Spatial patterning among savanna trees in high-resolution, spatially extensive data

In savannas, predicting how vegetation varies is a longstanding challenge. Spatial patterning in vegetation may structure that variability, mediated by spatial interactions, including competition and facilitation. Here, we use unique high-resolution, spatially extensive data of tree distributions in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-05, Vol.116 (22), p.10681-10685
Hauptverfasser: Staver, A. Carla, Asner, Gregory P., Rodriguez-Iturbe, Ignacio, Levin, Simon A., Smit, Izak P.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10685
container_issue 22
container_start_page 10681
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Staver, A. Carla
Asner, Gregory P.
Rodriguez-Iturbe, Ignacio
Levin, Simon A.
Smit, Izak P.J.
description In savannas, predicting how vegetation varies is a longstanding challenge. Spatial patterning in vegetation may structure that variability, mediated by spatial interactions, including competition and facilitation. Here, we use unique high-resolution, spatially extensive data of tree distributions in an African savanna, derived from airborne Light Detection and Ranging (LiDAR), to examine tree-clustering patterns. We show that tree cluster sizes were governed by power laws over two to three orders of magnitude in spatial scale and that the parameters on their distributions were invariant with respect to underlying environment. Concluding that some universal process governs spatial patterns in tree distributions may be premature. However, we can say that, although the tree layer may look unpredictable locally, at scales relevant to prediction in, e.g., global vegetation models, vegetation is instead strongly structured by regular statistical distributions.
doi_str_mv 10.1073/pnas.1819391116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26707131</jstor_id><sourcerecordid>26707131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-f37cf78f2767d2c0f7975589883d7217e124d27df65bf0a9ebe5ddd74e891ccd3</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoqFw5gRaiUsPbOux11-XSqgqH1IlDoWz5axnE0cbO9jeiP73bJQSPi7zDu83TzN6hLwGeglU8atddOUSNBhuAEA-IQugBlrZGfqULChlqtUd687Ii1I2lFIjNH1OzjhQLaSgC3J_v3M1uLGZpWKOIa4at03zLG7vYnRNzYilCbFZh9W6zVjSONWQ4vumHFfHhwZ_Vowl7LHxrrqX5NngxoKvHvWcfP94--3mc3v39dOXmw93bc8Vr-3AVT8oPTAllWc9HZRRQmijNfeKgUJgnWfKD1IsB-oMLlF471WH2kDfe35Oro-5u2m5Rd9jrNmNdpfD1uUHm1yw_zoxrO0q7a0UEhh0c8DFY0BOPyYs1W5D6XEcXcQ0FcsYB91JkGxG3_2HbtKU4_zegWJSGKBipq6OVJ9TKRmH0zFA7aEweyjM_ils3nj79w8n_ndDM_DmCGxKTfnkM6moAg78F4d5nPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232659105</pqid></control><display><type>article</type><title>Spatial patterning among savanna trees in high-resolution, spatially extensive data</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Staver, A. Carla ; Asner, Gregory P. ; Rodriguez-Iturbe, Ignacio ; Levin, Simon A. ; Smit, Izak P.J.</creator><creatorcontrib>Staver, A. Carla ; Asner, Gregory P. ; Rodriguez-Iturbe, Ignacio ; Levin, Simon A. ; Smit, Izak P.J.</creatorcontrib><description>In savannas, predicting how vegetation varies is a longstanding challenge. Spatial patterning in vegetation may structure that variability, mediated by spatial interactions, including competition and facilitation. Here, we use unique high-resolution, spatially extensive data of tree distributions in an African savanna, derived from airborne Light Detection and Ranging (LiDAR), to examine tree-clustering patterns. We show that tree cluster sizes were governed by power laws over two to three orders of magnitude in spatial scale and that the parameters on their distributions were invariant with respect to underlying environment. Concluding that some universal process governs spatial patterns in tree distributions may be premature. However, we can say that, although the tree layer may look unpredictable locally, at scales relevant to prediction in, e.g., global vegetation models, vegetation is instead strongly structured by regular statistical distributions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1819391116</identifier><identifier>PMID: 31085650</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cluster Analysis ; Clustering ; Databases, Factual ; Grassland ; High resolution ; Lidar ; Models, Statistical ; Pattern formation ; Physical Sciences ; Predictions ; Rain ; Rivers ; Savannahs ; Spatial Analysis ; Statistical analysis ; Statistical distributions ; Trees ; Trees - physiology ; Vegetation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-05, Vol.116 (22), p.10681-10685</ispartof><rights>Copyright National Academy of Sciences May 28, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-f37cf78f2767d2c0f7975589883d7217e124d27df65bf0a9ebe5ddd74e891ccd3</citedby><cites>FETCH-LOGICAL-c373t-f37cf78f2767d2c0f7975589883d7217e124d27df65bf0a9ebe5ddd74e891ccd3</cites><orcidid>0000-0003-3663-9191 ; 0000-0001-7893-6421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26707131$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26707131$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31085650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Staver, A. Carla</creatorcontrib><creatorcontrib>Asner, Gregory P.</creatorcontrib><creatorcontrib>Rodriguez-Iturbe, Ignacio</creatorcontrib><creatorcontrib>Levin, Simon A.</creatorcontrib><creatorcontrib>Smit, Izak P.J.</creatorcontrib><title>Spatial patterning among savanna trees in high-resolution, spatially extensive data</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In savannas, predicting how vegetation varies is a longstanding challenge. Spatial patterning in vegetation may structure that variability, mediated by spatial interactions, including competition and facilitation. Here, we use unique high-resolution, spatially extensive data of tree distributions in an African savanna, derived from airborne Light Detection and Ranging (LiDAR), to examine tree-clustering patterns. We show that tree cluster sizes were governed by power laws over two to three orders of magnitude in spatial scale and that the parameters on their distributions were invariant with respect to underlying environment. Concluding that some universal process governs spatial patterns in tree distributions may be premature. However, we can say that, although the tree layer may look unpredictable locally, at scales relevant to prediction in, e.g., global vegetation models, vegetation is instead strongly structured by regular statistical distributions.</description><subject>Biological Sciences</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Databases, Factual</subject><subject>Grassland</subject><subject>High resolution</subject><subject>Lidar</subject><subject>Models, Statistical</subject><subject>Pattern formation</subject><subject>Physical Sciences</subject><subject>Predictions</subject><subject>Rain</subject><subject>Rivers</subject><subject>Savannahs</subject><subject>Spatial Analysis</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Trees</subject><subject>Trees - physiology</subject><subject>Vegetation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS0EoqFw5gRaiUsPbOux11-XSqgqH1IlDoWz5axnE0cbO9jeiP73bJQSPi7zDu83TzN6hLwGeglU8atddOUSNBhuAEA-IQugBlrZGfqULChlqtUd687Ii1I2lFIjNH1OzjhQLaSgC3J_v3M1uLGZpWKOIa4at03zLG7vYnRNzYilCbFZh9W6zVjSONWQ4vumHFfHhwZ_Vowl7LHxrrqX5NngxoKvHvWcfP94--3mc3v39dOXmw93bc8Vr-3AVT8oPTAllWc9HZRRQmijNfeKgUJgnWfKD1IsB-oMLlF471WH2kDfe35Oro-5u2m5Rd9jrNmNdpfD1uUHm1yw_zoxrO0q7a0UEhh0c8DFY0BOPyYs1W5D6XEcXcQ0FcsYB91JkGxG3_2HbtKU4_zegWJSGKBipq6OVJ9TKRmH0zFA7aEweyjM_ils3nj79w8n_ndDM_DmCGxKTfnkM6moAg78F4d5nPA</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Staver, A. Carla</creator><creator>Asner, Gregory P.</creator><creator>Rodriguez-Iturbe, Ignacio</creator><creator>Levin, Simon A.</creator><creator>Smit, Izak P.J.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3663-9191</orcidid><orcidid>https://orcid.org/0000-0001-7893-6421</orcidid></search><sort><creationdate>20190528</creationdate><title>Spatial patterning among savanna trees in high-resolution, spatially extensive data</title><author>Staver, A. Carla ; Asner, Gregory P. ; Rodriguez-Iturbe, Ignacio ; Levin, Simon A. ; Smit, Izak P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-f37cf78f2767d2c0f7975589883d7217e124d27df65bf0a9ebe5ddd74e891ccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological Sciences</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Databases, Factual</topic><topic>Grassland</topic><topic>High resolution</topic><topic>Lidar</topic><topic>Models, Statistical</topic><topic>Pattern formation</topic><topic>Physical Sciences</topic><topic>Predictions</topic><topic>Rain</topic><topic>Rivers</topic><topic>Savannahs</topic><topic>Spatial Analysis</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Trees</topic><topic>Trees - physiology</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staver, A. Carla</creatorcontrib><creatorcontrib>Asner, Gregory P.</creatorcontrib><creatorcontrib>Rodriguez-Iturbe, Ignacio</creatorcontrib><creatorcontrib>Levin, Simon A.</creatorcontrib><creatorcontrib>Smit, Izak P.J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staver, A. Carla</au><au>Asner, Gregory P.</au><au>Rodriguez-Iturbe, Ignacio</au><au>Levin, Simon A.</au><au>Smit, Izak P.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial patterning among savanna trees in high-resolution, spatially extensive data</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-05-28</date><risdate>2019</risdate><volume>116</volume><issue>22</issue><spage>10681</spage><epage>10685</epage><pages>10681-10685</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In savannas, predicting how vegetation varies is a longstanding challenge. Spatial patterning in vegetation may structure that variability, mediated by spatial interactions, including competition and facilitation. Here, we use unique high-resolution, spatially extensive data of tree distributions in an African savanna, derived from airborne Light Detection and Ranging (LiDAR), to examine tree-clustering patterns. We show that tree cluster sizes were governed by power laws over two to three orders of magnitude in spatial scale and that the parameters on their distributions were invariant with respect to underlying environment. Concluding that some universal process governs spatial patterns in tree distributions may be premature. However, we can say that, although the tree layer may look unpredictable locally, at scales relevant to prediction in, e.g., global vegetation models, vegetation is instead strongly structured by regular statistical distributions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31085650</pmid><doi>10.1073/pnas.1819391116</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3663-9191</orcidid><orcidid>https://orcid.org/0000-0001-7893-6421</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-05, Vol.116 (22), p.10681-10685
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561214
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Cluster Analysis
Clustering
Databases, Factual
Grassland
High resolution
Lidar
Models, Statistical
Pattern formation
Physical Sciences
Predictions
Rain
Rivers
Savannahs
Spatial Analysis
Statistical analysis
Statistical distributions
Trees
Trees - physiology
Vegetation
title Spatial patterning among savanna trees in high-resolution, spatially extensive data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20patterning%20among%20savanna%20trees%20in%20high-resolution,%20spatially%20extensive%20data&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Staver,%20A.%20Carla&rft.date=2019-05-28&rft.volume=116&rft.issue=22&rft.spage=10681&rft.epage=10685&rft.pages=10681-10685&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1819391116&rft_dat=%3Cjstor_pubme%3E26707131%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232659105&rft_id=info:pmid/31085650&rft_jstor_id=26707131&rfr_iscdi=true