Kinetic model for adherent Vero cell growth and poliovirus production in batch bioreactors
[Display omitted] •Mathematical model for Vero cell growth in batch bioreactors.•Mathematical model for poliovirus proliferation on Vero cells.•Oxygen uptake rate as process analytical technology for simple process monitoring. The production of poliovirus vaccines in adherent Vero cells in batch bio...
Gespeichert in:
Veröffentlicht in: | Process biochemistry (1991) 2019-06, Vol.81, p.156-164 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | |
container_start_page | 156 |
container_title | Process biochemistry (1991) |
container_volume | 81 |
creator | Jiang, Yang van der Welle, Joyce E. Rubingh, Olaf van Eikenhorst, Gerco Bakker, Wilfried A.M. Thomassen, Yvonne E. |
description | [Display omitted]
•Mathematical model for Vero cell growth in batch bioreactors.•Mathematical model for poliovirus proliferation on Vero cells.•Oxygen uptake rate as process analytical technology for simple process monitoring.
The production of poliovirus vaccines in adherent Vero cells in batch bioreactors usually consists of a two-step upstream process: (1) Vero cell cultivation on microcarriers and (2) poliovirus proliferation. In this study we developed a mathematical model to describe this two-step process. We introduced the calculation of the oxygen uptake rate (OUR) and a correction of measurement for the sampling effect in order to ensure the high quality data sets. Besides the data of the OUR, we selected glucose concentration, Vero cell concentration and the virus titer for daily in process control to evaluate the progress of the process. With the selected data sets, the described model can accurately describe poliovirus production by Vero cells. Several other regular in process control samples (e.g. lactate concentration, ammonia concentration, and amino acids concentration) were excluded from the model, simplifying the process control analysis and minimizing labor. |
doi_str_mv | 10.1016/j.procbio.2019.03.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6559155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359511318317756</els_id><sourcerecordid>2237564559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-6bbe9aabcf932cad8072ef46b353c8ab41dbfe669205cba8a7df51532bd6c28c3</originalsourceid><addsrcrecordid>eNqFkUtvFDEQhC1ERB7wE0CWuHCZwW2P53EBRREERKRcAgculh89Wa9m7cWeWcS_x6tdIuCSky3563JVFyEvgdXAoH27rrcpWuNjzRkMNRM1A_aEnEHfiUrwoX9a7kIOlQQQp-Q85zVjAgDYM3IqgEPXcXlGvn_xAWdv6SY6nOgYE9VuhQnDTL9hitTiNNH7FH_OK6qDo9s4-bjzacm0GHCLnX0M1Adq9GxXtBhKqO0cU35OTkY9ZXxxPC_I148f7q4-VTe315-vLm8qKwWfq9YYHLQ2dhwEt9r1rOM4Nq0RUthemwacGbFtB86kNbrXnRsllFHjWst7Ky7Iu4PudjEbdLZYT3pS2-Q3Ov1SUXv170vwK3Ufd6qVcgApi8Cbo0CKPxbMs9r4vM-tA8YlK86bBoSAdo--_g9dxyWFEq9QopNtUzQLJQ-UTTHnhOODGWBq355aq2N7at-eYkKV9srcq7-TPEz9qasA7w8Aln3uPCaVrcdg0fmEdlYu-ke--A03RrDG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237564559</pqid></control><display><type>article</type><title>Kinetic model for adherent Vero cell growth and poliovirus production in batch bioreactors</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jiang, Yang ; van der Welle, Joyce E. ; Rubingh, Olaf ; van Eikenhorst, Gerco ; Bakker, Wilfried A.M. ; Thomassen, Yvonne E.</creator><creatorcontrib>Jiang, Yang ; van der Welle, Joyce E. ; Rubingh, Olaf ; van Eikenhorst, Gerco ; Bakker, Wilfried A.M. ; Thomassen, Yvonne E.</creatorcontrib><description>[Display omitted]
•Mathematical model for Vero cell growth in batch bioreactors.•Mathematical model for poliovirus proliferation on Vero cells.•Oxygen uptake rate as process analytical technology for simple process monitoring.
The production of poliovirus vaccines in adherent Vero cells in batch bioreactors usually consists of a two-step upstream process: (1) Vero cell cultivation on microcarriers and (2) poliovirus proliferation. In this study we developed a mathematical model to describe this two-step process. We introduced the calculation of the oxygen uptake rate (OUR) and a correction of measurement for the sampling effect in order to ensure the high quality data sets. Besides the data of the OUR, we selected glucose concentration, Vero cell concentration and the virus titer for daily in process control to evaluate the progress of the process. With the selected data sets, the described model can accurately describe poliovirus production by Vero cells. Several other regular in process control samples (e.g. lactate concentration, ammonia concentration, and amino acids concentration) were excluded from the model, simplifying the process control analysis and minimizing labor.</description><identifier>ISSN: 1359-5113</identifier><identifier>EISSN: 1873-3298</identifier><identifier>DOI: 10.1016/j.procbio.2019.03.010</identifier><identifier>PMID: 31217725</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adherent cells ; Amino acids ; Ammonia ; Bioreactors ; Cultivation ; Datasets ; Lactic acid ; Mathematical models ; Oxygen uptake ; Oxygen uptake rate ; Process control ; Process controls ; Vaccines ; Vero cells ; Virus infection ; Viruses</subject><ispartof>Process biochemistry (1991), 2019-06, Vol.81, p.156-164</ispartof><rights>2019 The Authors</rights><rights>Copyright Elsevier BV Jun 2019</rights><rights>2019 The Authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-6bbe9aabcf932cad8072ef46b353c8ab41dbfe669205cba8a7df51532bd6c28c3</citedby><cites>FETCH-LOGICAL-c532t-6bbe9aabcf932cad8072ef46b353c8ab41dbfe669205cba8a7df51532bd6c28c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.procbio.2019.03.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31217725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>van der Welle, Joyce E.</creatorcontrib><creatorcontrib>Rubingh, Olaf</creatorcontrib><creatorcontrib>van Eikenhorst, Gerco</creatorcontrib><creatorcontrib>Bakker, Wilfried A.M.</creatorcontrib><creatorcontrib>Thomassen, Yvonne E.</creatorcontrib><title>Kinetic model for adherent Vero cell growth and poliovirus production in batch bioreactors</title><title>Process biochemistry (1991)</title><addtitle>Process Biochem</addtitle><description>[Display omitted]
•Mathematical model for Vero cell growth in batch bioreactors.•Mathematical model for poliovirus proliferation on Vero cells.•Oxygen uptake rate as process analytical technology for simple process monitoring.
The production of poliovirus vaccines in adherent Vero cells in batch bioreactors usually consists of a two-step upstream process: (1) Vero cell cultivation on microcarriers and (2) poliovirus proliferation. In this study we developed a mathematical model to describe this two-step process. We introduced the calculation of the oxygen uptake rate (OUR) and a correction of measurement for the sampling effect in order to ensure the high quality data sets. Besides the data of the OUR, we selected glucose concentration, Vero cell concentration and the virus titer for daily in process control to evaluate the progress of the process. With the selected data sets, the described model can accurately describe poliovirus production by Vero cells. Several other regular in process control samples (e.g. lactate concentration, ammonia concentration, and amino acids concentration) were excluded from the model, simplifying the process control analysis and minimizing labor.</description><subject>Adherent cells</subject><subject>Amino acids</subject><subject>Ammonia</subject><subject>Bioreactors</subject><subject>Cultivation</subject><subject>Datasets</subject><subject>Lactic acid</subject><subject>Mathematical models</subject><subject>Oxygen uptake</subject><subject>Oxygen uptake rate</subject><subject>Process control</subject><subject>Process controls</subject><subject>Vaccines</subject><subject>Vero cells</subject><subject>Virus infection</subject><subject>Viruses</subject><issn>1359-5113</issn><issn>1873-3298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkUtvFDEQhC1ERB7wE0CWuHCZwW2P53EBRREERKRcAgculh89Wa9m7cWeWcS_x6tdIuCSky3563JVFyEvgdXAoH27rrcpWuNjzRkMNRM1A_aEnEHfiUrwoX9a7kIOlQQQp-Q85zVjAgDYM3IqgEPXcXlGvn_xAWdv6SY6nOgYE9VuhQnDTL9hitTiNNH7FH_OK6qDo9s4-bjzacm0GHCLnX0M1Adq9GxXtBhKqO0cU35OTkY9ZXxxPC_I148f7q4-VTe315-vLm8qKwWfq9YYHLQ2dhwEt9r1rOM4Nq0RUthemwacGbFtB86kNbrXnRsllFHjWst7Ky7Iu4PudjEbdLZYT3pS2-Q3Ov1SUXv170vwK3Ufd6qVcgApi8Cbo0CKPxbMs9r4vM-tA8YlK86bBoSAdo--_g9dxyWFEq9QopNtUzQLJQ-UTTHnhOODGWBq355aq2N7at-eYkKV9srcq7-TPEz9qasA7w8Aln3uPCaVrcdg0fmEdlYu-ke--A03RrDG</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Jiang, Yang</creator><creator>van der Welle, Joyce E.</creator><creator>Rubingh, Olaf</creator><creator>van Eikenhorst, Gerco</creator><creator>Bakker, Wilfried A.M.</creator><creator>Thomassen, Yvonne E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier Applied Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190601</creationdate><title>Kinetic model for adherent Vero cell growth and poliovirus production in batch bioreactors</title><author>Jiang, Yang ; van der Welle, Joyce E. ; Rubingh, Olaf ; van Eikenhorst, Gerco ; Bakker, Wilfried A.M. ; Thomassen, Yvonne E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-6bbe9aabcf932cad8072ef46b353c8ab41dbfe669205cba8a7df51532bd6c28c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adherent cells</topic><topic>Amino acids</topic><topic>Ammonia</topic><topic>Bioreactors</topic><topic>Cultivation</topic><topic>Datasets</topic><topic>Lactic acid</topic><topic>Mathematical models</topic><topic>Oxygen uptake</topic><topic>Oxygen uptake rate</topic><topic>Process control</topic><topic>Process controls</topic><topic>Vaccines</topic><topic>Vero cells</topic><topic>Virus infection</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>van der Welle, Joyce E.</creatorcontrib><creatorcontrib>Rubingh, Olaf</creatorcontrib><creatorcontrib>van Eikenhorst, Gerco</creatorcontrib><creatorcontrib>Bakker, Wilfried A.M.</creatorcontrib><creatorcontrib>Thomassen, Yvonne E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Process biochemistry (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yang</au><au>van der Welle, Joyce E.</au><au>Rubingh, Olaf</au><au>van Eikenhorst, Gerco</au><au>Bakker, Wilfried A.M.</au><au>Thomassen, Yvonne E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic model for adherent Vero cell growth and poliovirus production in batch bioreactors</atitle><jtitle>Process biochemistry (1991)</jtitle><addtitle>Process Biochem</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>81</volume><spage>156</spage><epage>164</epage><pages>156-164</pages><issn>1359-5113</issn><eissn>1873-3298</eissn><abstract>[Display omitted]
•Mathematical model for Vero cell growth in batch bioreactors.•Mathematical model for poliovirus proliferation on Vero cells.•Oxygen uptake rate as process analytical technology for simple process monitoring.
The production of poliovirus vaccines in adherent Vero cells in batch bioreactors usually consists of a two-step upstream process: (1) Vero cell cultivation on microcarriers and (2) poliovirus proliferation. In this study we developed a mathematical model to describe this two-step process. We introduced the calculation of the oxygen uptake rate (OUR) and a correction of measurement for the sampling effect in order to ensure the high quality data sets. Besides the data of the OUR, we selected glucose concentration, Vero cell concentration and the virus titer for daily in process control to evaluate the progress of the process. With the selected data sets, the described model can accurately describe poliovirus production by Vero cells. Several other regular in process control samples (e.g. lactate concentration, ammonia concentration, and amino acids concentration) were excluded from the model, simplifying the process control analysis and minimizing labor.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31217725</pmid><doi>10.1016/j.procbio.2019.03.010</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-5113 |
ispartof | Process biochemistry (1991), 2019-06, Vol.81, p.156-164 |
issn | 1359-5113 1873-3298 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6559155 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Adherent cells Amino acids Ammonia Bioreactors Cultivation Datasets Lactic acid Mathematical models Oxygen uptake Oxygen uptake rate Process control Process controls Vaccines Vero cells Virus infection Viruses |
title | Kinetic model for adherent Vero cell growth and poliovirus production in batch bioreactors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20model%20for%20adherent%20Vero%20cell%20growth%20and%20poliovirus%20production%20in%20batch%20bioreactors&rft.jtitle=Process%20biochemistry%20(1991)&rft.au=Jiang,%20Yang&rft.date=2019-06-01&rft.volume=81&rft.spage=156&rft.epage=164&rft.pages=156-164&rft.issn=1359-5113&rft.eissn=1873-3298&rft_id=info:doi/10.1016/j.procbio.2019.03.010&rft_dat=%3Cproquest_pubme%3E2237564559%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237564559&rft_id=info:pmid/31217725&rft_els_id=S1359511318317756&rfr_iscdi=true |