Disorder raises the critical temperature of a cuprate superconductor

With the discovery of charge-density waves (CDWs) in most members of the cuprate high-temperature superconductors, the interplay between superconductivity and CDWs has become a key point in the debate on the origin of high-temperature superconductivity. Some experiments in cuprates point toward a CD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-05, Vol.116 (22), p.10691-10697
Hauptverfasser: Leroux, Maxime, Mishra, Vivek, Ruff, Jacob P. C., Claus, Helmut, Smylie, Matthew P., Opagiste, Christine, Rodière, Pierre, Kayani, Asghar, Gu, G. D., Tranquada, John M., Kwok, Wai-Kwong, Islam, Zahirul, Welp, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10697
container_issue 22
container_start_page 10691
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Leroux, Maxime
Mishra, Vivek
Ruff, Jacob P. C.
Claus, Helmut
Smylie, Matthew P.
Opagiste, Christine
Rodière, Pierre
Kayani, Asghar
Gu, G. D.
Tranquada, John M.
Kwok, Wai-Kwong
Islam, Zahirul
Welp, Ulrich
description With the discovery of charge-density waves (CDWs) in most members of the cuprate high-temperature superconductors, the interplay between superconductivity and CDWs has become a key point in the debate on the origin of high-temperature superconductivity. Some experiments in cuprates point toward a CDW state competing with superconductivity, but others raise the possibility of a CDW-superconductivity intertwined order or more elusive pair-density waves (PDWs). Here, we have used proton irradiation to induce disorder in crystals of La1.875Ba0.125CuO₄ and observed a striking 50% increase of T c, accompanied by a suppression of the CDWs. This is in sharp contrast with the behavior expected of a d-wave superconductor, for which both magnetic and nonmagnetic defects should suppress T c. Our results thus make an unambiguous case for the strong detrimental effect of the CDW on bulk superconductivity in La1.875Ba0.125CuO₄. Using tunnel diode oscillator (TDO) measurements, we find indications for potential dynamic layer decoupling in a PDW phase. Our results establish irradiation-induced disorder as a particularly relevant tuning parameter for the many families of superconductors with coexisting density waves, which we demonstrate on superconductors such as the dichalcogenides and Lu₅Ir₄Si10.
doi_str_mv 10.1073/pnas.1817134116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26707133</jstor_id><sourcerecordid>26707133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-47f2b5ee8f8325a77b72b27ba64046274aa52ce91028bf31ed07a9aba5b6acf33</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhzAkUwQUOacffzgWpaoEircQFzpbjnbBZZeNgO5X49zhKWaAnyzOPH43nJeQlhQsKml9Oo0sX1FBNuaBUPSIbCg2tlWjgMdkAMF0bwcQZeZbSAQAaaeApOeMUjFRSb8jNTZ9C3GGsousTpirvsfKxz713Q5XxOGF0eY5Yha5ylZ-ncsUqzaXuw7ibfQ7xOXnSuSHhi_vznHz_9PHb9W29_fr5y_XVtvYSRK6F7lgrEU1nOJNO61azlunWKQFCMS2ck8xjQ4GZtuMUd6Bd41onW-V8x_k5-bB6p7k94s7jmKMb7BT7o4u_bHC9_b8z9nv7I9xZJRVljBbBm1UQUu5t8n1Gvy_fGNFnSyUoxU2B3q_Q_oH79mprlxowTsu85m4RvrufKIafM6Zsj33yOAxuxDAnywpqhKK8KejbB-ghzHEs-1oophrJOSvU5Ur5GFKK2J0moGCXyO0Suf0beXnx-t-lnPg_GRfg1QocUsnq1GdKQ3Fw_hs9E7CL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232695332</pqid></control><display><type>article</type><title>Disorder raises the critical temperature of a cuprate superconductor</title><source>PMC (PubMed Central)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Leroux, Maxime ; Mishra, Vivek ; Ruff, Jacob P. C. ; Claus, Helmut ; Smylie, Matthew P. ; Opagiste, Christine ; Rodière, Pierre ; Kayani, Asghar ; Gu, G. D. ; Tranquada, John M. ; Kwok, Wai-Kwong ; Islam, Zahirul ; Welp, Ulrich</creator><creatorcontrib>Leroux, Maxime ; Mishra, Vivek ; Ruff, Jacob P. C. ; Claus, Helmut ; Smylie, Matthew P. ; Opagiste, Christine ; Rodière, Pierre ; Kayani, Asghar ; Gu, G. D. ; Tranquada, John M. ; Kwok, Wai-Kwong ; Islam, Zahirul ; Welp, Ulrich ; Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES) ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>With the discovery of charge-density waves (CDWs) in most members of the cuprate high-temperature superconductors, the interplay between superconductivity and CDWs has become a key point in the debate on the origin of high-temperature superconductivity. Some experiments in cuprates point toward a CDW state competing with superconductivity, but others raise the possibility of a CDW-superconductivity intertwined order or more elusive pair-density waves (PDWs). Here, we have used proton irradiation to induce disorder in crystals of La1.875Ba0.125CuO₄ and observed a striking 50% increase of T c, accompanied by a suppression of the CDWs. This is in sharp contrast with the behavior expected of a d-wave superconductor, for which both magnetic and nonmagnetic defects should suppress T c. Our results thus make an unambiguous case for the strong detrimental effect of the CDW on bulk superconductivity in La1.875Ba0.125CuO₄. Using tunnel diode oscillator (TDO) measurements, we find indications for potential dynamic layer decoupling in a PDW phase. Our results establish irradiation-induced disorder as a particularly relevant tuning parameter for the many families of superconductors with coexisting density waves, which we demonstrate on superconductors such as the dichalcogenides and Lu₅Ir₄Si10.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1817134116</identifier><identifier>PMID: 31085657</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Charge density waves ; charge order ; Condensed Matter ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Crystal defects ; Crystals ; Cuprates ; Decoupling ; disorder ; High temperature ; High temperature superconductors ; Irradiation ; Material Science ; Materials Science ; pair-density wave ; Physical Sciences ; Physics ; PNAS Plus ; Proton irradiation ; Superconductivity ; Temperature effects ; Tunnel diodes</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-05, Vol.116 (22), p.10691-10697</ispartof><rights>Copyright National Academy of Sciences May 28, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-47f2b5ee8f8325a77b72b27ba64046274aa52ce91028bf31ed07a9aba5b6acf33</citedby><cites>FETCH-LOGICAL-c504t-47f2b5ee8f8325a77b72b27ba64046274aa52ce91028bf31ed07a9aba5b6acf33</cites><orcidid>0000-0001-9778-323X ; 0000-0003-4984-8857 ; 0000-0002-7294-4428 ; 0000-0002-2353-2742 ; 0000000349848857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26707133$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26707133$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31085657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02314628$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1506638$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Leroux, Maxime</creatorcontrib><creatorcontrib>Mishra, Vivek</creatorcontrib><creatorcontrib>Ruff, Jacob P. C.</creatorcontrib><creatorcontrib>Claus, Helmut</creatorcontrib><creatorcontrib>Smylie, Matthew P.</creatorcontrib><creatorcontrib>Opagiste, Christine</creatorcontrib><creatorcontrib>Rodière, Pierre</creatorcontrib><creatorcontrib>Kayani, Asghar</creatorcontrib><creatorcontrib>Gu, G. D.</creatorcontrib><creatorcontrib>Tranquada, John M.</creatorcontrib><creatorcontrib>Kwok, Wai-Kwong</creatorcontrib><creatorcontrib>Islam, Zahirul</creatorcontrib><creatorcontrib>Welp, Ulrich</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Disorder raises the critical temperature of a cuprate superconductor</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>With the discovery of charge-density waves (CDWs) in most members of the cuprate high-temperature superconductors, the interplay between superconductivity and CDWs has become a key point in the debate on the origin of high-temperature superconductivity. Some experiments in cuprates point toward a CDW state competing with superconductivity, but others raise the possibility of a CDW-superconductivity intertwined order or more elusive pair-density waves (PDWs). Here, we have used proton irradiation to induce disorder in crystals of La1.875Ba0.125CuO₄ and observed a striking 50% increase of T c, accompanied by a suppression of the CDWs. This is in sharp contrast with the behavior expected of a d-wave superconductor, for which both magnetic and nonmagnetic defects should suppress T c. Our results thus make an unambiguous case for the strong detrimental effect of the CDW on bulk superconductivity in La1.875Ba0.125CuO₄. Using tunnel diode oscillator (TDO) measurements, we find indications for potential dynamic layer decoupling in a PDW phase. Our results establish irradiation-induced disorder as a particularly relevant tuning parameter for the many families of superconductors with coexisting density waves, which we demonstrate on superconductors such as the dichalcogenides and Lu₅Ir₄Si10.</description><subject>Charge density waves</subject><subject>charge order</subject><subject>Condensed Matter</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Crystal defects</subject><subject>Crystals</subject><subject>Cuprates</subject><subject>Decoupling</subject><subject>disorder</subject><subject>High temperature</subject><subject>High temperature superconductors</subject><subject>Irradiation</subject><subject>Material Science</subject><subject>Materials Science</subject><subject>pair-density wave</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>PNAS Plus</subject><subject>Proton irradiation</subject><subject>Superconductivity</subject><subject>Temperature effects</subject><subject>Tunnel diodes</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EokvhzAkUwQUOacffzgWpaoEircQFzpbjnbBZZeNgO5X49zhKWaAnyzOPH43nJeQlhQsKml9Oo0sX1FBNuaBUPSIbCg2tlWjgMdkAMF0bwcQZeZbSAQAaaeApOeMUjFRSb8jNTZ9C3GGsousTpirvsfKxz713Q5XxOGF0eY5Yha5ylZ-ncsUqzaXuw7ibfQ7xOXnSuSHhi_vznHz_9PHb9W29_fr5y_XVtvYSRK6F7lgrEU1nOJNO61azlunWKQFCMS2ck8xjQ4GZtuMUd6Bd41onW-V8x_k5-bB6p7k94s7jmKMb7BT7o4u_bHC9_b8z9nv7I9xZJRVljBbBm1UQUu5t8n1Gvy_fGNFnSyUoxU2B3q_Q_oH79mprlxowTsu85m4RvrufKIafM6Zsj33yOAxuxDAnywpqhKK8KejbB-ghzHEs-1oophrJOSvU5Ur5GFKK2J0moGCXyO0Suf0beXnx-t-lnPg_GRfg1QocUsnq1GdKQ3Fw_hs9E7CL</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Leroux, Maxime</creator><creator>Mishra, Vivek</creator><creator>Ruff, Jacob P. C.</creator><creator>Claus, Helmut</creator><creator>Smylie, Matthew P.</creator><creator>Opagiste, Christine</creator><creator>Rodière, Pierre</creator><creator>Kayani, Asghar</creator><creator>Gu, G. D.</creator><creator>Tranquada, John M.</creator><creator>Kwok, Wai-Kwong</creator><creator>Islam, Zahirul</creator><creator>Welp, Ulrich</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9778-323X</orcidid><orcidid>https://orcid.org/0000-0003-4984-8857</orcidid><orcidid>https://orcid.org/0000-0002-7294-4428</orcidid><orcidid>https://orcid.org/0000-0002-2353-2742</orcidid><orcidid>https://orcid.org/0000000349848857</orcidid></search><sort><creationdate>20190528</creationdate><title>Disorder raises the critical temperature of a cuprate superconductor</title><author>Leroux, Maxime ; Mishra, Vivek ; Ruff, Jacob P. C. ; Claus, Helmut ; Smylie, Matthew P. ; Opagiste, Christine ; Rodière, Pierre ; Kayani, Asghar ; Gu, G. D. ; Tranquada, John M. ; Kwok, Wai-Kwong ; Islam, Zahirul ; Welp, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-47f2b5ee8f8325a77b72b27ba64046274aa52ce91028bf31ed07a9aba5b6acf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge density waves</topic><topic>charge order</topic><topic>Condensed Matter</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Crystal defects</topic><topic>Crystals</topic><topic>Cuprates</topic><topic>Decoupling</topic><topic>disorder</topic><topic>High temperature</topic><topic>High temperature superconductors</topic><topic>Irradiation</topic><topic>Material Science</topic><topic>Materials Science</topic><topic>pair-density wave</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>PNAS Plus</topic><topic>Proton irradiation</topic><topic>Superconductivity</topic><topic>Temperature effects</topic><topic>Tunnel diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leroux, Maxime</creatorcontrib><creatorcontrib>Mishra, Vivek</creatorcontrib><creatorcontrib>Ruff, Jacob P. C.</creatorcontrib><creatorcontrib>Claus, Helmut</creatorcontrib><creatorcontrib>Smylie, Matthew P.</creatorcontrib><creatorcontrib>Opagiste, Christine</creatorcontrib><creatorcontrib>Rodière, Pierre</creatorcontrib><creatorcontrib>Kayani, Asghar</creatorcontrib><creatorcontrib>Gu, G. D.</creatorcontrib><creatorcontrib>Tranquada, John M.</creatorcontrib><creatorcontrib>Kwok, Wai-Kwong</creatorcontrib><creatorcontrib>Islam, Zahirul</creatorcontrib><creatorcontrib>Welp, Ulrich</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leroux, Maxime</au><au>Mishra, Vivek</au><au>Ruff, Jacob P. C.</au><au>Claus, Helmut</au><au>Smylie, Matthew P.</au><au>Opagiste, Christine</au><au>Rodière, Pierre</au><au>Kayani, Asghar</au><au>Gu, G. D.</au><au>Tranquada, John M.</au><au>Kwok, Wai-Kwong</au><au>Islam, Zahirul</au><au>Welp, Ulrich</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</aucorp><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disorder raises the critical temperature of a cuprate superconductor</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-05-28</date><risdate>2019</risdate><volume>116</volume><issue>22</issue><spage>10691</spage><epage>10697</epage><pages>10691-10697</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>With the discovery of charge-density waves (CDWs) in most members of the cuprate high-temperature superconductors, the interplay between superconductivity and CDWs has become a key point in the debate on the origin of high-temperature superconductivity. Some experiments in cuprates point toward a CDW state competing with superconductivity, but others raise the possibility of a CDW-superconductivity intertwined order or more elusive pair-density waves (PDWs). Here, we have used proton irradiation to induce disorder in crystals of La1.875Ba0.125CuO₄ and observed a striking 50% increase of T c, accompanied by a suppression of the CDWs. This is in sharp contrast with the behavior expected of a d-wave superconductor, for which both magnetic and nonmagnetic defects should suppress T c. Our results thus make an unambiguous case for the strong detrimental effect of the CDW on bulk superconductivity in La1.875Ba0.125CuO₄. Using tunnel diode oscillator (TDO) measurements, we find indications for potential dynamic layer decoupling in a PDW phase. Our results establish irradiation-induced disorder as a particularly relevant tuning parameter for the many families of superconductors with coexisting density waves, which we demonstrate on superconductors such as the dichalcogenides and Lu₅Ir₄Si10.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31085657</pmid><doi>10.1073/pnas.1817134116</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9778-323X</orcidid><orcidid>https://orcid.org/0000-0003-4984-8857</orcidid><orcidid>https://orcid.org/0000-0002-7294-4428</orcidid><orcidid>https://orcid.org/0000-0002-2353-2742</orcidid><orcidid>https://orcid.org/0000000349848857</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-05, Vol.116 (22), p.10691-10697
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561221
source PMC (PubMed Central); Full-Text Journals in Chemistry (Open access); Alma/SFX Local Collection; JSTOR
subjects Charge density waves
charge order
Condensed Matter
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Crystal defects
Crystals
Cuprates
Decoupling
disorder
High temperature
High temperature superconductors
Irradiation
Material Science
Materials Science
pair-density wave
Physical Sciences
Physics
PNAS Plus
Proton irradiation
Superconductivity
Temperature effects
Tunnel diodes
title Disorder raises the critical temperature of a cuprate superconductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disorder%20raises%20the%20critical%20temperature%20of%20a%20cuprate%20superconductor&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Leroux,%20Maxime&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Emergent%20Superconductivity%20(CES)&rft.date=2019-05-28&rft.volume=116&rft.issue=22&rft.spage=10691&rft.epage=10697&rft.pages=10691-10697&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1817134116&rft_dat=%3Cjstor_pubme%3E26707133%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232695332&rft_id=info:pmid/31085657&rft_jstor_id=26707133&rfr_iscdi=true