Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects
Wurtzite boron nitride (w-BN) is a metastable superhard material that is a high-pressure polymorph of BN. Clarifying how the metastable high-pressure material can be stabilized at atmospheric pressure is a challenging issue of fundamental scientific importance and promising technological value. Here...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-06, Vol.116 (23), p.11181-11186 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11186 |
---|---|
container_issue | 23 |
container_start_page | 11181 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Chen, Chunlin Yin, Deqiang Kato, Takeharu Taniguchi, Takashi Watanabe, Kenji Ma, Xiuliang Ye, Hengqiang Ikuhara, Yuichi |
description | Wurtzite boron nitride (w-BN) is a metastable superhard material that is a high-pressure polymorph of BN. Clarifying how the metastable high-pressure material can be stabilized at atmospheric pressure is a challenging issue of fundamental scientific importance and promising technological value. Here, we fabricate millimeter-size w-BN bulk crystals via the hexagonal-to-wurtzite phase transformation at high pressure and high temperature. By combining transmission electron microscopy and ab initio molecular dynamics simulations, we reveal a stabilization mechanism for w-BN, i.e., the metastable high-pressure phase can be stabilized by 3D networks of planar defects which are constructed by a high density of intersecting (0001) stacking faults and {10a10} inversion domain boundaries. The 3D networks of planar defects segment the w-BN bulk crystal into numerous nanometer-size prismatic domains with the reverse crystallographic polarities. Our findings unambiguously demonstrate the retarding effect of crystal defects on the phase transformations of metastable materials, which is in contrast to the common knowledge that the crystal defects in materials will facilitate the occurrence of phase transformations. |
doi_str_mv | 10.1073/pnas.1902820116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26706427</jstor_id><sourcerecordid>26706427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-7fdd0bba29c36b06155fb1eb78442d35d0bf0119fa59f10d8ab1ed44c5df0f413</originalsourceid><addsrcrecordid>eNpVkcFvFSEQxonR2Nfq2ZOGpOdtBxbY5WJiGltNmnhoPRN2gT6eu7ACa9P-9dK8-tTThPl-8w2TD6F3BM4IdO35EnQ-IxJoT4EQ8QJtCEjSCCbhJdoA0K7pGWVH6DjnHQBI3sNrdNQSAqQjYoPKTdGDn_yjD3e4bC2ebdG59iaL87rYtNXJ4FkXm7ye8P2ayqMvFg8xxYCDL8mb-nqos8naxvjZhuxjqGyw5T6mHxlHh5dJB52wsc6OJb9Br5yesn37XE_Q98vPtxdfmutvV18vPl03IwdZms4ZA8OgqRxbMYAgnLuB2KHrGaOm5VV09WrpNJeOgOl1VQ1jIzcOHCPtCfq4913WYbZmtKEkPakl-VmnBxW1V_8rwW_VXfylBBeEclENTp8NUvy52lzULq6pHpcVpQxI27NOVup8T40p5pysO2wgoJ5iUk8xqb8x1YkP_37swP_JpQLv98Aul5gOOhUdCEa79jdkF5x6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2240138479</pqid></control><display><type>article</type><title>Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects</title><source>Jstor Complete Legacy</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chen, Chunlin ; Yin, Deqiang ; Kato, Takeharu ; Taniguchi, Takashi ; Watanabe, Kenji ; Ma, Xiuliang ; Ye, Hengqiang ; Ikuhara, Yuichi</creator><creatorcontrib>Chen, Chunlin ; Yin, Deqiang ; Kato, Takeharu ; Taniguchi, Takashi ; Watanabe, Kenji ; Ma, Xiuliang ; Ye, Hengqiang ; Ikuhara, Yuichi</creatorcontrib><description>Wurtzite boron nitride (w-BN) is a metastable superhard material that is a high-pressure polymorph of BN. Clarifying how the metastable high-pressure material can be stabilized at atmospheric pressure is a challenging issue of fundamental scientific importance and promising technological value. Here, we fabricate millimeter-size w-BN bulk crystals via the hexagonal-to-wurtzite phase transformation at high pressure and high temperature. By combining transmission electron microscopy and ab initio molecular dynamics simulations, we reveal a stabilization mechanism for w-BN, i.e., the metastable high-pressure phase can be stabilized by 3D networks of planar defects which are constructed by a high density of intersecting (0001) stacking faults and {10a10} inversion domain boundaries. The 3D networks of planar defects segment the w-BN bulk crystal into numerous nanometer-size prismatic domains with the reverse crystallographic polarities. Our findings unambiguously demonstrate the retarding effect of crystal defects on the phase transformations of metastable materials, which is in contrast to the common knowledge that the crystal defects in materials will facilitate the occurrence of phase transformations.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1902820116</identifier><identifier>PMID: 31101716</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Boron ; Boron nitride ; Crystal defects ; Crystallography ; Crystals ; Domains ; High pressure ; High temperature ; Molecular dynamics ; Networks ; Phase transitions ; Physical Sciences ; Stacking faults ; Temperature inversions ; Transformations (mathematics) ; Transmission electron microscopy ; Wurtzite</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (23), p.11181-11186</ispartof><rights>Copyright National Academy of Sciences Jun 4, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-7fdd0bba29c36b06155fb1eb78442d35d0bf0119fa59f10d8ab1ed44c5df0f413</citedby><cites>FETCH-LOGICAL-c509t-7fdd0bba29c36b06155fb1eb78442d35d0bf0119fa59f10d8ab1ed44c5df0f413</cites><orcidid>0000-0003-3701-8119 ; 0000-0003-1985-1940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26706427$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26706427$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31101716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chunlin</creatorcontrib><creatorcontrib>Yin, Deqiang</creatorcontrib><creatorcontrib>Kato, Takeharu</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Ma, Xiuliang</creatorcontrib><creatorcontrib>Ye, Hengqiang</creatorcontrib><creatorcontrib>Ikuhara, Yuichi</creatorcontrib><title>Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Wurtzite boron nitride (w-BN) is a metastable superhard material that is a high-pressure polymorph of BN. Clarifying how the metastable high-pressure material can be stabilized at atmospheric pressure is a challenging issue of fundamental scientific importance and promising technological value. Here, we fabricate millimeter-size w-BN bulk crystals via the hexagonal-to-wurtzite phase transformation at high pressure and high temperature. By combining transmission electron microscopy and ab initio molecular dynamics simulations, we reveal a stabilization mechanism for w-BN, i.e., the metastable high-pressure phase can be stabilized by 3D networks of planar defects which are constructed by a high density of intersecting (0001) stacking faults and {10a10} inversion domain boundaries. The 3D networks of planar defects segment the w-BN bulk crystal into numerous nanometer-size prismatic domains with the reverse crystallographic polarities. Our findings unambiguously demonstrate the retarding effect of crystal defects on the phase transformations of metastable materials, which is in contrast to the common knowledge that the crystal defects in materials will facilitate the occurrence of phase transformations.</description><subject>Boron</subject><subject>Boron nitride</subject><subject>Crystal defects</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Domains</subject><subject>High pressure</subject><subject>High temperature</subject><subject>Molecular dynamics</subject><subject>Networks</subject><subject>Phase transitions</subject><subject>Physical Sciences</subject><subject>Stacking faults</subject><subject>Temperature inversions</subject><subject>Transformations (mathematics)</subject><subject>Transmission electron microscopy</subject><subject>Wurtzite</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkcFvFSEQxonR2Nfq2ZOGpOdtBxbY5WJiGltNmnhoPRN2gT6eu7ACa9P-9dK8-tTThPl-8w2TD6F3BM4IdO35EnQ-IxJoT4EQ8QJtCEjSCCbhJdoA0K7pGWVH6DjnHQBI3sNrdNQSAqQjYoPKTdGDn_yjD3e4bC2ebdG59iaL87rYtNXJ4FkXm7ye8P2ayqMvFg8xxYCDL8mb-nqos8naxvjZhuxjqGyw5T6mHxlHh5dJB52wsc6OJb9Br5yesn37XE_Q98vPtxdfmutvV18vPl03IwdZms4ZA8OgqRxbMYAgnLuB2KHrGaOm5VV09WrpNJeOgOl1VQ1jIzcOHCPtCfq4913WYbZmtKEkPakl-VmnBxW1V_8rwW_VXfylBBeEclENTp8NUvy52lzULq6pHpcVpQxI27NOVup8T40p5pysO2wgoJ5iUk8xqb8x1YkP_37swP_JpQLv98Aul5gOOhUdCEa79jdkF5x6</recordid><startdate>20190604</startdate><enddate>20190604</enddate><creator>Chen, Chunlin</creator><creator>Yin, Deqiang</creator><creator>Kato, Takeharu</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Ma, Xiuliang</creator><creator>Ye, Hengqiang</creator><creator>Ikuhara, Yuichi</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-1985-1940</orcidid></search><sort><creationdate>20190604</creationdate><title>Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects</title><author>Chen, Chunlin ; Yin, Deqiang ; Kato, Takeharu ; Taniguchi, Takashi ; Watanabe, Kenji ; Ma, Xiuliang ; Ye, Hengqiang ; Ikuhara, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-7fdd0bba29c36b06155fb1eb78442d35d0bf0119fa59f10d8ab1ed44c5df0f413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boron</topic><topic>Boron nitride</topic><topic>Crystal defects</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Domains</topic><topic>High pressure</topic><topic>High temperature</topic><topic>Molecular dynamics</topic><topic>Networks</topic><topic>Phase transitions</topic><topic>Physical Sciences</topic><topic>Stacking faults</topic><topic>Temperature inversions</topic><topic>Transformations (mathematics)</topic><topic>Transmission electron microscopy</topic><topic>Wurtzite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chunlin</creatorcontrib><creatorcontrib>Yin, Deqiang</creatorcontrib><creatorcontrib>Kato, Takeharu</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Ma, Xiuliang</creatorcontrib><creatorcontrib>Ye, Hengqiang</creatorcontrib><creatorcontrib>Ikuhara, Yuichi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chunlin</au><au>Yin, Deqiang</au><au>Kato, Takeharu</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Ma, Xiuliang</au><au>Ye, Hengqiang</au><au>Ikuhara, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-06-04</date><risdate>2019</risdate><volume>116</volume><issue>23</issue><spage>11181</spage><epage>11186</epage><pages>11181-11186</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Wurtzite boron nitride (w-BN) is a metastable superhard material that is a high-pressure polymorph of BN. Clarifying how the metastable high-pressure material can be stabilized at atmospheric pressure is a challenging issue of fundamental scientific importance and promising technological value. Here, we fabricate millimeter-size w-BN bulk crystals via the hexagonal-to-wurtzite phase transformation at high pressure and high temperature. By combining transmission electron microscopy and ab initio molecular dynamics simulations, we reveal a stabilization mechanism for w-BN, i.e., the metastable high-pressure phase can be stabilized by 3D networks of planar defects which are constructed by a high density of intersecting (0001) stacking faults and {10a10} inversion domain boundaries. The 3D networks of planar defects segment the w-BN bulk crystal into numerous nanometer-size prismatic domains with the reverse crystallographic polarities. Our findings unambiguously demonstrate the retarding effect of crystal defects on the phase transformations of metastable materials, which is in contrast to the common knowledge that the crystal defects in materials will facilitate the occurrence of phase transformations.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31101716</pmid><doi>10.1073/pnas.1902820116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-1985-1940</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (23), p.11181-11186 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561256 |
source | Jstor Complete Legacy; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection |
subjects | Boron Boron nitride Crystal defects Crystallography Crystals Domains High pressure High temperature Molecular dynamics Networks Phase transitions Physical Sciences Stacking faults Temperature inversions Transformations (mathematics) Transmission electron microscopy Wurtzite |
title | Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20the%20metastable%20superhard%20material%20wurtzite%20boron%20nitride%20by%20three-dimensional%20networks%20of%20planar%20defects&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chen,%20Chunlin&rft.date=2019-06-04&rft.volume=116&rft.issue=23&rft.spage=11181&rft.epage=11186&rft.pages=11181-11186&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1902820116&rft_dat=%3Cjstor_pubme%3E26706427%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2240138479&rft_id=info:pmid/31101716&rft_jstor_id=26706427&rfr_iscdi=true |