A model of guided cell self-organization for rapid and spontaneous formation of functional vessels
Most achievements to engineer blood vessels are based on multiple-step manipulations such as manual sheet rolling or sequential cell seeding followed by scaffold degradation. Here, we propose a one-step strategy using a microfluidic coextrusion device to produce mature functional blood vessels. A ho...
Gespeichert in:
Veröffentlicht in: | Science advances 2019-06, Vol.5 (6), p.eaau6562 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | eaau6562 |
container_title | Science advances |
container_volume | 5 |
creator | Andrique, L Recher, G Alessandri, K Pujol, N Feyeux, M Bon, P Cognet, L Nassoy, P Bikfalvi, A |
description | Most achievements to engineer blood vessels are based on multiple-step manipulations such as manual sheet rolling or sequential cell seeding followed by scaffold degradation. Here, we propose a one-step strategy using a microfluidic coextrusion device to produce mature functional blood vessels. A hollow alginate hydrogel tube is internally coated with extracellular matrix to direct the self-assembly of a mixture of endothelial cells (ECs) and smooth muscle cells (SMCs). The resulting vascular structure has the correct configuration of lumen, an inner lining of ECs, and outer sheath of SMCs. These "vesseloids" reach homeostasis within a day and exhibit the following properties expected for functional vessels (i) quiescence, (ii) perfusability, and (iii) contractility in response to vasoconstrictor agents. Together, these findings provide an original and simple strategy to generate functional artificial vessels and pave the way for further developments in vascular graft and tissue engineering and for deciphering the angiogenesis process. |
doi_str_mv | 10.1126/sciadv.aau6562 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31206014</sourcerecordid><originalsourceid>FETCH-LOGICAL-h197t-413cc1211461bf10ef2d87995e8fe7b268a37160d5b87b3a28a3a12ad65c142c3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbKm9epS9ekjd2U02yUUoRa1Q8KLnMNmPNpJkSzYJ6K93S1Wqp_l433lmGEKugS0AuLzzqkI9LhAHmUh-RqZcpEnEkzg7P8knZO79O2MMYikTyC_JRABnMtRTUi5p47SpqbN0O1TaaKpMXVNvahu5bott9Yl95VpqXUc73FeaYqup37u2x9a4wR-U5ugJEDu06pBjTUfjA8ZfkQuLtTfz7zgjb48Pr6t1tHl5el4tN9EO8rSPYhBKAYdwJZQWmLFcZ2meJyazJi25zFCkIJlOyiwtBfJQI3DUMlEQcyVm5P7I3Q9lY7Qybd9hXey7qsHuo3BYFX-VttoVWzcW4XmQxiIAbo-A3b-x9XJTHHpMMC6TPB4heG9Ol_3afz4rvgAE135X</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A model of guided cell self-organization for rapid and spontaneous formation of functional vessels</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Andrique, L ; Recher, G ; Alessandri, K ; Pujol, N ; Feyeux, M ; Bon, P ; Cognet, L ; Nassoy, P ; Bikfalvi, A</creator><creatorcontrib>Andrique, L ; Recher, G ; Alessandri, K ; Pujol, N ; Feyeux, M ; Bon, P ; Cognet, L ; Nassoy, P ; Bikfalvi, A</creatorcontrib><description>Most achievements to engineer blood vessels are based on multiple-step manipulations such as manual sheet rolling or sequential cell seeding followed by scaffold degradation. Here, we propose a one-step strategy using a microfluidic coextrusion device to produce mature functional blood vessels. A hollow alginate hydrogel tube is internally coated with extracellular matrix to direct the self-assembly of a mixture of endothelial cells (ECs) and smooth muscle cells (SMCs). The resulting vascular structure has the correct configuration of lumen, an inner lining of ECs, and outer sheath of SMCs. These "vesseloids" reach homeostasis within a day and exhibit the following properties expected for functional vessels (i) quiescence, (ii) perfusability, and (iii) contractility in response to vasoconstrictor agents. Together, these findings provide an original and simple strategy to generate functional artificial vessels and pave the way for further developments in vascular graft and tissue engineering and for deciphering the angiogenesis process.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aau6562</identifier><identifier>PMID: 31206014</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science (AAAS)</publisher><subject>Alginates - chemistry ; Biological Physics ; Blood Vessels - cytology ; Blood Vessels - drug effects ; Blood Vessels - physiology ; Cell Line ; Coculture Techniques ; Collagen - chemistry ; Drug Combinations ; Endothelin-1 - pharmacology ; Endothelium, Vascular - cytology ; Endothelium, Vascular - drug effects ; Endothelium, Vascular - physiology ; Extracellular Matrix - chemistry ; Health and Medicine ; Human Umbilical Vein Endothelial Cells - cytology ; Human Umbilical Vein Endothelial Cells - drug effects ; Human Umbilical Vein Endothelial Cells - physiology ; Humans ; Hydrogels - chemistry ; Laminin - chemistry ; Microfluidic Analytical Techniques ; Models, Cardiovascular ; Myocytes, Smooth Muscle - cytology ; Myocytes, Smooth Muscle - drug effects ; Myocytes, Smooth Muscle - physiology ; Physics ; Proteoglycans - chemistry ; SciAdv r-articles ; Tissue Engineering - methods ; Tissue Scaffolds ; Vasoconstriction - drug effects ; Vasoconstrictor Agents - pharmacology</subject><ispartof>Science advances, 2019-06, Vol.5 (6), p.eaau6562</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2019 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7820-5327 ; 0000-0003-4615-9431 ; 0000-0003-2216-2839 ; 0000-0003-4138-5229 ; 0000-0002-3573-5387 ; 0000-0001-9004-0118 ; 0000-0001-7840-8135 ; 0000-0002-1986-3493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561743/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561743/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31206014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03026594$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrique, L</creatorcontrib><creatorcontrib>Recher, G</creatorcontrib><creatorcontrib>Alessandri, K</creatorcontrib><creatorcontrib>Pujol, N</creatorcontrib><creatorcontrib>Feyeux, M</creatorcontrib><creatorcontrib>Bon, P</creatorcontrib><creatorcontrib>Cognet, L</creatorcontrib><creatorcontrib>Nassoy, P</creatorcontrib><creatorcontrib>Bikfalvi, A</creatorcontrib><title>A model of guided cell self-organization for rapid and spontaneous formation of functional vessels</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Most achievements to engineer blood vessels are based on multiple-step manipulations such as manual sheet rolling or sequential cell seeding followed by scaffold degradation. Here, we propose a one-step strategy using a microfluidic coextrusion device to produce mature functional blood vessels. A hollow alginate hydrogel tube is internally coated with extracellular matrix to direct the self-assembly of a mixture of endothelial cells (ECs) and smooth muscle cells (SMCs). The resulting vascular structure has the correct configuration of lumen, an inner lining of ECs, and outer sheath of SMCs. These "vesseloids" reach homeostasis within a day and exhibit the following properties expected for functional vessels (i) quiescence, (ii) perfusability, and (iii) contractility in response to vasoconstrictor agents. Together, these findings provide an original and simple strategy to generate functional artificial vessels and pave the way for further developments in vascular graft and tissue engineering and for deciphering the angiogenesis process.</description><subject>Alginates - chemistry</subject><subject>Biological Physics</subject><subject>Blood Vessels - cytology</subject><subject>Blood Vessels - drug effects</subject><subject>Blood Vessels - physiology</subject><subject>Cell Line</subject><subject>Coculture Techniques</subject><subject>Collagen - chemistry</subject><subject>Drug Combinations</subject><subject>Endothelin-1 - pharmacology</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Endothelium, Vascular - physiology</subject><subject>Extracellular Matrix - chemistry</subject><subject>Health and Medicine</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Human Umbilical Vein Endothelial Cells - drug effects</subject><subject>Human Umbilical Vein Endothelial Cells - physiology</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Laminin - chemistry</subject><subject>Microfluidic Analytical Techniques</subject><subject>Models, Cardiovascular</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Myocytes, Smooth Muscle - drug effects</subject><subject>Myocytes, Smooth Muscle - physiology</subject><subject>Physics</subject><subject>Proteoglycans - chemistry</subject><subject>SciAdv r-articles</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Vasoconstriction - drug effects</subject><subject>Vasoconstrictor Agents - pharmacology</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1Lw0AQhhdRbKm9epS9ekjd2U02yUUoRa1Q8KLnMNmPNpJkSzYJ6K93S1Wqp_l433lmGEKugS0AuLzzqkI9LhAHmUh-RqZcpEnEkzg7P8knZO79O2MMYikTyC_JRABnMtRTUi5p47SpqbN0O1TaaKpMXVNvahu5bott9Yl95VpqXUc73FeaYqup37u2x9a4wR-U5ugJEDu06pBjTUfjA8ZfkQuLtTfz7zgjb48Pr6t1tHl5el4tN9EO8rSPYhBKAYdwJZQWmLFcZ2meJyazJi25zFCkIJlOyiwtBfJQI3DUMlEQcyVm5P7I3Q9lY7Qybd9hXey7qsHuo3BYFX-VttoVWzcW4XmQxiIAbo-A3b-x9XJTHHpMMC6TPB4heG9Ol_3afz4rvgAE135X</recordid><startdate>20190612</startdate><enddate>20190612</enddate><creator>Andrique, L</creator><creator>Recher, G</creator><creator>Alessandri, K</creator><creator>Pujol, N</creator><creator>Feyeux, M</creator><creator>Bon, P</creator><creator>Cognet, L</creator><creator>Nassoy, P</creator><creator>Bikfalvi, A</creator><general>American Association for the Advancement of Science (AAAS)</general><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7820-5327</orcidid><orcidid>https://orcid.org/0000-0003-4615-9431</orcidid><orcidid>https://orcid.org/0000-0003-2216-2839</orcidid><orcidid>https://orcid.org/0000-0003-4138-5229</orcidid><orcidid>https://orcid.org/0000-0002-3573-5387</orcidid><orcidid>https://orcid.org/0000-0001-9004-0118</orcidid><orcidid>https://orcid.org/0000-0001-7840-8135</orcidid><orcidid>https://orcid.org/0000-0002-1986-3493</orcidid></search><sort><creationdate>20190612</creationdate><title>A model of guided cell self-organization for rapid and spontaneous formation of functional vessels</title><author>Andrique, L ; Recher, G ; Alessandri, K ; Pujol, N ; Feyeux, M ; Bon, P ; Cognet, L ; Nassoy, P ; Bikfalvi, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h197t-413cc1211461bf10ef2d87995e8fe7b268a37160d5b87b3a28a3a12ad65c142c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alginates - chemistry</topic><topic>Biological Physics</topic><topic>Blood Vessels - cytology</topic><topic>Blood Vessels - drug effects</topic><topic>Blood Vessels - physiology</topic><topic>Cell Line</topic><topic>Coculture Techniques</topic><topic>Collagen - chemistry</topic><topic>Drug Combinations</topic><topic>Endothelin-1 - pharmacology</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Endothelium, Vascular - physiology</topic><topic>Extracellular Matrix - chemistry</topic><topic>Health and Medicine</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Human Umbilical Vein Endothelial Cells - drug effects</topic><topic>Human Umbilical Vein Endothelial Cells - physiology</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Laminin - chemistry</topic><topic>Microfluidic Analytical Techniques</topic><topic>Models, Cardiovascular</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Myocytes, Smooth Muscle - drug effects</topic><topic>Myocytes, Smooth Muscle - physiology</topic><topic>Physics</topic><topic>Proteoglycans - chemistry</topic><topic>SciAdv r-articles</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Vasoconstriction - drug effects</topic><topic>Vasoconstrictor Agents - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrique, L</creatorcontrib><creatorcontrib>Recher, G</creatorcontrib><creatorcontrib>Alessandri, K</creatorcontrib><creatorcontrib>Pujol, N</creatorcontrib><creatorcontrib>Feyeux, M</creatorcontrib><creatorcontrib>Bon, P</creatorcontrib><creatorcontrib>Cognet, L</creatorcontrib><creatorcontrib>Nassoy, P</creatorcontrib><creatorcontrib>Bikfalvi, A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrique, L</au><au>Recher, G</au><au>Alessandri, K</au><au>Pujol, N</au><au>Feyeux, M</au><au>Bon, P</au><au>Cognet, L</au><au>Nassoy, P</au><au>Bikfalvi, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model of guided cell self-organization for rapid and spontaneous formation of functional vessels</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2019-06-12</date><risdate>2019</risdate><volume>5</volume><issue>6</issue><spage>eaau6562</spage><pages>eaau6562-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Most achievements to engineer blood vessels are based on multiple-step manipulations such as manual sheet rolling or sequential cell seeding followed by scaffold degradation. Here, we propose a one-step strategy using a microfluidic coextrusion device to produce mature functional blood vessels. A hollow alginate hydrogel tube is internally coated with extracellular matrix to direct the self-assembly of a mixture of endothelial cells (ECs) and smooth muscle cells (SMCs). The resulting vascular structure has the correct configuration of lumen, an inner lining of ECs, and outer sheath of SMCs. These "vesseloids" reach homeostasis within a day and exhibit the following properties expected for functional vessels (i) quiescence, (ii) perfusability, and (iii) contractility in response to vasoconstrictor agents. Together, these findings provide an original and simple strategy to generate functional artificial vessels and pave the way for further developments in vascular graft and tissue engineering and for deciphering the angiogenesis process.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science (AAAS)</pub><pmid>31206014</pmid><doi>10.1126/sciadv.aau6562</doi><orcidid>https://orcid.org/0000-0002-7820-5327</orcidid><orcidid>https://orcid.org/0000-0003-4615-9431</orcidid><orcidid>https://orcid.org/0000-0003-2216-2839</orcidid><orcidid>https://orcid.org/0000-0003-4138-5229</orcidid><orcidid>https://orcid.org/0000-0002-3573-5387</orcidid><orcidid>https://orcid.org/0000-0001-9004-0118</orcidid><orcidid>https://orcid.org/0000-0001-7840-8135</orcidid><orcidid>https://orcid.org/0000-0002-1986-3493</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2019-06, Vol.5 (6), p.eaau6562 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561743 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Alginates - chemistry Biological Physics Blood Vessels - cytology Blood Vessels - drug effects Blood Vessels - physiology Cell Line Coculture Techniques Collagen - chemistry Drug Combinations Endothelin-1 - pharmacology Endothelium, Vascular - cytology Endothelium, Vascular - drug effects Endothelium, Vascular - physiology Extracellular Matrix - chemistry Health and Medicine Human Umbilical Vein Endothelial Cells - cytology Human Umbilical Vein Endothelial Cells - drug effects Human Umbilical Vein Endothelial Cells - physiology Humans Hydrogels - chemistry Laminin - chemistry Microfluidic Analytical Techniques Models, Cardiovascular Myocytes, Smooth Muscle - cytology Myocytes, Smooth Muscle - drug effects Myocytes, Smooth Muscle - physiology Physics Proteoglycans - chemistry SciAdv r-articles Tissue Engineering - methods Tissue Scaffolds Vasoconstriction - drug effects Vasoconstrictor Agents - pharmacology |
title | A model of guided cell self-organization for rapid and spontaneous formation of functional vessels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20of%20guided%20cell%20self-organization%20for%20rapid%20and%20spontaneous%20formation%20of%20functional%20vessels&rft.jtitle=Science%20advances&rft.au=Andrique,%20L&rft.date=2019-06-12&rft.volume=5&rft.issue=6&rft.spage=eaau6562&rft.pages=eaau6562-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aau6562&rft_dat=%3Cpubmed_hal_p%3E31206014%3C/pubmed_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31206014&rfr_iscdi=true |