Mechanisms regulating zygotic genome activation

Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Genetics 2019-04, Vol.20 (4), p.221-234
Hauptverfasser: Schulz, Katharine N., Harrison, Melissa M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 4
container_start_page 221
container_title Nature reviews. Genetics
container_volume 20
creator Schulz, Katharine N.
Harrison, Melissa M.
description Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes. The maternal-to-zygotic transition (MZT) is the process by which the transcriptionally silent embryonic genome is gradually activated. The mechanisms underlying the MZT are not fully understood, but recent work indicates that transcriptional activators have an important role.
doi_str_mv 10.1038/s41576-018-0087-x
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6558659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A578614617</galeid><sourcerecordid>A578614617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-6163d19e8e413044a528ccce8381f690f2317c48b9ff7b2e381b0e1b457e3ddb3</originalsourceid><addsrcrecordid>eNp1kktr3DAUhUVpaZJpf0A3ZaBQ2oUTyXpvAiH0EUgp9LEWsnztUbCl1LLDpL8-MpNO4tKihR73O0fo6iD0iuBjgqk6SYxwKQpMVIGxksX2CTokTJK8E-zpfs3FATpK6QpjIoikz9EBxVxSxfQhOvkCbmODT31aD9BOnR19aNe_b9s4erduIcQe1taN_iZXYniBnjW2S_Dyfl6hnx8__Dj_XFx-_XRxfnZZOIHLsRBE0JpoUMAIxYxZXirnHCiqSCM0bkpKpGOq0k0jqxLycYWBVIxLoHVd0RU63fleT1UPtYMwDrYz14Pv7XBrovVmWQl-Y9p4YwTnSnCdDd7dGwzx1wRpNL1PDrrOBohTMiXhWkutRZnRN3-hV3EaQn5epjRRtFSUPlCt7cD40MR8r5tNzRmXShA2N3eFjv9B5VFD710M0Ph8vhC8XwgyM8J2bO2Ukrn4_m3Jvn3EbsB24ybFbpo_Ji1BsgPdEFMaoNk3jmAzR8fsomNydMwcHbPNmtePO75X_MlKBsodkHIptDA8tOn_rne6Ncvk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191832833</pqid></control><display><type>article</type><title>Mechanisms regulating zygotic genome activation</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Journals</source><creator>Schulz, Katharine N. ; Harrison, Melissa M.</creator><creatorcontrib>Schulz, Katharine N. ; Harrison, Melissa M.</creatorcontrib><description>Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes. The maternal-to-zygotic transition (MZT) is the process by which the transcriptionally silent embryonic genome is gradually activated. The mechanisms underlying the MZT are not fully understood, but recent work indicates that transcriptional activators have an important role.</description><identifier>ISSN: 1471-0056</identifier><identifier>EISSN: 1471-0064</identifier><identifier>DOI: 10.1038/s41576-018-0087-x</identifier><identifier>PMID: 30573849</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/63 ; 38 ; 38/39 ; 38/91 ; 631/136/2086 ; 631/208/135 ; 631/208/199 ; 631/208/200 ; 631/337/100 ; 631/337/572 ; Agriculture ; Animal Genetics and Genomics ; Animals ; Backup software ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Embryonic development ; Fertilization ; Gametes ; Gene Expression Regulation, Developmental - physiology ; Gene Function ; Genes ; Genetic aspects ; Genome ; Genomes ; Genomics ; Human Genetics ; Maternal-fetal exchange ; Properties ; Review Article ; Transcription (Genetics) ; Transcription activation ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic - physiology ; Zygote - metabolism</subject><ispartof>Nature reviews. Genetics, 2019-04, Vol.20 (4), p.221-234</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-6163d19e8e413044a528ccce8381f690f2317c48b9ff7b2e381b0e1b457e3ddb3</citedby><cites>FETCH-LOGICAL-c602t-6163d19e8e413044a528ccce8381f690f2317c48b9ff7b2e381b0e1b457e3ddb3</cites><orcidid>0000-0001-8523-0515 ; 0000-0002-8228-6836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41576-018-0087-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41576-018-0087-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30573849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schulz, Katharine N.</creatorcontrib><creatorcontrib>Harrison, Melissa M.</creatorcontrib><title>Mechanisms regulating zygotic genome activation</title><title>Nature reviews. Genetics</title><addtitle>Nat Rev Genet</addtitle><addtitle>Nat Rev Genet</addtitle><description>Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes. The maternal-to-zygotic transition (MZT) is the process by which the transcriptionally silent embryonic genome is gradually activated. The mechanisms underlying the MZT are not fully understood, but recent work indicates that transcriptional activators have an important role.</description><subject>14</subject><subject>14/63</subject><subject>38</subject><subject>38/39</subject><subject>38/91</subject><subject>631/136/2086</subject><subject>631/208/135</subject><subject>631/208/199</subject><subject>631/208/200</subject><subject>631/337/100</subject><subject>631/337/572</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Backup software</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Embryonic development</subject><subject>Fertilization</subject><subject>Gametes</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Gene Function</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Human Genetics</subject><subject>Maternal-fetal exchange</subject><subject>Properties</subject><subject>Review Article</subject><subject>Transcription (Genetics)</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic - physiology</subject><subject>Zygote - metabolism</subject><issn>1471-0056</issn><issn>1471-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kktr3DAUhUVpaZJpf0A3ZaBQ2oUTyXpvAiH0EUgp9LEWsnztUbCl1LLDpL8-MpNO4tKihR73O0fo6iD0iuBjgqk6SYxwKQpMVIGxksX2CTokTJK8E-zpfs3FATpK6QpjIoikz9EBxVxSxfQhOvkCbmODT31aD9BOnR19aNe_b9s4erduIcQe1taN_iZXYniBnjW2S_Dyfl6hnx8__Dj_XFx-_XRxfnZZOIHLsRBE0JpoUMAIxYxZXirnHCiqSCM0bkpKpGOq0k0jqxLycYWBVIxLoHVd0RU63fleT1UPtYMwDrYz14Pv7XBrovVmWQl-Y9p4YwTnSnCdDd7dGwzx1wRpNL1PDrrOBohTMiXhWkutRZnRN3-hV3EaQn5epjRRtFSUPlCt7cD40MR8r5tNzRmXShA2N3eFjv9B5VFD710M0Ph8vhC8XwgyM8J2bO2Ukrn4_m3Jvn3EbsB24ybFbpo_Ji1BsgPdEFMaoNk3jmAzR8fsomNydMwcHbPNmtePO75X_MlKBsodkHIptDA8tOn_rne6Ncvk</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Schulz, Katharine N.</creator><creator>Harrison, Melissa M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8523-0515</orcidid><orcidid>https://orcid.org/0000-0002-8228-6836</orcidid></search><sort><creationdate>20190401</creationdate><title>Mechanisms regulating zygotic genome activation</title><author>Schulz, Katharine N. ; Harrison, Melissa M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-6163d19e8e413044a528ccce8381f690f2317c48b9ff7b2e381b0e1b457e3ddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14</topic><topic>14/63</topic><topic>38</topic><topic>38/39</topic><topic>38/91</topic><topic>631/136/2086</topic><topic>631/208/135</topic><topic>631/208/199</topic><topic>631/208/200</topic><topic>631/337/100</topic><topic>631/337/572</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Backup software</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Embryonic development</topic><topic>Fertilization</topic><topic>Gametes</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Gene Function</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Human Genetics</topic><topic>Maternal-fetal exchange</topic><topic>Properties</topic><topic>Review Article</topic><topic>Transcription (Genetics)</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic - physiology</topic><topic>Zygote - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulz, Katharine N.</creatorcontrib><creatorcontrib>Harrison, Melissa M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature reviews. Genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulz, Katharine N.</au><au>Harrison, Melissa M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms regulating zygotic genome activation</atitle><jtitle>Nature reviews. Genetics</jtitle><stitle>Nat Rev Genet</stitle><addtitle>Nat Rev Genet</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>20</volume><issue>4</issue><spage>221</spage><epage>234</epage><pages>221-234</pages><issn>1471-0056</issn><eissn>1471-0064</eissn><abstract>Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes. The maternal-to-zygotic transition (MZT) is the process by which the transcriptionally silent embryonic genome is gradually activated. The mechanisms underlying the MZT are not fully understood, but recent work indicates that transcriptional activators have an important role.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30573849</pmid><doi>10.1038/s41576-018-0087-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8523-0515</orcidid><orcidid>https://orcid.org/0000-0002-8228-6836</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-0056
ispartof Nature reviews. Genetics, 2019-04, Vol.20 (4), p.221-234
issn 1471-0056
1471-0064
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6558659
source MEDLINE; Nature; SpringerNature Journals
subjects 14
14/63
38
38/39
38/91
631/136/2086
631/208/135
631/208/199
631/208/200
631/337/100
631/337/572
Agriculture
Animal Genetics and Genomics
Animals
Backup software
Biomedical and Life Sciences
Biomedicine
Cancer Research
Chromatin
Chromatin - genetics
Chromatin - metabolism
Embryonic development
Fertilization
Gametes
Gene Expression Regulation, Developmental - physiology
Gene Function
Genes
Genetic aspects
Genome
Genomes
Genomics
Human Genetics
Maternal-fetal exchange
Properties
Review Article
Transcription (Genetics)
Transcription activation
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic - physiology
Zygote - metabolism
title Mechanisms regulating zygotic genome activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20regulating%20zygotic%20genome%20activation&rft.jtitle=Nature%20reviews.%20Genetics&rft.au=Schulz,%20Katharine%20N.&rft.date=2019-04-01&rft.volume=20&rft.issue=4&rft.spage=221&rft.epage=234&rft.pages=221-234&rft.issn=1471-0056&rft.eissn=1471-0064&rft_id=info:doi/10.1038/s41576-018-0087-x&rft_dat=%3Cgale_pubme%3EA578614617%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191832833&rft_id=info:pmid/30573849&rft_galeid=A578614617&rfr_iscdi=true