Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects

Wurtzite boron nitride (w-BN) is a metastable superhard material that is a high-pressure polymorph of BN. Clarifying how the metastable high-pressure material can be stabilized at atmospheric pressure is a challenging issue of fundamental scientific importance and promising technological value. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-06, Vol.116 (23), p.11181-11186
Hauptverfasser: Chen, Chunlin, Yin, Deqiang, Kato, Takeharu, Taniguchi, Takashi, Watanabe, Kenji, Ma, Xiuliang, Ye, Hengqiang, Ikuhara, Yuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11186
container_issue 23
container_start_page 11181
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Chen, Chunlin
Yin, Deqiang
Kato, Takeharu
Taniguchi, Takashi
Watanabe, Kenji
Ma, Xiuliang
Ye, Hengqiang
Ikuhara, Yuichi
description Wurtzite boron nitride (w-BN) is a metastable superhard material that is a high-pressure polymorph of BN. Clarifying how the metastable high-pressure material can be stabilized at atmospheric pressure is a challenging issue of fundamental scientific importance and promising technological value. Here, we fabricate millimeter-size w-BN bulk crystals via the hexagonal-to-wurtzite phase transformation at high pressure and high temperature. By combining transmission electron microscopy and ab initio molecular dynamics simulations, we reveal a stabilization mechanism for w-BN, i.e., the metastable high-pressure phase can be stabilized by 3D networks of planar defects which are constructed by a high density of intersecting (0001) stacking faults and {10a10} inversion domain boundaries. The 3D networks of planar defects segment the w-BN bulk crystal into numerous nanometer-size prismatic domains with the reverse crystallographic polarities. Our findings unambiguously demonstrate the retarding effect of crystal defects on the phase transformations of metastable materials, which is in contrast to the common knowledge that the crystal defects in materials will facilitate the occurrence of phase transformations.
doi_str_mv 10.1073/pnas.1902820116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26706427</jstor_id><sourcerecordid>26706427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-7fdd0bba29c36b06155fb1eb78442d35d0bf0119fa59f10d8ab1ed44c5df0f413</originalsourceid><addsrcrecordid>eNpVkcFvFSEQxonR2Nfq2ZOGpOdtBxbY5WJiGltNmnhoPRN2gT6eu7ACa9P-9dK8-tTThPl-8w2TD6F3BM4IdO35EnQ-IxJoT4EQ8QJtCEjSCCbhJdoA0K7pGWVH6DjnHQBI3sNrdNQSAqQjYoPKTdGDn_yjD3e4bC2ebdG59iaL87rYtNXJ4FkXm7ye8P2ayqMvFg8xxYCDL8mb-nqos8naxvjZhuxjqGyw5T6mHxlHh5dJB52wsc6OJb9Br5yesn37XE_Q98vPtxdfmutvV18vPl03IwdZms4ZA8OgqRxbMYAgnLuB2KHrGaOm5VV09WrpNJeOgOl1VQ1jIzcOHCPtCfq4913WYbZmtKEkPakl-VmnBxW1V_8rwW_VXfylBBeEclENTp8NUvy52lzULq6pHpcVpQxI27NOVup8T40p5pysO2wgoJ5iUk8xqb8x1YkP_37swP_JpQLv98Aul5gOOhUdCEa79jdkF5x6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2240138479</pqid></control><display><type>article</type><title>Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects</title><source>Jstor Complete Legacy</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chen, Chunlin ; Yin, Deqiang ; Kato, Takeharu ; Taniguchi, Takashi ; Watanabe, Kenji ; Ma, Xiuliang ; Ye, Hengqiang ; Ikuhara, Yuichi</creator><creatorcontrib>Chen, Chunlin ; Yin, Deqiang ; Kato, Takeharu ; Taniguchi, Takashi ; Watanabe, Kenji ; Ma, Xiuliang ; Ye, Hengqiang ; Ikuhara, Yuichi</creatorcontrib><description>Wurtzite boron nitride (w-BN) is a metastable superhard material that is a high-pressure polymorph of BN. Clarifying how the metastable high-pressure material can be stabilized at atmospheric pressure is a challenging issue of fundamental scientific importance and promising technological value. Here, we fabricate millimeter-size w-BN bulk crystals via the hexagonal-to-wurtzite phase transformation at high pressure and high temperature. By combining transmission electron microscopy and ab initio molecular dynamics simulations, we reveal a stabilization mechanism for w-BN, i.e., the metastable high-pressure phase can be stabilized by 3D networks of planar defects which are constructed by a high density of intersecting (0001) stacking faults and {10a10} inversion domain boundaries. The 3D networks of planar defects segment the w-BN bulk crystal into numerous nanometer-size prismatic domains with the reverse crystallographic polarities. Our findings unambiguously demonstrate the retarding effect of crystal defects on the phase transformations of metastable materials, which is in contrast to the common knowledge that the crystal defects in materials will facilitate the occurrence of phase transformations.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1902820116</identifier><identifier>PMID: 31101716</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Boron ; Boron nitride ; Crystal defects ; Crystallography ; Crystals ; Domains ; High pressure ; High temperature ; Molecular dynamics ; Networks ; Phase transitions ; Physical Sciences ; Stacking faults ; Temperature inversions ; Transformations (mathematics) ; Transmission electron microscopy ; Wurtzite</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (23), p.11181-11186</ispartof><rights>Copyright National Academy of Sciences Jun 4, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-7fdd0bba29c36b06155fb1eb78442d35d0bf0119fa59f10d8ab1ed44c5df0f413</citedby><cites>FETCH-LOGICAL-c509t-7fdd0bba29c36b06155fb1eb78442d35d0bf0119fa59f10d8ab1ed44c5df0f413</cites><orcidid>0000-0003-3701-8119 ; 0000-0003-1985-1940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26706427$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26706427$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31101716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chunlin</creatorcontrib><creatorcontrib>Yin, Deqiang</creatorcontrib><creatorcontrib>Kato, Takeharu</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Ma, Xiuliang</creatorcontrib><creatorcontrib>Ye, Hengqiang</creatorcontrib><creatorcontrib>Ikuhara, Yuichi</creatorcontrib><title>Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Wurtzite boron nitride (w-BN) is a metastable superhard material that is a high-pressure polymorph of BN. Clarifying how the metastable high-pressure material can be stabilized at atmospheric pressure is a challenging issue of fundamental scientific importance and promising technological value. Here, we fabricate millimeter-size w-BN bulk crystals via the hexagonal-to-wurtzite phase transformation at high pressure and high temperature. By combining transmission electron microscopy and ab initio molecular dynamics simulations, we reveal a stabilization mechanism for w-BN, i.e., the metastable high-pressure phase can be stabilized by 3D networks of planar defects which are constructed by a high density of intersecting (0001) stacking faults and {10a10} inversion domain boundaries. The 3D networks of planar defects segment the w-BN bulk crystal into numerous nanometer-size prismatic domains with the reverse crystallographic polarities. Our findings unambiguously demonstrate the retarding effect of crystal defects on the phase transformations of metastable materials, which is in contrast to the common knowledge that the crystal defects in materials will facilitate the occurrence of phase transformations.</description><subject>Boron</subject><subject>Boron nitride</subject><subject>Crystal defects</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Domains</subject><subject>High pressure</subject><subject>High temperature</subject><subject>Molecular dynamics</subject><subject>Networks</subject><subject>Phase transitions</subject><subject>Physical Sciences</subject><subject>Stacking faults</subject><subject>Temperature inversions</subject><subject>Transformations (mathematics)</subject><subject>Transmission electron microscopy</subject><subject>Wurtzite</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkcFvFSEQxonR2Nfq2ZOGpOdtBxbY5WJiGltNmnhoPRN2gT6eu7ACa9P-9dK8-tTThPl-8w2TD6F3BM4IdO35EnQ-IxJoT4EQ8QJtCEjSCCbhJdoA0K7pGWVH6DjnHQBI3sNrdNQSAqQjYoPKTdGDn_yjD3e4bC2ebdG59iaL87rYtNXJ4FkXm7ye8P2ayqMvFg8xxYCDL8mb-nqos8naxvjZhuxjqGyw5T6mHxlHh5dJB52wsc6OJb9Br5yesn37XE_Q98vPtxdfmutvV18vPl03IwdZms4ZA8OgqRxbMYAgnLuB2KHrGaOm5VV09WrpNJeOgOl1VQ1jIzcOHCPtCfq4913WYbZmtKEkPakl-VmnBxW1V_8rwW_VXfylBBeEclENTp8NUvy52lzULq6pHpcVpQxI27NOVup8T40p5pysO2wgoJ5iUk8xqb8x1YkP_37swP_JpQLv98Aul5gOOhUdCEa79jdkF5x6</recordid><startdate>20190604</startdate><enddate>20190604</enddate><creator>Chen, Chunlin</creator><creator>Yin, Deqiang</creator><creator>Kato, Takeharu</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Ma, Xiuliang</creator><creator>Ye, Hengqiang</creator><creator>Ikuhara, Yuichi</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-1985-1940</orcidid></search><sort><creationdate>20190604</creationdate><title>Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects</title><author>Chen, Chunlin ; Yin, Deqiang ; Kato, Takeharu ; Taniguchi, Takashi ; Watanabe, Kenji ; Ma, Xiuliang ; Ye, Hengqiang ; Ikuhara, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-7fdd0bba29c36b06155fb1eb78442d35d0bf0119fa59f10d8ab1ed44c5df0f413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boron</topic><topic>Boron nitride</topic><topic>Crystal defects</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Domains</topic><topic>High pressure</topic><topic>High temperature</topic><topic>Molecular dynamics</topic><topic>Networks</topic><topic>Phase transitions</topic><topic>Physical Sciences</topic><topic>Stacking faults</topic><topic>Temperature inversions</topic><topic>Transformations (mathematics)</topic><topic>Transmission electron microscopy</topic><topic>Wurtzite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chunlin</creatorcontrib><creatorcontrib>Yin, Deqiang</creatorcontrib><creatorcontrib>Kato, Takeharu</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Ma, Xiuliang</creatorcontrib><creatorcontrib>Ye, Hengqiang</creatorcontrib><creatorcontrib>Ikuhara, Yuichi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chunlin</au><au>Yin, Deqiang</au><au>Kato, Takeharu</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Ma, Xiuliang</au><au>Ye, Hengqiang</au><au>Ikuhara, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-06-04</date><risdate>2019</risdate><volume>116</volume><issue>23</issue><spage>11181</spage><epage>11186</epage><pages>11181-11186</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Wurtzite boron nitride (w-BN) is a metastable superhard material that is a high-pressure polymorph of BN. Clarifying how the metastable high-pressure material can be stabilized at atmospheric pressure is a challenging issue of fundamental scientific importance and promising technological value. Here, we fabricate millimeter-size w-BN bulk crystals via the hexagonal-to-wurtzite phase transformation at high pressure and high temperature. By combining transmission electron microscopy and ab initio molecular dynamics simulations, we reveal a stabilization mechanism for w-BN, i.e., the metastable high-pressure phase can be stabilized by 3D networks of planar defects which are constructed by a high density of intersecting (0001) stacking faults and {10a10} inversion domain boundaries. The 3D networks of planar defects segment the w-BN bulk crystal into numerous nanometer-size prismatic domains with the reverse crystallographic polarities. Our findings unambiguously demonstrate the retarding effect of crystal defects on the phase transformations of metastable materials, which is in contrast to the common knowledge that the crystal defects in materials will facilitate the occurrence of phase transformations.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31101716</pmid><doi>10.1073/pnas.1902820116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-1985-1940</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (23), p.11181-11186
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561256
source Jstor Complete Legacy; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection
subjects Boron
Boron nitride
Crystal defects
Crystallography
Crystals
Domains
High pressure
High temperature
Molecular dynamics
Networks
Phase transitions
Physical Sciences
Stacking faults
Temperature inversions
Transformations (mathematics)
Transmission electron microscopy
Wurtzite
title Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20the%20metastable%20superhard%20material%20wurtzite%20boron%20nitride%20by%20three-dimensional%20networks%20of%20planar%20defects&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chen,%20Chunlin&rft.date=2019-06-04&rft.volume=116&rft.issue=23&rft.spage=11181&rft.epage=11186&rft.pages=11181-11186&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1902820116&rft_dat=%3Cjstor_pubme%3E26706427%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2240138479&rft_id=info:pmid/31101716&rft_jstor_id=26706427&rfr_iscdi=true