxBskNOImFXXTri3HOZ5xldiD7RT1jXhMnEw7FBb1wrZ8vv-3z_GpqtcEvyeYdR8SJ0J2NSay5lw2rMbPqlOKuagpo_T5o_1JdZ7SDS5DUMmJfFmdMEI6KVtxWv3e6FsIo_MEOZ8hapMT-uXyDuUdoO04m2BCzM4EN6AIBvY5xIKu4XH2W9TPGbmEBpf24JPuR0B2QYqP9tnVzttRT5MuujtU7F3waTFYxcdgOS34gK6iM7s5FsMf61wAWDWvqhdWjwnO79ez6vrL56vNt_ri8uv3zaeL2ghCci0GoF2DB2F6a7FhfQtaMAq2N00vWymxIT23LSZgOy36oaWcWWYG3pmhlIedVR8Pvvu5n2Aw4HPUo9pHN-l4p4J26t-Idzu1DbeqEU0p-WLw7t4ghp8zpKwmlwyMo_YQ5qQo5aIRvOW4oG__Q2_CHH1Jr1BMkrbD7ULRA2ViSCmCPT6GYLX0gjr0giq9oNZeUIvozeM0jpKHny8AOwCphPwW4t-7n7D9A7TmxQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239178070</pqid></control><display><type>article</type><title>Caveolin1 interacts with the glucocorticoid receptor in the lung but is dispensable for its anti-inflammatory actions in lung inflammation and Trichuris Muris infection</title><source>PubMed Central Free</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Caratti, G. ; Poolman, T. ; Hurst, R. J. ; Ince, L. ; Knight, A. ; Krakowiak, K. ; Durrington, H. J. ; Gibbs, J. ; Else, K. J. ; Matthews, L. C. ; Ray, D. W.</creator><creatorcontrib>Caratti, G. ; Poolman, T. ; Hurst, R. J. ; Ince, L. ; Knight, A. ; Krakowiak, K. ; Durrington, H. J. ; Gibbs, J. ; Else, K. J. ; Matthews, L. C. ; Ray, D. W.</creatorcontrib><description>Glucocorticoids (Gcs) are widely prescribed anti-inflammatory compounds, which act through the glucocorticoid receptor (GR). Using an unbiased proteomics screen in lung tissue, we identified the membrane protein caveolin -1 (Cav1) as a direct interaction partner of the GR. In
Cav1
knockout mice GR transactivates anti-inflammatory genes, including
Dusp1
, more than in controls. We therefore determined the role of Cav1 in modulating Gc action in two models of pulmonary inflammation. We first tested innate responses in lung. Loss of
Cav1
impaired the inflammatory response to nebulized LPS, increasing cytokine/chemokine secretion from lung, but impairing neutrophil infiltration. Despite these changes to the inflammatory response, there was no
Cav1
effect on anti-inflammatory capacity of Gcs. We also tested GR/Cav1 crosstalk in a model of allergic airway inflammation.
Cav1
had a very mild effect on the inflammatory response, but no effect on the Gc response – with comparable immune cell infiltrate (macrophage, eosinophils, neutrophils), pathological score and PAS positive cells observed between both genotypes. Pursuing the Th2 adaptive immune response further we demonstrate that
Cav1
knockout mice retained their ability to expel the intestinal nematode parasite
T.muris
, which requires adaptive Th2 immune response for elimination. Therefore, Cav1 regulates innate immune responses in the lung, but does not have an effect on Th2-mediated adaptive immunity in lung or gut. Although we demonstrate that Cav1 regulates GR transactivation of anti-inflammatory genes, this does not translate to an effect on suppression of inflammation
in vivo
.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-44963-0</identifier><identifier>PMID: 31189975</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/21 ; 13/51 ; 38/77 ; 631/250/256/2516 ; 631/337/475/2290 ; 64/60 ; 82/58 ; Adaptive immunity ; Animals ; Caveolin ; Caveolin 1 - genetics ; Caveolin 1 - immunology ; Caveolin-1 ; Chemokines ; Genotypes ; Glucocorticoids ; Humanities and Social Sciences ; Immune response ; Immunity, Innate ; Inflammation ; Innate immunity ; Intestine ; Leukocytes (eosinophilic) ; Leukocytes (neutrophilic) ; Lipopolysaccharides ; Lung - immunology ; Lung - parasitology ; Lung - pathology ; Lung Diseases, Parasitic - genetics ; Lung Diseases, Parasitic - immunology ; Lungs ; Lymphocytes T ; Macrophages ; Membrane proteins ; Mice ; Mice, Knockout ; multidisciplinary ; Parasites ; Proteomics ; Receptors, Glucocorticoid - genetics ; Receptors, Glucocorticoid - immunology ; Respiratory tract ; Respiratory tract diseases ; Science ; Science (multidisciplinary) ; Th2 Cells - immunology ; Trichuriasis - genetics ; Trichuriasis - immunology ; Trichuriasis - pathology ; Trichuris - immunology</subject><ispartof>Scientific reports, 2019-06, Vol.9 (1), p.8581-8581, Article 8581</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-5de2860d5cbff0c3b7ea532efbc6b97990c1b4f701ef8a5bd7243f3cd48cd2943</citedby><cites>FETCH-LOGICAL-c511t-5de2860d5cbff0c3b7ea532efbc6b97990c1b4f701ef8a5bd7243f3cd48cd2943</cites><orcidid>0000-0002-7985-5532 ; 0000-0003-3495-2715 ; 0000-0002-2093-0876 ; 0000-0002-1576-8499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562044/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562044/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31189975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caratti, G.</creatorcontrib><creatorcontrib>Poolman, T.</creatorcontrib><creatorcontrib>Hurst, R. J.</creatorcontrib><creatorcontrib>Ince, L.</creatorcontrib><creatorcontrib>Knight, A.</creatorcontrib><creatorcontrib>Krakowiak, K.</creatorcontrib><creatorcontrib>Durrington, H. J.</creatorcontrib><creatorcontrib>Gibbs, J.</creatorcontrib><creatorcontrib>Else, K. J.</creatorcontrib><creatorcontrib>Matthews, L. C.</creatorcontrib><creatorcontrib>Ray, D. W.</creatorcontrib><title>Caveolin1 interacts with the glucocorticoid receptor in the lung but is dispensable for its anti-inflammatory actions in lung inflammation and Trichuris Muris infection</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Glucocorticoids (Gcs) are widely prescribed anti-inflammatory compounds, which act through the glucocorticoid receptor (GR). Using an unbiased proteomics screen in lung tissue, we identified the membrane protein caveolin -1 (Cav1) as a direct interaction partner of the GR. In
Cav1
knockout mice GR transactivates anti-inflammatory genes, including
Dusp1
, more than in controls. We therefore determined the role of Cav1 in modulating Gc action in two models of pulmonary inflammation. We first tested innate responses in lung. Loss of
Cav1
impaired the inflammatory response to nebulized LPS, increasing cytokine/chemokine secretion from lung, but impairing neutrophil infiltration. Despite these changes to the inflammatory response, there was no
Cav1
effect on anti-inflammatory capacity of Gcs. We also tested GR/Cav1 crosstalk in a model of allergic airway inflammation.
Cav1
had a very mild effect on the inflammatory response, but no effect on the Gc response – with comparable immune cell infiltrate (macrophage, eosinophils, neutrophils), pathological score and PAS positive cells observed between both genotypes. Pursuing the Th2 adaptive immune response further we demonstrate that
Cav1
knockout mice retained their ability to expel the intestinal nematode parasite
T.muris
, which requires adaptive Th2 immune response for elimination. Therefore, Cav1 regulates innate immune responses in the lung, but does not have an effect on Th2-mediated adaptive immunity in lung or gut. Although we demonstrate that Cav1 regulates GR transactivation of anti-inflammatory genes, this does not translate to an effect on suppression of inflammation
in vivo
.</description><subject>13/21</subject><subject>13/51</subject><subject>38/77</subject><subject>631/250/256/2516</subject><subject>631/337/475/2290</subject><subject>64/60</subject><subject>82/58</subject><subject>Adaptive immunity</subject><subject>Animals</subject><subject>Caveolin</subject><subject>Caveolin 1 - genetics</subject><subject>Caveolin 1 - immunology</subject><subject>Caveolin-1</subject><subject>Chemokines</subject><subject>Genotypes</subject><subject>Glucocorticoids</subject><subject>Humanities and Social Sciences</subject><subject>Immune response</subject><subject>Immunity, Innate</subject><subject>Inflammation</subject><subject>Innate immunity</subject><subject>Intestine</subject><subject>Leukocytes (eosinophilic)</subject><subject>Leukocytes (neutrophilic)</subject><subject>Lipopolysaccharides</subject><subject>Lung - immunology</subject><subject>Lung - parasitology</subject><subject>Lung - pathology</subject><subject>Lung Diseases, Parasitic - genetics</subject><subject>Lung Diseases, Parasitic - immunology</subject><subject>Lungs</subject><subject>Lymphocytes T</subject><subject>Macrophages</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>multidisciplinary</subject><subject>Parasites</subject><subject>Proteomics</subject><subject>Receptors, Glucocorticoid - genetics</subject><subject>Receptors, Glucocorticoid - immunology</subject><subject>Respiratory tract</subject><subject>Respiratory tract diseases</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Th2 Cells - immunology</subject><subject>Trichuriasis - genetics</subject><subject>Trichuriasis - immunology</subject><subject>Trichuriasis - pathology</subject><subject>Trichuris - immunology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAltiwCfiaxBskNOImFXXTri3HOZ5xldiD7RT1jXhMnEw7FBb1wrZ8vv-3z_GpqtcEvyeYdR8SJ0J2NSay5lw2rMbPqlOKuagpo_T5o_1JdZ7SDS5DUMmJfFmdMEI6KVtxWv3e6FsIo_MEOZ8hapMT-uXyDuUdoO04m2BCzM4EN6AIBvY5xIKu4XH2W9TPGbmEBpf24JPuR0B2QYqP9tnVzttRT5MuujtU7F3waTFYxcdgOS34gK6iM7s5FsMf61wAWDWvqhdWjwnO79ez6vrL56vNt_ri8uv3zaeL2ghCci0GoF2DB2F6a7FhfQtaMAq2N00vWymxIT23LSZgOy36oaWcWWYG3pmhlIedVR8Pvvu5n2Aw4HPUo9pHN-l4p4J26t-Idzu1DbeqEU0p-WLw7t4ghp8zpKwmlwyMo_YQ5qQo5aIRvOW4oG__Q2_CHH1Jr1BMkrbD7ULRA2ViSCmCPT6GYLX0gjr0giq9oNZeUIvozeM0jpKHny8AOwCphPwW4t-7n7D9A7TmxQA</recordid><startdate>20190612</startdate><enddate>20190612</enddate><creator>Caratti, G.</creator><creator>Poolman, T.</creator><creator>Hurst, R. J.</creator><creator>Ince, L.</creator><creator>Knight, A.</creator><creator>Krakowiak, K.</creator><creator>Durrington, H. J.</creator><creator>Gibbs, J.</creator><creator>Else, K. J.</creator><creator>Matthews, L. C.</creator><creator>Ray, D. W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7985-5532</orcidid><orcidid>https://orcid.org/0000-0003-3495-2715</orcidid><orcidid>https://orcid.org/0000-0002-2093-0876</orcidid><orcidid>https://orcid.org/0000-0002-1576-8499</orcidid></search><sort><creationdate>20190612</creationdate><title>Caveolin1 interacts with the glucocorticoid receptor in the lung but is dispensable for its anti-inflammatory actions in lung inflammation and Trichuris Muris infection</title><author>Caratti, G. ; Poolman, T. ; Hurst, R. J. ; Ince, L. ; Knight, A. ; Krakowiak, K. ; Durrington, H. J. ; Gibbs, J. ; Else, K. J. ; Matthews, L. C. ; Ray, D. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-5de2860d5cbff0c3b7ea532efbc6b97990c1b4f701ef8a5bd7243f3cd48cd2943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/21</topic><topic>13/51</topic><topic>38/77</topic><topic>631/250/256/2516</topic><topic>631/337/475/2290</topic><topic>64/60</topic><topic>82/58</topic><topic>Adaptive immunity</topic><topic>Animals</topic><topic>Caveolin</topic><topic>Caveolin 1 - genetics</topic><topic>Caveolin 1 - immunology</topic><topic>Caveolin-1</topic><topic>Chemokines</topic><topic>Genotypes</topic><topic>Glucocorticoids</topic><topic>Humanities and Social Sciences</topic><topic>Immune response</topic><topic>Immunity, Innate</topic><topic>Inflammation</topic><topic>Innate immunity</topic><topic>Intestine</topic><topic>Leukocytes (eosinophilic)</topic><topic>Leukocytes (neutrophilic)</topic><topic>Lipopolysaccharides</topic><topic>Lung - immunology</topic><topic>Lung - parasitology</topic><topic>Lung - pathology</topic><topic>Lung Diseases, Parasitic - genetics</topic><topic>Lung Diseases, Parasitic - immunology</topic><topic>Lungs</topic><topic>Lymphocytes T</topic><topic>Macrophages</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>multidisciplinary</topic><topic>Parasites</topic><topic>Proteomics</topic><topic>Receptors, Glucocorticoid - genetics</topic><topic>Receptors, Glucocorticoid - immunology</topic><topic>Respiratory tract</topic><topic>Respiratory tract diseases</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Th2 Cells - immunology</topic><topic>Trichuriasis - genetics</topic><topic>Trichuriasis - immunology</topic><topic>Trichuriasis - pathology</topic><topic>Trichuris - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caratti, G.</creatorcontrib><creatorcontrib>Poolman, T.</creatorcontrib><creatorcontrib>Hurst, R. J.</creatorcontrib><creatorcontrib>Ince, L.</creatorcontrib><creatorcontrib>Knight, A.</creatorcontrib><creatorcontrib>Krakowiak, K.</creatorcontrib><creatorcontrib>Durrington, H. J.</creatorcontrib><creatorcontrib>Gibbs, J.</creatorcontrib><creatorcontrib>Else, K. J.</creatorcontrib><creatorcontrib>Matthews, L. C.</creatorcontrib><creatorcontrib>Ray, D. W.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caratti, G.</au><au>Poolman, T.</au><au>Hurst, R. J.</au><au>Ince, L.</au><au>Knight, A.</au><au>Krakowiak, K.</au><au>Durrington, H. J.</au><au>Gibbs, J.</au><au>Else, K. J.</au><au>Matthews, L. C.</au><au>Ray, D. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caveolin1 interacts with the glucocorticoid receptor in the lung but is dispensable for its anti-inflammatory actions in lung inflammation and Trichuris Muris infection</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-06-12</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>8581</spage><epage>8581</epage><pages>8581-8581</pages><artnum>8581</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Glucocorticoids (Gcs) are widely prescribed anti-inflammatory compounds, which act through the glucocorticoid receptor (GR). Using an unbiased proteomics screen in lung tissue, we identified the membrane protein caveolin -1 (Cav1) as a direct interaction partner of the GR. In
Cav1
knockout mice GR transactivates anti-inflammatory genes, including
Dusp1
, more than in controls. We therefore determined the role of Cav1 in modulating Gc action in two models of pulmonary inflammation. We first tested innate responses in lung. Loss of
Cav1
impaired the inflammatory response to nebulized LPS, increasing cytokine/chemokine secretion from lung, but impairing neutrophil infiltration. Despite these changes to the inflammatory response, there was no
Cav1
effect on anti-inflammatory capacity of Gcs. We also tested GR/Cav1 crosstalk in a model of allergic airway inflammation.
Cav1
had a very mild effect on the inflammatory response, but no effect on the Gc response – with comparable immune cell infiltrate (macrophage, eosinophils, neutrophils), pathological score and PAS positive cells observed between both genotypes. Pursuing the Th2 adaptive immune response further we demonstrate that
Cav1
knockout mice retained their ability to expel the intestinal nematode parasite
T.muris
, which requires adaptive Th2 immune response for elimination. Therefore, Cav1 regulates innate immune responses in the lung, but does not have an effect on Th2-mediated adaptive immunity in lung or gut. Although we demonstrate that Cav1 regulates GR transactivation of anti-inflammatory genes, this does not translate to an effect on suppression of inflammation
in vivo
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31189975</pmid><doi>10.1038/s41598-019-44963-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7985-5532</orcidid><orcidid>https://orcid.org/0000-0003-3495-2715</orcidid><orcidid>https://orcid.org/0000-0002-2093-0876</orcidid><orcidid>https://orcid.org/0000-0002-1576-8499</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-06, Vol.9 (1), p.8581-8581, Article 8581 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6562044 |
source | PubMed Central Free; MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | 13/21 13/51 38/77 631/250/256/2516 631/337/475/2290 64/60 82/58 Adaptive immunity Animals Caveolin Caveolin 1 - genetics Caveolin 1 - immunology Caveolin-1 Chemokines Genotypes Glucocorticoids Humanities and Social Sciences Immune response Immunity, Innate Inflammation Innate immunity Intestine Leukocytes (eosinophilic) Leukocytes (neutrophilic) Lipopolysaccharides Lung - immunology Lung - parasitology Lung - pathology Lung Diseases, Parasitic - genetics Lung Diseases, Parasitic - immunology Lungs Lymphocytes T Macrophages Membrane proteins Mice Mice, Knockout multidisciplinary Parasites Proteomics Receptors, Glucocorticoid - genetics Receptors, Glucocorticoid - immunology Respiratory tract Respiratory tract diseases Science Science (multidisciplinary) Th2 Cells - immunology Trichuriasis - genetics Trichuriasis - immunology Trichuriasis - pathology Trichuris - immunology |
title | Caveolin1 interacts with the glucocorticoid receptor in the lung but is dispensable for its anti-inflammatory actions in lung inflammation and Trichuris Muris infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caveolin1%20interacts%20with%20the%20glucocorticoid%20receptor%20in%20the%20lung%20but%20is%20dispensable%20for%20its%20anti-inflammatory%20actions%20in%20lung%20inflammation%20and%20Trichuris%20Muris%20infection&rft.jtitle=Scientific%20reports&rft.au=Caratti,%20G.&rft.date=2019-06-12&rft.volume=9&rft.issue=1&rft.spage=8581&rft.epage=8581&rft.pages=8581-8581&rft.artnum=8581&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-44963-0&rft_dat=%3Cproquest_pubme%3E2245654740%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239178070&rft_id=info:pmid/31189975&rfr_iscdi=true |