Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons

The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via fee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2019-06, Vol.39 (24), p.4727-4737
Hauptverfasser: Assous, Maxime, Dautan, Daniel, Tepper, James M, Mena-Segovia, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4737
container_issue 24
container_start_page 4727
container_title The Journal of neuroscience
container_volume 39
creator Assous, Maxime
Dautan, Daniel
Tepper, James M
Mena-Segovia, Juan
description The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via feedforward inhibition. Understanding how different excitatory inputs are integrated within the striatal circuitry and how they regulate striatal output is crucial for understanding basal ganglia function and related behaviors. Here, using VGLUT2 mice from both sexes, we report the existence of a glutamatergic projection from the mesencephalic locomotor region to the striatum that avoids the spiny neurons and selectively innervates interneurons. Specifically, optogenetic activation of glutamatergic axons from the pedunculopontine nucleus induced monosynaptic excitation in most recorded striatal cholinergic interneurons and GABAergic fast-spiking interneurons. Optogenetic stimulation in awake head-fixed mice consistently induced an increase in the firing rate of putative cholinergic interneurons and fast-spiking interneurons. In contrast, this stimulation did not induce excitatory responses in spiny neurons but rather disynaptic inhibitory responses and a decrease in their firing rate , suggesting a feedforward mechanism mediating the inhibition of spiny projection neurons through the selective activation of striatal interneurons. Furthermore, unilateral stimulation of pedunculopontine nucleus glutamatergic axons in the striatum induced ipsilateral head rotations consistent with the inhibition of striatal output neurons. Our results demonstrate the existence of a unique interneuron-specific midbrain glutamatergic input to the striatum that exclusively recruits feedforward inhibition mechanisms. Glutamatergic inputs to the striatum have been shown to target both striatal projection neurons and interneurons and have been proposed to regulate spike timing of the projection neurons in part through feedforward inhibition. Here, we reveal the existence of a midbrain source of glutamatergic innervation to the striatum, originating in the pedunculopontine nucleus. Remarkably, this novel input selectively targets striatal interneurons, avoiding the projection neurons. Furthermore, we show that this selective innervation of interneurons can regulate the firing of the spiny projection neurons and inhibit the striatal output via feedforward inhibition. Together, our results des
doi_str_mv 10.1523/JNEUROSCI.2913-18.2019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204695032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-1e824b0f9c9535002069b704cef12cc4c17c8a8d8cb6ab66daaea9786876dbe73</originalsourceid><addsrcrecordid>eNpdkVFv0zAUhS0EYmXwFyZLvPCS7tpJnPgFCVXb6DR1E92eLce5aT2ldnGcTv0R_GdcdVTAkx_ud87xvYeQCwZTVvL88nZx9fTjfjmbT7lkecbqKQcm35BJmsqMF8DekgnwCjJRVMUZ-TAMzwBQAavek7McZMlrxibk1wO2ozNj77feReuQ3vRj1BsdMaysoQscg3cDfQh-Z1ukmi78Dnu69GMwSH1HrxHbzocXHVo6d2vb2Gi9o9bRuEa6jMHqOG5os6dL7NFEm-R7-qjDClPeKmlSlDvGfCTvOt0P-On1PSdP11ePs-_Z3f3NfPbtLjOFLGPGsOZFA500ssxLAA5CNhUUBjvGjSkMq0yt67Y2jdCNEK3WqGVVi7oSbYNVfk6-Hn23Y7PB1qCLQfdqG-xGh73y2qp_J86u1crvlCgFE1Ikgy-vBsH_HHGIamMHg32vHfpxUJxDIWQJOU_o5__Q53Q7l9ZLVFGKEhiDRIkjZYIfhoDd6TMM1KFxdWpcHRpXrFaHxpPw4u9VTrI_Fee_AYPJrHs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245650110</pqid></control><display><type>article</type><title>Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Assous, Maxime ; Dautan, Daniel ; Tepper, James M ; Mena-Segovia, Juan</creator><creatorcontrib>Assous, Maxime ; Dautan, Daniel ; Tepper, James M ; Mena-Segovia, Juan</creatorcontrib><description>The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via feedforward inhibition. Understanding how different excitatory inputs are integrated within the striatal circuitry and how they regulate striatal output is crucial for understanding basal ganglia function and related behaviors. Here, using VGLUT2 mice from both sexes, we report the existence of a glutamatergic projection from the mesencephalic locomotor region to the striatum that avoids the spiny neurons and selectively innervates interneurons. Specifically, optogenetic activation of glutamatergic axons from the pedunculopontine nucleus induced monosynaptic excitation in most recorded striatal cholinergic interneurons and GABAergic fast-spiking interneurons. Optogenetic stimulation in awake head-fixed mice consistently induced an increase in the firing rate of putative cholinergic interneurons and fast-spiking interneurons. In contrast, this stimulation did not induce excitatory responses in spiny neurons but rather disynaptic inhibitory responses and a decrease in their firing rate , suggesting a feedforward mechanism mediating the inhibition of spiny projection neurons through the selective activation of striatal interneurons. Furthermore, unilateral stimulation of pedunculopontine nucleus glutamatergic axons in the striatum induced ipsilateral head rotations consistent with the inhibition of striatal output neurons. Our results demonstrate the existence of a unique interneuron-specific midbrain glutamatergic input to the striatum that exclusively recruits feedforward inhibition mechanisms. Glutamatergic inputs to the striatum have been shown to target both striatal projection neurons and interneurons and have been proposed to regulate spike timing of the projection neurons in part through feedforward inhibition. Here, we reveal the existence of a midbrain source of glutamatergic innervation to the striatum, originating in the pedunculopontine nucleus. Remarkably, this novel input selectively targets striatal interneurons, avoiding the projection neurons. Furthermore, we show that this selective innervation of interneurons can regulate the firing of the spiny projection neurons and inhibit the striatal output via feedforward inhibition. Together, our results describe a unique source of excitatory innervation to the striatum which selectively recruits feedforward inhibition of spiny neurons without any accompanying excitation.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2913-18.2019</identifier><identifier>PMID: 30952811</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Activation ; Animals ; Animals, Genetically Modified ; Axons ; Axons - physiology ; Basal ganglia ; Basal Ganglia - physiology ; Cholinergics ; Circuits ; Female ; Firing rate ; gamma-Aminobutyric Acid - physiology ; Ganglia ; Glutamatergic transmission ; Head movement ; Inhibition ; Interneurons ; Interneurons - physiology ; Locomotion - physiology ; Male ; Mesencephalon ; Mesencephalon - physiology ; Mice ; Neostriatum ; Neostriatum - cytology ; Neostriatum - physiology ; Nerve Net - cytology ; Nerve Net - physiology ; Neural Inhibition - physiology ; Neurons ; Neurons - physiology ; Optogenetics ; Parasympathetic Nervous System - physiology ; Pedunculopontine tegmental nucleus ; Pedunculopontine Tegmental Nucleus - cytology ; Pedunculopontine Tegmental Nucleus - physiology ; Projection ; Spiking ; Spiny neurons ; Stimulation ; Thalamus ; Vesicular Glutamate Transport Protein 2 - genetics ; γ-Aminobutyric acid</subject><ispartof>The Journal of neuroscience, 2019-06, Vol.39 (24), p.4727-4737</ispartof><rights>Copyright © 2019 the authors.</rights><rights>Copyright Society for Neuroscience Jun 12, 2019</rights><rights>Copyright © 2019 the authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-1e824b0f9c9535002069b704cef12cc4c17c8a8d8cb6ab66daaea9786876dbe73</citedby><orcidid>0000-0001-6039-816X ; 0000-0003-1001-5727 ; 0000-0002-8643-4082 ; 0000-0002-9991-8254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561696/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561696/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30952811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Assous, Maxime</creatorcontrib><creatorcontrib>Dautan, Daniel</creatorcontrib><creatorcontrib>Tepper, James M</creatorcontrib><creatorcontrib>Mena-Segovia, Juan</creatorcontrib><title>Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via feedforward inhibition. Understanding how different excitatory inputs are integrated within the striatal circuitry and how they regulate striatal output is crucial for understanding basal ganglia function and related behaviors. Here, using VGLUT2 mice from both sexes, we report the existence of a glutamatergic projection from the mesencephalic locomotor region to the striatum that avoids the spiny neurons and selectively innervates interneurons. Specifically, optogenetic activation of glutamatergic axons from the pedunculopontine nucleus induced monosynaptic excitation in most recorded striatal cholinergic interneurons and GABAergic fast-spiking interneurons. Optogenetic stimulation in awake head-fixed mice consistently induced an increase in the firing rate of putative cholinergic interneurons and fast-spiking interneurons. In contrast, this stimulation did not induce excitatory responses in spiny neurons but rather disynaptic inhibitory responses and a decrease in their firing rate , suggesting a feedforward mechanism mediating the inhibition of spiny projection neurons through the selective activation of striatal interneurons. Furthermore, unilateral stimulation of pedunculopontine nucleus glutamatergic axons in the striatum induced ipsilateral head rotations consistent with the inhibition of striatal output neurons. Our results demonstrate the existence of a unique interneuron-specific midbrain glutamatergic input to the striatum that exclusively recruits feedforward inhibition mechanisms. Glutamatergic inputs to the striatum have been shown to target both striatal projection neurons and interneurons and have been proposed to regulate spike timing of the projection neurons in part through feedforward inhibition. Here, we reveal the existence of a midbrain source of glutamatergic innervation to the striatum, originating in the pedunculopontine nucleus. Remarkably, this novel input selectively targets striatal interneurons, avoiding the projection neurons. Furthermore, we show that this selective innervation of interneurons can regulate the firing of the spiny projection neurons and inhibit the striatal output via feedforward inhibition. Together, our results describe a unique source of excitatory innervation to the striatum which selectively recruits feedforward inhibition of spiny neurons without any accompanying excitation.</description><subject>Activation</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Axons</subject><subject>Axons - physiology</subject><subject>Basal ganglia</subject><subject>Basal Ganglia - physiology</subject><subject>Cholinergics</subject><subject>Circuits</subject><subject>Female</subject><subject>Firing rate</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Ganglia</subject><subject>Glutamatergic transmission</subject><subject>Head movement</subject><subject>Inhibition</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Locomotion - physiology</subject><subject>Male</subject><subject>Mesencephalon</subject><subject>Mesencephalon - physiology</subject><subject>Mice</subject><subject>Neostriatum</subject><subject>Neostriatum - cytology</subject><subject>Neostriatum - physiology</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Optogenetics</subject><subject>Parasympathetic Nervous System - physiology</subject><subject>Pedunculopontine tegmental nucleus</subject><subject>Pedunculopontine Tegmental Nucleus - cytology</subject><subject>Pedunculopontine Tegmental Nucleus - physiology</subject><subject>Projection</subject><subject>Spiking</subject><subject>Spiny neurons</subject><subject>Stimulation</subject><subject>Thalamus</subject><subject>Vesicular Glutamate Transport Protein 2 - genetics</subject><subject>γ-Aminobutyric acid</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkVFv0zAUhS0EYmXwFyZLvPCS7tpJnPgFCVXb6DR1E92eLce5aT2ldnGcTv0R_GdcdVTAkx_ud87xvYeQCwZTVvL88nZx9fTjfjmbT7lkecbqKQcm35BJmsqMF8DekgnwCjJRVMUZ-TAMzwBQAavek7McZMlrxibk1wO2ozNj77feReuQ3vRj1BsdMaysoQscg3cDfQh-Z1ukmi78Dnu69GMwSH1HrxHbzocXHVo6d2vb2Gi9o9bRuEa6jMHqOG5os6dL7NFEm-R7-qjDClPeKmlSlDvGfCTvOt0P-On1PSdP11ePs-_Z3f3NfPbtLjOFLGPGsOZFA500ssxLAA5CNhUUBjvGjSkMq0yt67Y2jdCNEK3WqGVVi7oSbYNVfk6-Hn23Y7PB1qCLQfdqG-xGh73y2qp_J86u1crvlCgFE1Ikgy-vBsH_HHGIamMHg32vHfpxUJxDIWQJOU_o5__Q53Q7l9ZLVFGKEhiDRIkjZYIfhoDd6TMM1KFxdWpcHRpXrFaHxpPw4u9VTrI_Fee_AYPJrHs</recordid><startdate>20190612</startdate><enddate>20190612</enddate><creator>Assous, Maxime</creator><creator>Dautan, Daniel</creator><creator>Tepper, James M</creator><creator>Mena-Segovia, Juan</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6039-816X</orcidid><orcidid>https://orcid.org/0000-0003-1001-5727</orcidid><orcidid>https://orcid.org/0000-0002-8643-4082</orcidid><orcidid>https://orcid.org/0000-0002-9991-8254</orcidid></search><sort><creationdate>20190612</creationdate><title>Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons</title><author>Assous, Maxime ; Dautan, Daniel ; Tepper, James M ; Mena-Segovia, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-1e824b0f9c9535002069b704cef12cc4c17c8a8d8cb6ab66daaea9786876dbe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Axons</topic><topic>Axons - physiology</topic><topic>Basal ganglia</topic><topic>Basal Ganglia - physiology</topic><topic>Cholinergics</topic><topic>Circuits</topic><topic>Female</topic><topic>Firing rate</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Ganglia</topic><topic>Glutamatergic transmission</topic><topic>Head movement</topic><topic>Inhibition</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Locomotion - physiology</topic><topic>Male</topic><topic>Mesencephalon</topic><topic>Mesencephalon - physiology</topic><topic>Mice</topic><topic>Neostriatum</topic><topic>Neostriatum - cytology</topic><topic>Neostriatum - physiology</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Optogenetics</topic><topic>Parasympathetic Nervous System - physiology</topic><topic>Pedunculopontine tegmental nucleus</topic><topic>Pedunculopontine Tegmental Nucleus - cytology</topic><topic>Pedunculopontine Tegmental Nucleus - physiology</topic><topic>Projection</topic><topic>Spiking</topic><topic>Spiny neurons</topic><topic>Stimulation</topic><topic>Thalamus</topic><topic>Vesicular Glutamate Transport Protein 2 - genetics</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Assous, Maxime</creatorcontrib><creatorcontrib>Dautan, Daniel</creatorcontrib><creatorcontrib>Tepper, James M</creatorcontrib><creatorcontrib>Mena-Segovia, Juan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Assous, Maxime</au><au>Dautan, Daniel</au><au>Tepper, James M</au><au>Mena-Segovia, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2019-06-12</date><risdate>2019</risdate><volume>39</volume><issue>24</issue><spage>4727</spage><epage>4737</epage><pages>4727-4737</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via feedforward inhibition. Understanding how different excitatory inputs are integrated within the striatal circuitry and how they regulate striatal output is crucial for understanding basal ganglia function and related behaviors. Here, using VGLUT2 mice from both sexes, we report the existence of a glutamatergic projection from the mesencephalic locomotor region to the striatum that avoids the spiny neurons and selectively innervates interneurons. Specifically, optogenetic activation of glutamatergic axons from the pedunculopontine nucleus induced monosynaptic excitation in most recorded striatal cholinergic interneurons and GABAergic fast-spiking interneurons. Optogenetic stimulation in awake head-fixed mice consistently induced an increase in the firing rate of putative cholinergic interneurons and fast-spiking interneurons. In contrast, this stimulation did not induce excitatory responses in spiny neurons but rather disynaptic inhibitory responses and a decrease in their firing rate , suggesting a feedforward mechanism mediating the inhibition of spiny projection neurons through the selective activation of striatal interneurons. Furthermore, unilateral stimulation of pedunculopontine nucleus glutamatergic axons in the striatum induced ipsilateral head rotations consistent with the inhibition of striatal output neurons. Our results demonstrate the existence of a unique interneuron-specific midbrain glutamatergic input to the striatum that exclusively recruits feedforward inhibition mechanisms. Glutamatergic inputs to the striatum have been shown to target both striatal projection neurons and interneurons and have been proposed to regulate spike timing of the projection neurons in part through feedforward inhibition. Here, we reveal the existence of a midbrain source of glutamatergic innervation to the striatum, originating in the pedunculopontine nucleus. Remarkably, this novel input selectively targets striatal interneurons, avoiding the projection neurons. Furthermore, we show that this selective innervation of interneurons can regulate the firing of the spiny projection neurons and inhibit the striatal output via feedforward inhibition. Together, our results describe a unique source of excitatory innervation to the striatum which selectively recruits feedforward inhibition of spiny neurons without any accompanying excitation.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>30952811</pmid><doi>10.1523/JNEUROSCI.2913-18.2019</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6039-816X</orcidid><orcidid>https://orcid.org/0000-0003-1001-5727</orcidid><orcidid>https://orcid.org/0000-0002-8643-4082</orcidid><orcidid>https://orcid.org/0000-0002-9991-8254</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2019-06, Vol.39 (24), p.4727-4737
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561696
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Activation
Animals
Animals, Genetically Modified
Axons
Axons - physiology
Basal ganglia
Basal Ganglia - physiology
Cholinergics
Circuits
Female
Firing rate
gamma-Aminobutyric Acid - physiology
Ganglia
Glutamatergic transmission
Head movement
Inhibition
Interneurons
Interneurons - physiology
Locomotion - physiology
Male
Mesencephalon
Mesencephalon - physiology
Mice
Neostriatum
Neostriatum - cytology
Neostriatum - physiology
Nerve Net - cytology
Nerve Net - physiology
Neural Inhibition - physiology
Neurons
Neurons - physiology
Optogenetics
Parasympathetic Nervous System - physiology
Pedunculopontine tegmental nucleus
Pedunculopontine Tegmental Nucleus - cytology
Pedunculopontine Tegmental Nucleus - physiology
Projection
Spiking
Spiny neurons
Stimulation
Thalamus
Vesicular Glutamate Transport Protein 2 - genetics
γ-Aminobutyric acid
title Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pedunculopontine%20Glutamatergic%20Neurons%20Provide%20a%20Novel%20Source%20of%20Feedforward%20Inhibition%20in%20the%20Striatum%20by%20Selectively%20Targeting%20Interneurons&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Assous,%20Maxime&rft.date=2019-06-12&rft.volume=39&rft.issue=24&rft.spage=4727&rft.epage=4737&rft.pages=4727-4737&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2913-18.2019&rft_dat=%3Cproquest_pubme%3E2204695032%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2245650110&rft_id=info:pmid/30952811&rfr_iscdi=true