Disorder raises the critical temperature of a cuprate superconductor
With the discovery of charge-density waves (CDWs) in most members of the cuprate high-temperature superconductors, the interplay between superconductivity and CDWs has become a key point in the debate on the origin of high-temperature superconductivity. Some experiments in cuprates point toward a CD...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-05, Vol.116 (22), p.10691-10697 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10697 |
---|---|
container_issue | 22 |
container_start_page | 10691 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Leroux, Maxime Mishra, Vivek Ruff, Jacob P. C. Claus, Helmut Smylie, Matthew P. Opagiste, Christine Rodière, Pierre Kayani, Asghar Gu, G. D. Tranquada, John M. Kwok, Wai-Kwong Islam, Zahirul Welp, Ulrich |
description | With the discovery of charge-density waves (CDWs) in most members of the cuprate high-temperature superconductors, the interplay between superconductivity and CDWs has become a key point in the debate on the origin of high-temperature superconductivity. Some experiments in cuprates point toward a CDW state competing with superconductivity, but others raise the possibility of a CDW-superconductivity intertwined order or more elusive pair-density waves (PDWs). Here, we have used proton irradiation to induce disorder in crystals of La1.875Ba0.125CuO₄ and observed a striking 50% increase of T
c, accompanied by a suppression of the CDWs. This is in sharp contrast with the behavior expected of a d-wave superconductor, for which both magnetic and nonmagnetic defects should suppress T
c. Our results thus make an unambiguous case for the strong detrimental effect of the CDW on bulk superconductivity in La1.875Ba0.125CuO₄. Using tunnel diode oscillator (TDO) measurements, we find indications for potential dynamic layer decoupling in a PDW phase. Our results establish irradiation-induced disorder as a particularly relevant tuning parameter for the many families of superconductors with coexisting density waves, which we demonstrate on superconductors such as the dichalcogenides and Lu₅Ir₄Si10. |
doi_str_mv | 10.1073/pnas.1817134116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26707133</jstor_id><sourcerecordid>26707133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-47f2b5ee8f8325a77b72b27ba64046274aa52ce91028bf31ed07a9aba5b6acf33</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhzAkUwQUOacffzgWpaoEircQFzpbjnbBZZeNgO5X49zhKWaAnyzOPH43nJeQlhQsKml9Oo0sX1FBNuaBUPSIbCg2tlWjgMdkAMF0bwcQZeZbSAQAaaeApOeMUjFRSb8jNTZ9C3GGsousTpirvsfKxz713Q5XxOGF0eY5Yha5ylZ-ncsUqzaXuw7ibfQ7xOXnSuSHhi_vznHz_9PHb9W29_fr5y_XVtvYSRK6F7lgrEU1nOJNO61azlunWKQFCMS2ck8xjQ4GZtuMUd6Bd41onW-V8x_k5-bB6p7k94s7jmKMb7BT7o4u_bHC9_b8z9nv7I9xZJRVljBbBm1UQUu5t8n1Gvy_fGNFnSyUoxU2B3q_Q_oH79mprlxowTsu85m4RvrufKIafM6Zsj33yOAxuxDAnywpqhKK8KejbB-ghzHEs-1oophrJOSvU5Ur5GFKK2J0moGCXyO0Suf0beXnx-t-lnPg_GRfg1QocUsnq1GdKQ3Fw_hs9E7CL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232695332</pqid></control><display><type>article</type><title>Disorder raises the critical temperature of a cuprate superconductor</title><source>PMC (PubMed Central)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Leroux, Maxime ; Mishra, Vivek ; Ruff, Jacob P. C. ; Claus, Helmut ; Smylie, Matthew P. ; Opagiste, Christine ; Rodière, Pierre ; Kayani, Asghar ; Gu, G. D. ; Tranquada, John M. ; Kwok, Wai-Kwong ; Islam, Zahirul ; Welp, Ulrich</creator><creatorcontrib>Leroux, Maxime ; Mishra, Vivek ; Ruff, Jacob P. C. ; Claus, Helmut ; Smylie, Matthew P. ; Opagiste, Christine ; Rodière, Pierre ; Kayani, Asghar ; Gu, G. D. ; Tranquada, John M. ; Kwok, Wai-Kwong ; Islam, Zahirul ; Welp, Ulrich ; Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES) ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>With the discovery of charge-density waves (CDWs) in most members of the cuprate high-temperature superconductors, the interplay between superconductivity and CDWs has become a key point in the debate on the origin of high-temperature superconductivity. Some experiments in cuprates point toward a CDW state competing with superconductivity, but others raise the possibility of a CDW-superconductivity intertwined order or more elusive pair-density waves (PDWs). Here, we have used proton irradiation to induce disorder in crystals of La1.875Ba0.125CuO₄ and observed a striking 50% increase of T
c, accompanied by a suppression of the CDWs. This is in sharp contrast with the behavior expected of a d-wave superconductor, for which both magnetic and nonmagnetic defects should suppress T
c. Our results thus make an unambiguous case for the strong detrimental effect of the CDW on bulk superconductivity in La1.875Ba0.125CuO₄. Using tunnel diode oscillator (TDO) measurements, we find indications for potential dynamic layer decoupling in a PDW phase. Our results establish irradiation-induced disorder as a particularly relevant tuning parameter for the many families of superconductors with coexisting density waves, which we demonstrate on superconductors such as the dichalcogenides and Lu₅Ir₄Si10.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1817134116</identifier><identifier>PMID: 31085657</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Charge density waves ; charge order ; Condensed Matter ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Crystal defects ; Crystals ; Cuprates ; Decoupling ; disorder ; High temperature ; High temperature superconductors ; Irradiation ; Material Science ; Materials Science ; pair-density wave ; Physical Sciences ; Physics ; PNAS Plus ; Proton irradiation ; Superconductivity ; Temperature effects ; Tunnel diodes</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-05, Vol.116 (22), p.10691-10697</ispartof><rights>Copyright National Academy of Sciences May 28, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-47f2b5ee8f8325a77b72b27ba64046274aa52ce91028bf31ed07a9aba5b6acf33</citedby><cites>FETCH-LOGICAL-c504t-47f2b5ee8f8325a77b72b27ba64046274aa52ce91028bf31ed07a9aba5b6acf33</cites><orcidid>0000-0001-9778-323X ; 0000-0003-4984-8857 ; 0000-0002-7294-4428 ; 0000-0002-2353-2742 ; 0000000349848857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26707133$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26707133$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31085657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02314628$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1506638$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Leroux, Maxime</creatorcontrib><creatorcontrib>Mishra, Vivek</creatorcontrib><creatorcontrib>Ruff, Jacob P. C.</creatorcontrib><creatorcontrib>Claus, Helmut</creatorcontrib><creatorcontrib>Smylie, Matthew P.</creatorcontrib><creatorcontrib>Opagiste, Christine</creatorcontrib><creatorcontrib>Rodière, Pierre</creatorcontrib><creatorcontrib>Kayani, Asghar</creatorcontrib><creatorcontrib>Gu, G. D.</creatorcontrib><creatorcontrib>Tranquada, John M.</creatorcontrib><creatorcontrib>Kwok, Wai-Kwong</creatorcontrib><creatorcontrib>Islam, Zahirul</creatorcontrib><creatorcontrib>Welp, Ulrich</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Disorder raises the critical temperature of a cuprate superconductor</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>With the discovery of charge-density waves (CDWs) in most members of the cuprate high-temperature superconductors, the interplay between superconductivity and CDWs has become a key point in the debate on the origin of high-temperature superconductivity. Some experiments in cuprates point toward a CDW state competing with superconductivity, but others raise the possibility of a CDW-superconductivity intertwined order or more elusive pair-density waves (PDWs). Here, we have used proton irradiation to induce disorder in crystals of La1.875Ba0.125CuO₄ and observed a striking 50% increase of T
c, accompanied by a suppression of the CDWs. This is in sharp contrast with the behavior expected of a d-wave superconductor, for which both magnetic and nonmagnetic defects should suppress T
c. Our results thus make an unambiguous case for the strong detrimental effect of the CDW on bulk superconductivity in La1.875Ba0.125CuO₄. Using tunnel diode oscillator (TDO) measurements, we find indications for potential dynamic layer decoupling in a PDW phase. Our results establish irradiation-induced disorder as a particularly relevant tuning parameter for the many families of superconductors with coexisting density waves, which we demonstrate on superconductors such as the dichalcogenides and Lu₅Ir₄Si10.</description><subject>Charge density waves</subject><subject>charge order</subject><subject>Condensed Matter</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Crystal defects</subject><subject>Crystals</subject><subject>Cuprates</subject><subject>Decoupling</subject><subject>disorder</subject><subject>High temperature</subject><subject>High temperature superconductors</subject><subject>Irradiation</subject><subject>Material Science</subject><subject>Materials Science</subject><subject>pair-density wave</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>PNAS Plus</subject><subject>Proton irradiation</subject><subject>Superconductivity</subject><subject>Temperature effects</subject><subject>Tunnel diodes</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EokvhzAkUwQUOacffzgWpaoEircQFzpbjnbBZZeNgO5X49zhKWaAnyzOPH43nJeQlhQsKml9Oo0sX1FBNuaBUPSIbCg2tlWjgMdkAMF0bwcQZeZbSAQAaaeApOeMUjFRSb8jNTZ9C3GGsousTpirvsfKxz713Q5XxOGF0eY5Yha5ylZ-ncsUqzaXuw7ibfQ7xOXnSuSHhi_vznHz_9PHb9W29_fr5y_XVtvYSRK6F7lgrEU1nOJNO61azlunWKQFCMS2ck8xjQ4GZtuMUd6Bd41onW-V8x_k5-bB6p7k94s7jmKMb7BT7o4u_bHC9_b8z9nv7I9xZJRVljBbBm1UQUu5t8n1Gvy_fGNFnSyUoxU2B3q_Q_oH79mprlxowTsu85m4RvrufKIafM6Zsj33yOAxuxDAnywpqhKK8KejbB-ghzHEs-1oophrJOSvU5Ur5GFKK2J0moGCXyO0Suf0beXnx-t-lnPg_GRfg1QocUsnq1GdKQ3Fw_hs9E7CL</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Leroux, Maxime</creator><creator>Mishra, Vivek</creator><creator>Ruff, Jacob P. C.</creator><creator>Claus, Helmut</creator><creator>Smylie, Matthew P.</creator><creator>Opagiste, Christine</creator><creator>Rodière, Pierre</creator><creator>Kayani, Asghar</creator><creator>Gu, G. D.</creator><creator>Tranquada, John M.</creator><creator>Kwok, Wai-Kwong</creator><creator>Islam, Zahirul</creator><creator>Welp, Ulrich</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9778-323X</orcidid><orcidid>https://orcid.org/0000-0003-4984-8857</orcidid><orcidid>https://orcid.org/0000-0002-7294-4428</orcidid><orcidid>https://orcid.org/0000-0002-2353-2742</orcidid><orcidid>https://orcid.org/0000000349848857</orcidid></search><sort><creationdate>20190528</creationdate><title>Disorder raises the critical temperature of a cuprate superconductor</title><author>Leroux, Maxime ; Mishra, Vivek ; Ruff, Jacob P. C. ; Claus, Helmut ; Smylie, Matthew P. ; Opagiste, Christine ; Rodière, Pierre ; Kayani, Asghar ; Gu, G. D. ; Tranquada, John M. ; Kwok, Wai-Kwong ; Islam, Zahirul ; Welp, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-47f2b5ee8f8325a77b72b27ba64046274aa52ce91028bf31ed07a9aba5b6acf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge density waves</topic><topic>charge order</topic><topic>Condensed Matter</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Crystal defects</topic><topic>Crystals</topic><topic>Cuprates</topic><topic>Decoupling</topic><topic>disorder</topic><topic>High temperature</topic><topic>High temperature superconductors</topic><topic>Irradiation</topic><topic>Material Science</topic><topic>Materials Science</topic><topic>pair-density wave</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>PNAS Plus</topic><topic>Proton irradiation</topic><topic>Superconductivity</topic><topic>Temperature effects</topic><topic>Tunnel diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leroux, Maxime</creatorcontrib><creatorcontrib>Mishra, Vivek</creatorcontrib><creatorcontrib>Ruff, Jacob P. C.</creatorcontrib><creatorcontrib>Claus, Helmut</creatorcontrib><creatorcontrib>Smylie, Matthew P.</creatorcontrib><creatorcontrib>Opagiste, Christine</creatorcontrib><creatorcontrib>Rodière, Pierre</creatorcontrib><creatorcontrib>Kayani, Asghar</creatorcontrib><creatorcontrib>Gu, G. D.</creatorcontrib><creatorcontrib>Tranquada, John M.</creatorcontrib><creatorcontrib>Kwok, Wai-Kwong</creatorcontrib><creatorcontrib>Islam, Zahirul</creatorcontrib><creatorcontrib>Welp, Ulrich</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leroux, Maxime</au><au>Mishra, Vivek</au><au>Ruff, Jacob P. C.</au><au>Claus, Helmut</au><au>Smylie, Matthew P.</au><au>Opagiste, Christine</au><au>Rodière, Pierre</au><au>Kayani, Asghar</au><au>Gu, G. D.</au><au>Tranquada, John M.</au><au>Kwok, Wai-Kwong</au><au>Islam, Zahirul</au><au>Welp, Ulrich</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</aucorp><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disorder raises the critical temperature of a cuprate superconductor</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-05-28</date><risdate>2019</risdate><volume>116</volume><issue>22</issue><spage>10691</spage><epage>10697</epage><pages>10691-10697</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>With the discovery of charge-density waves (CDWs) in most members of the cuprate high-temperature superconductors, the interplay between superconductivity and CDWs has become a key point in the debate on the origin of high-temperature superconductivity. Some experiments in cuprates point toward a CDW state competing with superconductivity, but others raise the possibility of a CDW-superconductivity intertwined order or more elusive pair-density waves (PDWs). Here, we have used proton irradiation to induce disorder in crystals of La1.875Ba0.125CuO₄ and observed a striking 50% increase of T
c, accompanied by a suppression of the CDWs. This is in sharp contrast with the behavior expected of a d-wave superconductor, for which both magnetic and nonmagnetic defects should suppress T
c. Our results thus make an unambiguous case for the strong detrimental effect of the CDW on bulk superconductivity in La1.875Ba0.125CuO₄. Using tunnel diode oscillator (TDO) measurements, we find indications for potential dynamic layer decoupling in a PDW phase. Our results establish irradiation-induced disorder as a particularly relevant tuning parameter for the many families of superconductors with coexisting density waves, which we demonstrate on superconductors such as the dichalcogenides and Lu₅Ir₄Si10.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31085657</pmid><doi>10.1073/pnas.1817134116</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9778-323X</orcidid><orcidid>https://orcid.org/0000-0003-4984-8857</orcidid><orcidid>https://orcid.org/0000-0002-7294-4428</orcidid><orcidid>https://orcid.org/0000-0002-2353-2742</orcidid><orcidid>https://orcid.org/0000000349848857</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-05, Vol.116 (22), p.10691-10697 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561221 |
source | PMC (PubMed Central); Full-Text Journals in Chemistry (Open access); Alma/SFX Local Collection; JSTOR |
subjects | Charge density waves charge order Condensed Matter CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Crystal defects Crystals Cuprates Decoupling disorder High temperature High temperature superconductors Irradiation Material Science Materials Science pair-density wave Physical Sciences Physics PNAS Plus Proton irradiation Superconductivity Temperature effects Tunnel diodes |
title | Disorder raises the critical temperature of a cuprate superconductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disorder%20raises%20the%20critical%20temperature%20of%20a%20cuprate%20superconductor&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Leroux,%20Maxime&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Emergent%20Superconductivity%20(CES)&rft.date=2019-05-28&rft.volume=116&rft.issue=22&rft.spage=10691&rft.epage=10697&rft.pages=10691-10697&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1817134116&rft_dat=%3Cjstor_pubme%3E26707133%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232695332&rft_id=info:pmid/31085657&rft_jstor_id=26707133&rfr_iscdi=true |