Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons
The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via fee...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2019-06, Vol.39 (24), p.4727-4737 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4737 |
---|---|
container_issue | 24 |
container_start_page | 4727 |
container_title | The Journal of neuroscience |
container_volume | 39 |
creator | Assous, Maxime Dautan, Daniel Tepper, James M Mena-Segovia, Juan |
description | The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via feedforward inhibition. Understanding how different excitatory inputs are integrated within the striatal circuitry and how they regulate striatal output is crucial for understanding basal ganglia function and related behaviors. Here, using VGLUT2 mice from both sexes, we report the existence of a glutamatergic projection from the mesencephalic locomotor region to the striatum that avoids the spiny neurons and selectively innervates interneurons. Specifically, optogenetic activation of glutamatergic axons from the pedunculopontine nucleus induced monosynaptic excitation in most recorded striatal cholinergic interneurons and GABAergic fast-spiking interneurons. Optogenetic stimulation in awake head-fixed mice consistently induced an increase in the firing rate of putative cholinergic interneurons and fast-spiking interneurons. In contrast, this stimulation did not induce excitatory responses in spiny neurons but rather disynaptic inhibitory responses
and a decrease in their firing rate
, suggesting a feedforward mechanism mediating the inhibition of spiny projection neurons through the selective activation of striatal interneurons. Furthermore, unilateral stimulation of pedunculopontine nucleus glutamatergic axons in the striatum induced ipsilateral head rotations consistent with the inhibition of striatal output neurons. Our results demonstrate the existence of a unique interneuron-specific midbrain glutamatergic input to the striatum that exclusively recruits feedforward inhibition mechanisms.
Glutamatergic inputs to the striatum have been shown to target both striatal projection neurons and interneurons and have been proposed to regulate spike timing of the projection neurons in part through feedforward inhibition. Here, we reveal the existence of a midbrain source of glutamatergic innervation to the striatum, originating in the pedunculopontine nucleus. Remarkably, this novel input selectively targets striatal interneurons, avoiding the projection neurons. Furthermore, we show that this selective innervation of interneurons can regulate the firing of the spiny projection neurons and inhibit the striatal output via feedforward inhibition. Together, our results des |
doi_str_mv | 10.1523/JNEUROSCI.2913-18.2019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204695032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-1e824b0f9c9535002069b704cef12cc4c17c8a8d8cb6ab66daaea9786876dbe73</originalsourceid><addsrcrecordid>eNpdkVFv0zAUhS0EYmXwFyZLvPCS7tpJnPgFCVXb6DR1E92eLce5aT2ldnGcTv0R_GdcdVTAkx_ud87xvYeQCwZTVvL88nZx9fTjfjmbT7lkecbqKQcm35BJmsqMF8DekgnwCjJRVMUZ-TAMzwBQAavek7McZMlrxibk1wO2ozNj77feReuQ3vRj1BsdMaysoQscg3cDfQh-Z1ukmi78Dnu69GMwSH1HrxHbzocXHVo6d2vb2Gi9o9bRuEa6jMHqOG5os6dL7NFEm-R7-qjDClPeKmlSlDvGfCTvOt0P-On1PSdP11ePs-_Z3f3NfPbtLjOFLGPGsOZFA500ssxLAA5CNhUUBjvGjSkMq0yt67Y2jdCNEK3WqGVVi7oSbYNVfk6-Hn23Y7PB1qCLQfdqG-xGh73y2qp_J86u1crvlCgFE1Ikgy-vBsH_HHGIamMHg32vHfpxUJxDIWQJOU_o5__Q53Q7l9ZLVFGKEhiDRIkjZYIfhoDd6TMM1KFxdWpcHRpXrFaHxpPw4u9VTrI_Fee_AYPJrHs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245650110</pqid></control><display><type>article</type><title>Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Assous, Maxime ; Dautan, Daniel ; Tepper, James M ; Mena-Segovia, Juan</creator><creatorcontrib>Assous, Maxime ; Dautan, Daniel ; Tepper, James M ; Mena-Segovia, Juan</creatorcontrib><description>The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via feedforward inhibition. Understanding how different excitatory inputs are integrated within the striatal circuitry and how they regulate striatal output is crucial for understanding basal ganglia function and related behaviors. Here, using VGLUT2 mice from both sexes, we report the existence of a glutamatergic projection from the mesencephalic locomotor region to the striatum that avoids the spiny neurons and selectively innervates interneurons. Specifically, optogenetic activation of glutamatergic axons from the pedunculopontine nucleus induced monosynaptic excitation in most recorded striatal cholinergic interneurons and GABAergic fast-spiking interneurons. Optogenetic stimulation in awake head-fixed mice consistently induced an increase in the firing rate of putative cholinergic interneurons and fast-spiking interneurons. In contrast, this stimulation did not induce excitatory responses in spiny neurons but rather disynaptic inhibitory responses
and a decrease in their firing rate
, suggesting a feedforward mechanism mediating the inhibition of spiny projection neurons through the selective activation of striatal interneurons. Furthermore, unilateral stimulation of pedunculopontine nucleus glutamatergic axons in the striatum induced ipsilateral head rotations consistent with the inhibition of striatal output neurons. Our results demonstrate the existence of a unique interneuron-specific midbrain glutamatergic input to the striatum that exclusively recruits feedforward inhibition mechanisms.
Glutamatergic inputs to the striatum have been shown to target both striatal projection neurons and interneurons and have been proposed to regulate spike timing of the projection neurons in part through feedforward inhibition. Here, we reveal the existence of a midbrain source of glutamatergic innervation to the striatum, originating in the pedunculopontine nucleus. Remarkably, this novel input selectively targets striatal interneurons, avoiding the projection neurons. Furthermore, we show that this selective innervation of interneurons can regulate the firing of the spiny projection neurons and inhibit the striatal output via feedforward inhibition. Together, our results describe a unique source of excitatory innervation to the striatum which selectively recruits feedforward inhibition of spiny neurons without any accompanying excitation.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2913-18.2019</identifier><identifier>PMID: 30952811</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Activation ; Animals ; Animals, Genetically Modified ; Axons ; Axons - physiology ; Basal ganglia ; Basal Ganglia - physiology ; Cholinergics ; Circuits ; Female ; Firing rate ; gamma-Aminobutyric Acid - physiology ; Ganglia ; Glutamatergic transmission ; Head movement ; Inhibition ; Interneurons ; Interneurons - physiology ; Locomotion - physiology ; Male ; Mesencephalon ; Mesencephalon - physiology ; Mice ; Neostriatum ; Neostriatum - cytology ; Neostriatum - physiology ; Nerve Net - cytology ; Nerve Net - physiology ; Neural Inhibition - physiology ; Neurons ; Neurons - physiology ; Optogenetics ; Parasympathetic Nervous System - physiology ; Pedunculopontine tegmental nucleus ; Pedunculopontine Tegmental Nucleus - cytology ; Pedunculopontine Tegmental Nucleus - physiology ; Projection ; Spiking ; Spiny neurons ; Stimulation ; Thalamus ; Vesicular Glutamate Transport Protein 2 - genetics ; γ-Aminobutyric acid</subject><ispartof>The Journal of neuroscience, 2019-06, Vol.39 (24), p.4727-4737</ispartof><rights>Copyright © 2019 the authors.</rights><rights>Copyright Society for Neuroscience Jun 12, 2019</rights><rights>Copyright © 2019 the authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-1e824b0f9c9535002069b704cef12cc4c17c8a8d8cb6ab66daaea9786876dbe73</citedby><orcidid>0000-0001-6039-816X ; 0000-0003-1001-5727 ; 0000-0002-8643-4082 ; 0000-0002-9991-8254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561696/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561696/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30952811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Assous, Maxime</creatorcontrib><creatorcontrib>Dautan, Daniel</creatorcontrib><creatorcontrib>Tepper, James M</creatorcontrib><creatorcontrib>Mena-Segovia, Juan</creatorcontrib><title>Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via feedforward inhibition. Understanding how different excitatory inputs are integrated within the striatal circuitry and how they regulate striatal output is crucial for understanding basal ganglia function and related behaviors. Here, using VGLUT2 mice from both sexes, we report the existence of a glutamatergic projection from the mesencephalic locomotor region to the striatum that avoids the spiny neurons and selectively innervates interneurons. Specifically, optogenetic activation of glutamatergic axons from the pedunculopontine nucleus induced monosynaptic excitation in most recorded striatal cholinergic interneurons and GABAergic fast-spiking interneurons. Optogenetic stimulation in awake head-fixed mice consistently induced an increase in the firing rate of putative cholinergic interneurons and fast-spiking interneurons. In contrast, this stimulation did not induce excitatory responses in spiny neurons but rather disynaptic inhibitory responses
and a decrease in their firing rate
, suggesting a feedforward mechanism mediating the inhibition of spiny projection neurons through the selective activation of striatal interneurons. Furthermore, unilateral stimulation of pedunculopontine nucleus glutamatergic axons in the striatum induced ipsilateral head rotations consistent with the inhibition of striatal output neurons. Our results demonstrate the existence of a unique interneuron-specific midbrain glutamatergic input to the striatum that exclusively recruits feedforward inhibition mechanisms.
Glutamatergic inputs to the striatum have been shown to target both striatal projection neurons and interneurons and have been proposed to regulate spike timing of the projection neurons in part through feedforward inhibition. Here, we reveal the existence of a midbrain source of glutamatergic innervation to the striatum, originating in the pedunculopontine nucleus. Remarkably, this novel input selectively targets striatal interneurons, avoiding the projection neurons. Furthermore, we show that this selective innervation of interneurons can regulate the firing of the spiny projection neurons and inhibit the striatal output via feedforward inhibition. Together, our results describe a unique source of excitatory innervation to the striatum which selectively recruits feedforward inhibition of spiny neurons without any accompanying excitation.</description><subject>Activation</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Axons</subject><subject>Axons - physiology</subject><subject>Basal ganglia</subject><subject>Basal Ganglia - physiology</subject><subject>Cholinergics</subject><subject>Circuits</subject><subject>Female</subject><subject>Firing rate</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Ganglia</subject><subject>Glutamatergic transmission</subject><subject>Head movement</subject><subject>Inhibition</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Locomotion - physiology</subject><subject>Male</subject><subject>Mesencephalon</subject><subject>Mesencephalon - physiology</subject><subject>Mice</subject><subject>Neostriatum</subject><subject>Neostriatum - cytology</subject><subject>Neostriatum - physiology</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Optogenetics</subject><subject>Parasympathetic Nervous System - physiology</subject><subject>Pedunculopontine tegmental nucleus</subject><subject>Pedunculopontine Tegmental Nucleus - cytology</subject><subject>Pedunculopontine Tegmental Nucleus - physiology</subject><subject>Projection</subject><subject>Spiking</subject><subject>Spiny neurons</subject><subject>Stimulation</subject><subject>Thalamus</subject><subject>Vesicular Glutamate Transport Protein 2 - genetics</subject><subject>γ-Aminobutyric acid</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkVFv0zAUhS0EYmXwFyZLvPCS7tpJnPgFCVXb6DR1E92eLce5aT2ldnGcTv0R_GdcdVTAkx_ud87xvYeQCwZTVvL88nZx9fTjfjmbT7lkecbqKQcm35BJmsqMF8DekgnwCjJRVMUZ-TAMzwBQAavek7McZMlrxibk1wO2ozNj77feReuQ3vRj1BsdMaysoQscg3cDfQh-Z1ukmi78Dnu69GMwSH1HrxHbzocXHVo6d2vb2Gi9o9bRuEa6jMHqOG5os6dL7NFEm-R7-qjDClPeKmlSlDvGfCTvOt0P-On1PSdP11ePs-_Z3f3NfPbtLjOFLGPGsOZFA500ssxLAA5CNhUUBjvGjSkMq0yt67Y2jdCNEK3WqGVVi7oSbYNVfk6-Hn23Y7PB1qCLQfdqG-xGh73y2qp_J86u1crvlCgFE1Ikgy-vBsH_HHGIamMHg32vHfpxUJxDIWQJOU_o5__Q53Q7l9ZLVFGKEhiDRIkjZYIfhoDd6TMM1KFxdWpcHRpXrFaHxpPw4u9VTrI_Fee_AYPJrHs</recordid><startdate>20190612</startdate><enddate>20190612</enddate><creator>Assous, Maxime</creator><creator>Dautan, Daniel</creator><creator>Tepper, James M</creator><creator>Mena-Segovia, Juan</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6039-816X</orcidid><orcidid>https://orcid.org/0000-0003-1001-5727</orcidid><orcidid>https://orcid.org/0000-0002-8643-4082</orcidid><orcidid>https://orcid.org/0000-0002-9991-8254</orcidid></search><sort><creationdate>20190612</creationdate><title>Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons</title><author>Assous, Maxime ; Dautan, Daniel ; Tepper, James M ; Mena-Segovia, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-1e824b0f9c9535002069b704cef12cc4c17c8a8d8cb6ab66daaea9786876dbe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Axons</topic><topic>Axons - physiology</topic><topic>Basal ganglia</topic><topic>Basal Ganglia - physiology</topic><topic>Cholinergics</topic><topic>Circuits</topic><topic>Female</topic><topic>Firing rate</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Ganglia</topic><topic>Glutamatergic transmission</topic><topic>Head movement</topic><topic>Inhibition</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Locomotion - physiology</topic><topic>Male</topic><topic>Mesencephalon</topic><topic>Mesencephalon - physiology</topic><topic>Mice</topic><topic>Neostriatum</topic><topic>Neostriatum - cytology</topic><topic>Neostriatum - physiology</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Optogenetics</topic><topic>Parasympathetic Nervous System - physiology</topic><topic>Pedunculopontine tegmental nucleus</topic><topic>Pedunculopontine Tegmental Nucleus - cytology</topic><topic>Pedunculopontine Tegmental Nucleus - physiology</topic><topic>Projection</topic><topic>Spiking</topic><topic>Spiny neurons</topic><topic>Stimulation</topic><topic>Thalamus</topic><topic>Vesicular Glutamate Transport Protein 2 - genetics</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Assous, Maxime</creatorcontrib><creatorcontrib>Dautan, Daniel</creatorcontrib><creatorcontrib>Tepper, James M</creatorcontrib><creatorcontrib>Mena-Segovia, Juan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Assous, Maxime</au><au>Dautan, Daniel</au><au>Tepper, James M</au><au>Mena-Segovia, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2019-06-12</date><risdate>2019</risdate><volume>39</volume><issue>24</issue><spage>4727</spage><epage>4737</epage><pages>4727-4737</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via feedforward inhibition. Understanding how different excitatory inputs are integrated within the striatal circuitry and how they regulate striatal output is crucial for understanding basal ganglia function and related behaviors. Here, using VGLUT2 mice from both sexes, we report the existence of a glutamatergic projection from the mesencephalic locomotor region to the striatum that avoids the spiny neurons and selectively innervates interneurons. Specifically, optogenetic activation of glutamatergic axons from the pedunculopontine nucleus induced monosynaptic excitation in most recorded striatal cholinergic interneurons and GABAergic fast-spiking interneurons. Optogenetic stimulation in awake head-fixed mice consistently induced an increase in the firing rate of putative cholinergic interneurons and fast-spiking interneurons. In contrast, this stimulation did not induce excitatory responses in spiny neurons but rather disynaptic inhibitory responses
and a decrease in their firing rate
, suggesting a feedforward mechanism mediating the inhibition of spiny projection neurons through the selective activation of striatal interneurons. Furthermore, unilateral stimulation of pedunculopontine nucleus glutamatergic axons in the striatum induced ipsilateral head rotations consistent with the inhibition of striatal output neurons. Our results demonstrate the existence of a unique interneuron-specific midbrain glutamatergic input to the striatum that exclusively recruits feedforward inhibition mechanisms.
Glutamatergic inputs to the striatum have been shown to target both striatal projection neurons and interneurons and have been proposed to regulate spike timing of the projection neurons in part through feedforward inhibition. Here, we reveal the existence of a midbrain source of glutamatergic innervation to the striatum, originating in the pedunculopontine nucleus. Remarkably, this novel input selectively targets striatal interneurons, avoiding the projection neurons. Furthermore, we show that this selective innervation of interneurons can regulate the firing of the spiny projection neurons and inhibit the striatal output via feedforward inhibition. Together, our results describe a unique source of excitatory innervation to the striatum which selectively recruits feedforward inhibition of spiny neurons without any accompanying excitation.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>30952811</pmid><doi>10.1523/JNEUROSCI.2913-18.2019</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6039-816X</orcidid><orcidid>https://orcid.org/0000-0003-1001-5727</orcidid><orcidid>https://orcid.org/0000-0002-8643-4082</orcidid><orcidid>https://orcid.org/0000-0002-9991-8254</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2019-06, Vol.39 (24), p.4727-4737 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561696 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Activation Animals Animals, Genetically Modified Axons Axons - physiology Basal ganglia Basal Ganglia - physiology Cholinergics Circuits Female Firing rate gamma-Aminobutyric Acid - physiology Ganglia Glutamatergic transmission Head movement Inhibition Interneurons Interneurons - physiology Locomotion - physiology Male Mesencephalon Mesencephalon - physiology Mice Neostriatum Neostriatum - cytology Neostriatum - physiology Nerve Net - cytology Nerve Net - physiology Neural Inhibition - physiology Neurons Neurons - physiology Optogenetics Parasympathetic Nervous System - physiology Pedunculopontine tegmental nucleus Pedunculopontine Tegmental Nucleus - cytology Pedunculopontine Tegmental Nucleus - physiology Projection Spiking Spiny neurons Stimulation Thalamus Vesicular Glutamate Transport Protein 2 - genetics γ-Aminobutyric acid |
title | Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pedunculopontine%20Glutamatergic%20Neurons%20Provide%20a%20Novel%20Source%20of%20Feedforward%20Inhibition%20in%20the%20Striatum%20by%20Selectively%20Targeting%20Interneurons&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Assous,%20Maxime&rft.date=2019-06-12&rft.volume=39&rft.issue=24&rft.spage=4727&rft.epage=4737&rft.pages=4727-4737&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2913-18.2019&rft_dat=%3Cproquest_pubme%3E2204695032%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2245650110&rft_id=info:pmid/30952811&rfr_iscdi=true |