A model of guided cell self-organization for rapid and spontaneous formation of functional vessels

Most achievements to engineer blood vessels are based on multiple-step manipulations such as manual sheet rolling or sequential cell seeding followed by scaffold degradation. Here, we propose a one-step strategy using a microfluidic coextrusion device to produce mature functional blood vessels. A ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2019-06, Vol.5 (6), p.eaau6562
Hauptverfasser: Andrique, L, Recher, G, Alessandri, K, Pujol, N, Feyeux, M, Bon, P, Cognet, L, Nassoy, P, Bikfalvi, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page eaau6562
container_title Science advances
container_volume 5
creator Andrique, L
Recher, G
Alessandri, K
Pujol, N
Feyeux, M
Bon, P
Cognet, L
Nassoy, P
Bikfalvi, A
description Most achievements to engineer blood vessels are based on multiple-step manipulations such as manual sheet rolling or sequential cell seeding followed by scaffold degradation. Here, we propose a one-step strategy using a microfluidic coextrusion device to produce mature functional blood vessels. A hollow alginate hydrogel tube is internally coated with extracellular matrix to direct the self-assembly of a mixture of endothelial cells (ECs) and smooth muscle cells (SMCs). The resulting vascular structure has the correct configuration of lumen, an inner lining of ECs, and outer sheath of SMCs. These "vesseloids" reach homeostasis within a day and exhibit the following properties expected for functional vessels (i) quiescence, (ii) perfusability, and (iii) contractility in response to vasoconstrictor agents. Together, these findings provide an original and simple strategy to generate functional artificial vessels and pave the way for further developments in vascular graft and tissue engineering and for deciphering the angiogenesis process.
doi_str_mv 10.1126/sciadv.aau6562
format Article
fullrecord <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31206014</sourcerecordid><originalsourceid>FETCH-LOGICAL-h197t-413cc1211461bf10ef2d87995e8fe7b268a37160d5b87b3a28a3a12ad65c142c3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbKm9epS9ekjd2U02yUUoRa1Q8KLnMNmPNpJkSzYJ6K93S1Wqp_l433lmGEKugS0AuLzzqkI9LhAHmUh-RqZcpEnEkzg7P8knZO79O2MMYikTyC_JRABnMtRTUi5p47SpqbN0O1TaaKpMXVNvahu5bott9Yl95VpqXUc73FeaYqup37u2x9a4wR-U5ugJEDu06pBjTUfjA8ZfkQuLtTfz7zgjb48Pr6t1tHl5el4tN9EO8rSPYhBKAYdwJZQWmLFcZ2meJyazJi25zFCkIJlOyiwtBfJQI3DUMlEQcyVm5P7I3Q9lY7Qybd9hXey7qsHuo3BYFX-VttoVWzcW4XmQxiIAbo-A3b-x9XJTHHpMMC6TPB4heG9Ol_3afz4rvgAE135X</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A model of guided cell self-organization for rapid and spontaneous formation of functional vessels</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Andrique, L ; Recher, G ; Alessandri, K ; Pujol, N ; Feyeux, M ; Bon, P ; Cognet, L ; Nassoy, P ; Bikfalvi, A</creator><creatorcontrib>Andrique, L ; Recher, G ; Alessandri, K ; Pujol, N ; Feyeux, M ; Bon, P ; Cognet, L ; Nassoy, P ; Bikfalvi, A</creatorcontrib><description>Most achievements to engineer blood vessels are based on multiple-step manipulations such as manual sheet rolling or sequential cell seeding followed by scaffold degradation. Here, we propose a one-step strategy using a microfluidic coextrusion device to produce mature functional blood vessels. A hollow alginate hydrogel tube is internally coated with extracellular matrix to direct the self-assembly of a mixture of endothelial cells (ECs) and smooth muscle cells (SMCs). The resulting vascular structure has the correct configuration of lumen, an inner lining of ECs, and outer sheath of SMCs. These "vesseloids" reach homeostasis within a day and exhibit the following properties expected for functional vessels (i) quiescence, (ii) perfusability, and (iii) contractility in response to vasoconstrictor agents. Together, these findings provide an original and simple strategy to generate functional artificial vessels and pave the way for further developments in vascular graft and tissue engineering and for deciphering the angiogenesis process.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aau6562</identifier><identifier>PMID: 31206014</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science (AAAS)</publisher><subject>Alginates - chemistry ; Biological Physics ; Blood Vessels - cytology ; Blood Vessels - drug effects ; Blood Vessels - physiology ; Cell Line ; Coculture Techniques ; Collagen - chemistry ; Drug Combinations ; Endothelin-1 - pharmacology ; Endothelium, Vascular - cytology ; Endothelium, Vascular - drug effects ; Endothelium, Vascular - physiology ; Extracellular Matrix - chemistry ; Health and Medicine ; Human Umbilical Vein Endothelial Cells - cytology ; Human Umbilical Vein Endothelial Cells - drug effects ; Human Umbilical Vein Endothelial Cells - physiology ; Humans ; Hydrogels - chemistry ; Laminin - chemistry ; Microfluidic Analytical Techniques ; Models, Cardiovascular ; Myocytes, Smooth Muscle - cytology ; Myocytes, Smooth Muscle - drug effects ; Myocytes, Smooth Muscle - physiology ; Physics ; Proteoglycans - chemistry ; SciAdv r-articles ; Tissue Engineering - methods ; Tissue Scaffolds ; Vasoconstriction - drug effects ; Vasoconstrictor Agents - pharmacology</subject><ispartof>Science advances, 2019-06, Vol.5 (6), p.eaau6562</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2019 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7820-5327 ; 0000-0003-4615-9431 ; 0000-0003-2216-2839 ; 0000-0003-4138-5229 ; 0000-0002-3573-5387 ; 0000-0001-9004-0118 ; 0000-0001-7840-8135 ; 0000-0002-1986-3493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561743/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561743/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31206014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03026594$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrique, L</creatorcontrib><creatorcontrib>Recher, G</creatorcontrib><creatorcontrib>Alessandri, K</creatorcontrib><creatorcontrib>Pujol, N</creatorcontrib><creatorcontrib>Feyeux, M</creatorcontrib><creatorcontrib>Bon, P</creatorcontrib><creatorcontrib>Cognet, L</creatorcontrib><creatorcontrib>Nassoy, P</creatorcontrib><creatorcontrib>Bikfalvi, A</creatorcontrib><title>A model of guided cell self-organization for rapid and spontaneous formation of functional vessels</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Most achievements to engineer blood vessels are based on multiple-step manipulations such as manual sheet rolling or sequential cell seeding followed by scaffold degradation. Here, we propose a one-step strategy using a microfluidic coextrusion device to produce mature functional blood vessels. A hollow alginate hydrogel tube is internally coated with extracellular matrix to direct the self-assembly of a mixture of endothelial cells (ECs) and smooth muscle cells (SMCs). The resulting vascular structure has the correct configuration of lumen, an inner lining of ECs, and outer sheath of SMCs. These "vesseloids" reach homeostasis within a day and exhibit the following properties expected for functional vessels (i) quiescence, (ii) perfusability, and (iii) contractility in response to vasoconstrictor agents. Together, these findings provide an original and simple strategy to generate functional artificial vessels and pave the way for further developments in vascular graft and tissue engineering and for deciphering the angiogenesis process.</description><subject>Alginates - chemistry</subject><subject>Biological Physics</subject><subject>Blood Vessels - cytology</subject><subject>Blood Vessels - drug effects</subject><subject>Blood Vessels - physiology</subject><subject>Cell Line</subject><subject>Coculture Techniques</subject><subject>Collagen - chemistry</subject><subject>Drug Combinations</subject><subject>Endothelin-1 - pharmacology</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Endothelium, Vascular - physiology</subject><subject>Extracellular Matrix - chemistry</subject><subject>Health and Medicine</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Human Umbilical Vein Endothelial Cells - drug effects</subject><subject>Human Umbilical Vein Endothelial Cells - physiology</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Laminin - chemistry</subject><subject>Microfluidic Analytical Techniques</subject><subject>Models, Cardiovascular</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Myocytes, Smooth Muscle - drug effects</subject><subject>Myocytes, Smooth Muscle - physiology</subject><subject>Physics</subject><subject>Proteoglycans - chemistry</subject><subject>SciAdv r-articles</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Vasoconstriction - drug effects</subject><subject>Vasoconstrictor Agents - pharmacology</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1Lw0AQhhdRbKm9epS9ekjd2U02yUUoRa1Q8KLnMNmPNpJkSzYJ6K93S1Wqp_l433lmGEKugS0AuLzzqkI9LhAHmUh-RqZcpEnEkzg7P8knZO79O2MMYikTyC_JRABnMtRTUi5p47SpqbN0O1TaaKpMXVNvahu5bott9Yl95VpqXUc73FeaYqup37u2x9a4wR-U5ugJEDu06pBjTUfjA8ZfkQuLtTfz7zgjb48Pr6t1tHl5el4tN9EO8rSPYhBKAYdwJZQWmLFcZ2meJyazJi25zFCkIJlOyiwtBfJQI3DUMlEQcyVm5P7I3Q9lY7Qybd9hXey7qsHuo3BYFX-VttoVWzcW4XmQxiIAbo-A3b-x9XJTHHpMMC6TPB4heG9Ol_3afz4rvgAE135X</recordid><startdate>20190612</startdate><enddate>20190612</enddate><creator>Andrique, L</creator><creator>Recher, G</creator><creator>Alessandri, K</creator><creator>Pujol, N</creator><creator>Feyeux, M</creator><creator>Bon, P</creator><creator>Cognet, L</creator><creator>Nassoy, P</creator><creator>Bikfalvi, A</creator><general>American Association for the Advancement of Science (AAAS)</general><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7820-5327</orcidid><orcidid>https://orcid.org/0000-0003-4615-9431</orcidid><orcidid>https://orcid.org/0000-0003-2216-2839</orcidid><orcidid>https://orcid.org/0000-0003-4138-5229</orcidid><orcidid>https://orcid.org/0000-0002-3573-5387</orcidid><orcidid>https://orcid.org/0000-0001-9004-0118</orcidid><orcidid>https://orcid.org/0000-0001-7840-8135</orcidid><orcidid>https://orcid.org/0000-0002-1986-3493</orcidid></search><sort><creationdate>20190612</creationdate><title>A model of guided cell self-organization for rapid and spontaneous formation of functional vessels</title><author>Andrique, L ; Recher, G ; Alessandri, K ; Pujol, N ; Feyeux, M ; Bon, P ; Cognet, L ; Nassoy, P ; Bikfalvi, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h197t-413cc1211461bf10ef2d87995e8fe7b268a37160d5b87b3a28a3a12ad65c142c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alginates - chemistry</topic><topic>Biological Physics</topic><topic>Blood Vessels - cytology</topic><topic>Blood Vessels - drug effects</topic><topic>Blood Vessels - physiology</topic><topic>Cell Line</topic><topic>Coculture Techniques</topic><topic>Collagen - chemistry</topic><topic>Drug Combinations</topic><topic>Endothelin-1 - pharmacology</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Endothelium, Vascular - physiology</topic><topic>Extracellular Matrix - chemistry</topic><topic>Health and Medicine</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Human Umbilical Vein Endothelial Cells - drug effects</topic><topic>Human Umbilical Vein Endothelial Cells - physiology</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Laminin - chemistry</topic><topic>Microfluidic Analytical Techniques</topic><topic>Models, Cardiovascular</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Myocytes, Smooth Muscle - drug effects</topic><topic>Myocytes, Smooth Muscle - physiology</topic><topic>Physics</topic><topic>Proteoglycans - chemistry</topic><topic>SciAdv r-articles</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Vasoconstriction - drug effects</topic><topic>Vasoconstrictor Agents - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrique, L</creatorcontrib><creatorcontrib>Recher, G</creatorcontrib><creatorcontrib>Alessandri, K</creatorcontrib><creatorcontrib>Pujol, N</creatorcontrib><creatorcontrib>Feyeux, M</creatorcontrib><creatorcontrib>Bon, P</creatorcontrib><creatorcontrib>Cognet, L</creatorcontrib><creatorcontrib>Nassoy, P</creatorcontrib><creatorcontrib>Bikfalvi, A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrique, L</au><au>Recher, G</au><au>Alessandri, K</au><au>Pujol, N</au><au>Feyeux, M</au><au>Bon, P</au><au>Cognet, L</au><au>Nassoy, P</au><au>Bikfalvi, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model of guided cell self-organization for rapid and spontaneous formation of functional vessels</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2019-06-12</date><risdate>2019</risdate><volume>5</volume><issue>6</issue><spage>eaau6562</spage><pages>eaau6562-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Most achievements to engineer blood vessels are based on multiple-step manipulations such as manual sheet rolling or sequential cell seeding followed by scaffold degradation. Here, we propose a one-step strategy using a microfluidic coextrusion device to produce mature functional blood vessels. A hollow alginate hydrogel tube is internally coated with extracellular matrix to direct the self-assembly of a mixture of endothelial cells (ECs) and smooth muscle cells (SMCs). The resulting vascular structure has the correct configuration of lumen, an inner lining of ECs, and outer sheath of SMCs. These "vesseloids" reach homeostasis within a day and exhibit the following properties expected for functional vessels (i) quiescence, (ii) perfusability, and (iii) contractility in response to vasoconstrictor agents. Together, these findings provide an original and simple strategy to generate functional artificial vessels and pave the way for further developments in vascular graft and tissue engineering and for deciphering the angiogenesis process.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science (AAAS)</pub><pmid>31206014</pmid><doi>10.1126/sciadv.aau6562</doi><orcidid>https://orcid.org/0000-0002-7820-5327</orcidid><orcidid>https://orcid.org/0000-0003-4615-9431</orcidid><orcidid>https://orcid.org/0000-0003-2216-2839</orcidid><orcidid>https://orcid.org/0000-0003-4138-5229</orcidid><orcidid>https://orcid.org/0000-0002-3573-5387</orcidid><orcidid>https://orcid.org/0000-0001-9004-0118</orcidid><orcidid>https://orcid.org/0000-0001-7840-8135</orcidid><orcidid>https://orcid.org/0000-0002-1986-3493</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2019-06, Vol.5 (6), p.eaau6562
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561743
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Alginates - chemistry
Biological Physics
Blood Vessels - cytology
Blood Vessels - drug effects
Blood Vessels - physiology
Cell Line
Coculture Techniques
Collagen - chemistry
Drug Combinations
Endothelin-1 - pharmacology
Endothelium, Vascular - cytology
Endothelium, Vascular - drug effects
Endothelium, Vascular - physiology
Extracellular Matrix - chemistry
Health and Medicine
Human Umbilical Vein Endothelial Cells - cytology
Human Umbilical Vein Endothelial Cells - drug effects
Human Umbilical Vein Endothelial Cells - physiology
Humans
Hydrogels - chemistry
Laminin - chemistry
Microfluidic Analytical Techniques
Models, Cardiovascular
Myocytes, Smooth Muscle - cytology
Myocytes, Smooth Muscle - drug effects
Myocytes, Smooth Muscle - physiology
Physics
Proteoglycans - chemistry
SciAdv r-articles
Tissue Engineering - methods
Tissue Scaffolds
Vasoconstriction - drug effects
Vasoconstrictor Agents - pharmacology
title A model of guided cell self-organization for rapid and spontaneous formation of functional vessels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20of%20guided%20cell%20self-organization%20for%20rapid%20and%20spontaneous%20formation%20of%20functional%20vessels&rft.jtitle=Science%20advances&rft.au=Andrique,%20L&rft.date=2019-06-12&rft.volume=5&rft.issue=6&rft.spage=eaau6562&rft.pages=eaau6562-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aau6562&rft_dat=%3Cpubmed_hal_p%3E31206014%3C/pubmed_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31206014&rfr_iscdi=true