Spatial patterning among savanna trees in high-resolution, spatially extensive data
In savannas, predicting how vegetation varies is a longstanding challenge. Spatial patterning in vegetation may structure that variability, mediated by spatial interactions, including competition and facilitation. Here, we use unique high-resolution, spatially extensive data of tree distributions in...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-05, Vol.116 (22), p.10681-10685 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10685 |
---|---|
container_issue | 22 |
container_start_page | 10681 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Staver, A. Carla Asner, Gregory P. Rodriguez-Iturbe, Ignacio Levin, Simon A. Smit, Izak P.J. |
description | In savannas, predicting how vegetation varies is a longstanding challenge. Spatial patterning in vegetation may structure that variability, mediated by spatial interactions, including competition and facilitation. Here, we use unique high-resolution, spatially extensive data of tree distributions in an African savanna, derived from airborne Light Detection and Ranging (LiDAR), to examine tree-clustering patterns. We show that tree cluster sizes were governed by power laws over two to three orders of magnitude in spatial scale and that the parameters on their distributions were invariant with respect to underlying environment. Concluding that some universal process governs spatial patterns in tree distributions may be premature. However, we can say that, although the tree layer may look unpredictable locally, at scales relevant to prediction in, e.g., global vegetation models, vegetation is instead strongly structured by regular statistical distributions. |
doi_str_mv | 10.1073/pnas.1819391116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26707131</jstor_id><sourcerecordid>26707131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-f37cf78f2767d2c0f7975589883d7217e124d27df65bf0a9ebe5ddd74e891ccd3</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoqFw5gRaiUsPbOux11-XSqgqH1IlDoWz5axnE0cbO9jeiP73bJQSPi7zDu83TzN6hLwGeglU8atddOUSNBhuAEA-IQugBlrZGfqULChlqtUd687Ii1I2lFIjNH1OzjhQLaSgC3J_v3M1uLGZpWKOIa4at03zLG7vYnRNzYilCbFZh9W6zVjSONWQ4vumHFfHhwZ_Vowl7LHxrrqX5NngxoKvHvWcfP94--3mc3v39dOXmw93bc8Vr-3AVT8oPTAllWc9HZRRQmijNfeKgUJgnWfKD1IsB-oMLlF471WH2kDfe35Oro-5u2m5Rd9jrNmNdpfD1uUHm1yw_zoxrO0q7a0UEhh0c8DFY0BOPyYs1W5D6XEcXcQ0FcsYB91JkGxG3_2HbtKU4_zegWJSGKBipq6OVJ9TKRmH0zFA7aEweyjM_ils3nj79w8n_ndDM_DmCGxKTfnkM6moAg78F4d5nPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232659105</pqid></control><display><type>article</type><title>Spatial patterning among savanna trees in high-resolution, spatially extensive data</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Staver, A. Carla ; Asner, Gregory P. ; Rodriguez-Iturbe, Ignacio ; Levin, Simon A. ; Smit, Izak P.J.</creator><creatorcontrib>Staver, A. Carla ; Asner, Gregory P. ; Rodriguez-Iturbe, Ignacio ; Levin, Simon A. ; Smit, Izak P.J.</creatorcontrib><description>In savannas, predicting how vegetation varies is a longstanding challenge. Spatial patterning in vegetation may structure that variability, mediated by spatial interactions, including competition and facilitation. Here, we use unique high-resolution, spatially extensive data of tree distributions in an African savanna, derived from airborne Light Detection and Ranging (LiDAR), to examine tree-clustering patterns. We show that tree cluster sizes were governed by power laws over two to three orders of magnitude in spatial scale and that the parameters on their distributions were invariant with respect to underlying environment. Concluding that some universal process governs spatial patterns in tree distributions may be premature. However, we can say that, although the tree layer may look unpredictable locally, at scales relevant to prediction in, e.g., global vegetation models, vegetation is instead strongly structured by regular statistical distributions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1819391116</identifier><identifier>PMID: 31085650</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cluster Analysis ; Clustering ; Databases, Factual ; Grassland ; High resolution ; Lidar ; Models, Statistical ; Pattern formation ; Physical Sciences ; Predictions ; Rain ; Rivers ; Savannahs ; Spatial Analysis ; Statistical analysis ; Statistical distributions ; Trees ; Trees - physiology ; Vegetation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-05, Vol.116 (22), p.10681-10685</ispartof><rights>Copyright National Academy of Sciences May 28, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-f37cf78f2767d2c0f7975589883d7217e124d27df65bf0a9ebe5ddd74e891ccd3</citedby><cites>FETCH-LOGICAL-c373t-f37cf78f2767d2c0f7975589883d7217e124d27df65bf0a9ebe5ddd74e891ccd3</cites><orcidid>0000-0003-3663-9191 ; 0000-0001-7893-6421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26707131$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26707131$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31085650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Staver, A. Carla</creatorcontrib><creatorcontrib>Asner, Gregory P.</creatorcontrib><creatorcontrib>Rodriguez-Iturbe, Ignacio</creatorcontrib><creatorcontrib>Levin, Simon A.</creatorcontrib><creatorcontrib>Smit, Izak P.J.</creatorcontrib><title>Spatial patterning among savanna trees in high-resolution, spatially extensive data</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In savannas, predicting how vegetation varies is a longstanding challenge. Spatial patterning in vegetation may structure that variability, mediated by spatial interactions, including competition and facilitation. Here, we use unique high-resolution, spatially extensive data of tree distributions in an African savanna, derived from airborne Light Detection and Ranging (LiDAR), to examine tree-clustering patterns. We show that tree cluster sizes were governed by power laws over two to three orders of magnitude in spatial scale and that the parameters on their distributions were invariant with respect to underlying environment. Concluding that some universal process governs spatial patterns in tree distributions may be premature. However, we can say that, although the tree layer may look unpredictable locally, at scales relevant to prediction in, e.g., global vegetation models, vegetation is instead strongly structured by regular statistical distributions.</description><subject>Biological Sciences</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Databases, Factual</subject><subject>Grassland</subject><subject>High resolution</subject><subject>Lidar</subject><subject>Models, Statistical</subject><subject>Pattern formation</subject><subject>Physical Sciences</subject><subject>Predictions</subject><subject>Rain</subject><subject>Rivers</subject><subject>Savannahs</subject><subject>Spatial Analysis</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Trees</subject><subject>Trees - physiology</subject><subject>Vegetation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS0EoqFw5gRaiUsPbOux11-XSqgqH1IlDoWz5axnE0cbO9jeiP73bJQSPi7zDu83TzN6hLwGeglU8atddOUSNBhuAEA-IQugBlrZGfqULChlqtUd687Ii1I2lFIjNH1OzjhQLaSgC3J_v3M1uLGZpWKOIa4at03zLG7vYnRNzYilCbFZh9W6zVjSONWQ4vumHFfHhwZ_Vowl7LHxrrqX5NngxoKvHvWcfP94--3mc3v39dOXmw93bc8Vr-3AVT8oPTAllWc9HZRRQmijNfeKgUJgnWfKD1IsB-oMLlF471WH2kDfe35Oro-5u2m5Rd9jrNmNdpfD1uUHm1yw_zoxrO0q7a0UEhh0c8DFY0BOPyYs1W5D6XEcXcQ0FcsYB91JkGxG3_2HbtKU4_zegWJSGKBipq6OVJ9TKRmH0zFA7aEweyjM_ils3nj79w8n_ndDM_DmCGxKTfnkM6moAg78F4d5nPA</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Staver, A. Carla</creator><creator>Asner, Gregory P.</creator><creator>Rodriguez-Iturbe, Ignacio</creator><creator>Levin, Simon A.</creator><creator>Smit, Izak P.J.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3663-9191</orcidid><orcidid>https://orcid.org/0000-0001-7893-6421</orcidid></search><sort><creationdate>20190528</creationdate><title>Spatial patterning among savanna trees in high-resolution, spatially extensive data</title><author>Staver, A. Carla ; Asner, Gregory P. ; Rodriguez-Iturbe, Ignacio ; Levin, Simon A. ; Smit, Izak P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-f37cf78f2767d2c0f7975589883d7217e124d27df65bf0a9ebe5ddd74e891ccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological Sciences</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Databases, Factual</topic><topic>Grassland</topic><topic>High resolution</topic><topic>Lidar</topic><topic>Models, Statistical</topic><topic>Pattern formation</topic><topic>Physical Sciences</topic><topic>Predictions</topic><topic>Rain</topic><topic>Rivers</topic><topic>Savannahs</topic><topic>Spatial Analysis</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Trees</topic><topic>Trees - physiology</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staver, A. Carla</creatorcontrib><creatorcontrib>Asner, Gregory P.</creatorcontrib><creatorcontrib>Rodriguez-Iturbe, Ignacio</creatorcontrib><creatorcontrib>Levin, Simon A.</creatorcontrib><creatorcontrib>Smit, Izak P.J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staver, A. Carla</au><au>Asner, Gregory P.</au><au>Rodriguez-Iturbe, Ignacio</au><au>Levin, Simon A.</au><au>Smit, Izak P.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial patterning among savanna trees in high-resolution, spatially extensive data</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-05-28</date><risdate>2019</risdate><volume>116</volume><issue>22</issue><spage>10681</spage><epage>10685</epage><pages>10681-10685</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In savannas, predicting how vegetation varies is a longstanding challenge. Spatial patterning in vegetation may structure that variability, mediated by spatial interactions, including competition and facilitation. Here, we use unique high-resolution, spatially extensive data of tree distributions in an African savanna, derived from airborne Light Detection and Ranging (LiDAR), to examine tree-clustering patterns. We show that tree cluster sizes were governed by power laws over two to three orders of magnitude in spatial scale and that the parameters on their distributions were invariant with respect to underlying environment. Concluding that some universal process governs spatial patterns in tree distributions may be premature. However, we can say that, although the tree layer may look unpredictable locally, at scales relevant to prediction in, e.g., global vegetation models, vegetation is instead strongly structured by regular statistical distributions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31085650</pmid><doi>10.1073/pnas.1819391116</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3663-9191</orcidid><orcidid>https://orcid.org/0000-0001-7893-6421</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-05, Vol.116 (22), p.10681-10685 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561214 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Cluster Analysis Clustering Databases, Factual Grassland High resolution Lidar Models, Statistical Pattern formation Physical Sciences Predictions Rain Rivers Savannahs Spatial Analysis Statistical analysis Statistical distributions Trees Trees - physiology Vegetation |
title | Spatial patterning among savanna trees in high-resolution, spatially extensive data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20patterning%20among%20savanna%20trees%20in%20high-resolution,%20spatially%20extensive%20data&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Staver,%20A.%20Carla&rft.date=2019-05-28&rft.volume=116&rft.issue=22&rft.spage=10681&rft.epage=10685&rft.pages=10681-10685&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1819391116&rft_dat=%3Cjstor_pubme%3E26707131%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232659105&rft_id=info:pmid/31085650&rft_jstor_id=26707131&rfr_iscdi=true |