Mechanisms regulating zygotic genome activation
Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Genetics 2019-04, Vol.20 (4), p.221-234 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | 4 |
container_start_page | 221 |
container_title | Nature reviews. Genetics |
container_volume | 20 |
creator | Schulz, Katharine N. Harrison, Melissa M. |
description | Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes.
The maternal-to-zygotic transition (MZT) is the process by which the transcriptionally silent embryonic genome is gradually activated. The mechanisms underlying the MZT are not fully understood, but recent work indicates that transcriptional activators have an important role. |
doi_str_mv | 10.1038/s41576-018-0087-x |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6558659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A578614617</galeid><sourcerecordid>A578614617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-6163d19e8e413044a528ccce8381f690f2317c48b9ff7b2e381b0e1b457e3ddb3</originalsourceid><addsrcrecordid>eNp1kktr3DAUhUVpaZJpf0A3ZaBQ2oUTyXpvAiH0EUgp9LEWsnztUbCl1LLDpL8-MpNO4tKihR73O0fo6iD0iuBjgqk6SYxwKQpMVIGxksX2CTokTJK8E-zpfs3FATpK6QpjIoikz9EBxVxSxfQhOvkCbmODT31aD9BOnR19aNe_b9s4erduIcQe1taN_iZXYniBnjW2S_Dyfl6hnx8__Dj_XFx-_XRxfnZZOIHLsRBE0JpoUMAIxYxZXirnHCiqSCM0bkpKpGOq0k0jqxLycYWBVIxLoHVd0RU63fleT1UPtYMwDrYz14Pv7XBrovVmWQl-Y9p4YwTnSnCdDd7dGwzx1wRpNL1PDrrOBohTMiXhWkutRZnRN3-hV3EaQn5epjRRtFSUPlCt7cD40MR8r5tNzRmXShA2N3eFjv9B5VFD710M0Ph8vhC8XwgyM8J2bO2Ukrn4_m3Jvn3EbsB24ybFbpo_Ji1BsgPdEFMaoNk3jmAzR8fsomNydMwcHbPNmtePO75X_MlKBsodkHIptDA8tOn_rne6Ncvk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191832833</pqid></control><display><type>article</type><title>Mechanisms regulating zygotic genome activation</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Journals</source><creator>Schulz, Katharine N. ; Harrison, Melissa M.</creator><creatorcontrib>Schulz, Katharine N. ; Harrison, Melissa M.</creatorcontrib><description>Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes.
The maternal-to-zygotic transition (MZT) is the process by which the transcriptionally silent embryonic genome is gradually activated. The mechanisms underlying the MZT are not fully understood, but recent work indicates that transcriptional activators have an important role.</description><identifier>ISSN: 1471-0056</identifier><identifier>EISSN: 1471-0064</identifier><identifier>DOI: 10.1038/s41576-018-0087-x</identifier><identifier>PMID: 30573849</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/63 ; 38 ; 38/39 ; 38/91 ; 631/136/2086 ; 631/208/135 ; 631/208/199 ; 631/208/200 ; 631/337/100 ; 631/337/572 ; Agriculture ; Animal Genetics and Genomics ; Animals ; Backup software ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Embryonic development ; Fertilization ; Gametes ; Gene Expression Regulation, Developmental - physiology ; Gene Function ; Genes ; Genetic aspects ; Genome ; Genomes ; Genomics ; Human Genetics ; Maternal-fetal exchange ; Properties ; Review Article ; Transcription (Genetics) ; Transcription activation ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic - physiology ; Zygote - metabolism</subject><ispartof>Nature reviews. Genetics, 2019-04, Vol.20 (4), p.221-234</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-6163d19e8e413044a528ccce8381f690f2317c48b9ff7b2e381b0e1b457e3ddb3</citedby><cites>FETCH-LOGICAL-c602t-6163d19e8e413044a528ccce8381f690f2317c48b9ff7b2e381b0e1b457e3ddb3</cites><orcidid>0000-0001-8523-0515 ; 0000-0002-8228-6836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41576-018-0087-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41576-018-0087-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30573849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schulz, Katharine N.</creatorcontrib><creatorcontrib>Harrison, Melissa M.</creatorcontrib><title>Mechanisms regulating zygotic genome activation</title><title>Nature reviews. Genetics</title><addtitle>Nat Rev Genet</addtitle><addtitle>Nat Rev Genet</addtitle><description>Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes.
The maternal-to-zygotic transition (MZT) is the process by which the transcriptionally silent embryonic genome is gradually activated. The mechanisms underlying the MZT are not fully understood, but recent work indicates that transcriptional activators have an important role.</description><subject>14</subject><subject>14/63</subject><subject>38</subject><subject>38/39</subject><subject>38/91</subject><subject>631/136/2086</subject><subject>631/208/135</subject><subject>631/208/199</subject><subject>631/208/200</subject><subject>631/337/100</subject><subject>631/337/572</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Backup software</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Embryonic development</subject><subject>Fertilization</subject><subject>Gametes</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Gene Function</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Human Genetics</subject><subject>Maternal-fetal exchange</subject><subject>Properties</subject><subject>Review Article</subject><subject>Transcription (Genetics)</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic - physiology</subject><subject>Zygote - metabolism</subject><issn>1471-0056</issn><issn>1471-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kktr3DAUhUVpaZJpf0A3ZaBQ2oUTyXpvAiH0EUgp9LEWsnztUbCl1LLDpL8-MpNO4tKihR73O0fo6iD0iuBjgqk6SYxwKQpMVIGxksX2CTokTJK8E-zpfs3FATpK6QpjIoikz9EBxVxSxfQhOvkCbmODT31aD9BOnR19aNe_b9s4erduIcQe1taN_iZXYniBnjW2S_Dyfl6hnx8__Dj_XFx-_XRxfnZZOIHLsRBE0JpoUMAIxYxZXirnHCiqSCM0bkpKpGOq0k0jqxLycYWBVIxLoHVd0RU63fleT1UPtYMwDrYz14Pv7XBrovVmWQl-Y9p4YwTnSnCdDd7dGwzx1wRpNL1PDrrOBohTMiXhWkutRZnRN3-hV3EaQn5epjRRtFSUPlCt7cD40MR8r5tNzRmXShA2N3eFjv9B5VFD710M0Ph8vhC8XwgyM8J2bO2Ukrn4_m3Jvn3EbsB24ybFbpo_Ji1BsgPdEFMaoNk3jmAzR8fsomNydMwcHbPNmtePO75X_MlKBsodkHIptDA8tOn_rne6Ncvk</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Schulz, Katharine N.</creator><creator>Harrison, Melissa M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8523-0515</orcidid><orcidid>https://orcid.org/0000-0002-8228-6836</orcidid></search><sort><creationdate>20190401</creationdate><title>Mechanisms regulating zygotic genome activation</title><author>Schulz, Katharine N. ; Harrison, Melissa M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-6163d19e8e413044a528ccce8381f690f2317c48b9ff7b2e381b0e1b457e3ddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14</topic><topic>14/63</topic><topic>38</topic><topic>38/39</topic><topic>38/91</topic><topic>631/136/2086</topic><topic>631/208/135</topic><topic>631/208/199</topic><topic>631/208/200</topic><topic>631/337/100</topic><topic>631/337/572</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Backup software</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Embryonic development</topic><topic>Fertilization</topic><topic>Gametes</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Gene Function</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Human Genetics</topic><topic>Maternal-fetal exchange</topic><topic>Properties</topic><topic>Review Article</topic><topic>Transcription (Genetics)</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic - physiology</topic><topic>Zygote - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulz, Katharine N.</creatorcontrib><creatorcontrib>Harrison, Melissa M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature reviews. Genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulz, Katharine N.</au><au>Harrison, Melissa M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms regulating zygotic genome activation</atitle><jtitle>Nature reviews. Genetics</jtitle><stitle>Nat Rev Genet</stitle><addtitle>Nat Rev Genet</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>20</volume><issue>4</issue><spage>221</spage><epage>234</epage><pages>221-234</pages><issn>1471-0056</issn><eissn>1471-0064</eissn><abstract>Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes.
The maternal-to-zygotic transition (MZT) is the process by which the transcriptionally silent embryonic genome is gradually activated. The mechanisms underlying the MZT are not fully understood, but recent work indicates that transcriptional activators have an important role.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30573849</pmid><doi>10.1038/s41576-018-0087-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8523-0515</orcidid><orcidid>https://orcid.org/0000-0002-8228-6836</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-0056 |
ispartof | Nature reviews. Genetics, 2019-04, Vol.20 (4), p.221-234 |
issn | 1471-0056 1471-0064 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6558659 |
source | MEDLINE; Nature; SpringerNature Journals |
subjects | 14 14/63 38 38/39 38/91 631/136/2086 631/208/135 631/208/199 631/208/200 631/337/100 631/337/572 Agriculture Animal Genetics and Genomics Animals Backup software Biomedical and Life Sciences Biomedicine Cancer Research Chromatin Chromatin - genetics Chromatin - metabolism Embryonic development Fertilization Gametes Gene Expression Regulation, Developmental - physiology Gene Function Genes Genetic aspects Genome Genomes Genomics Human Genetics Maternal-fetal exchange Properties Review Article Transcription (Genetics) Transcription activation Transcription factors Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic - physiology Zygote - metabolism |
title | Mechanisms regulating zygotic genome activation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20regulating%20zygotic%20genome%20activation&rft.jtitle=Nature%20reviews.%20Genetics&rft.au=Schulz,%20Katharine%20N.&rft.date=2019-04-01&rft.volume=20&rft.issue=4&rft.spage=221&rft.epage=234&rft.pages=221-234&rft.issn=1471-0056&rft.eissn=1471-0064&rft_id=info:doi/10.1038/s41576-018-0087-x&rft_dat=%3Cgale_pubme%3EA578614617%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191832833&rft_id=info:pmid/30573849&rft_galeid=A578614617&rfr_iscdi=true |