Inferring population genetics parameters of evolving viruses using time-series data
With the advent of deep sequencing techniques, it is now possible to track the evolution of viruses with ever-increasing detail. Here, we present Flexible Inference from Time-Series (FITS)-a computational tool that allows inference of one of three parameters: the fitness of a specific mutation, the...
Gespeichert in:
Veröffentlicht in: | Virus Evolution 2019-01, Vol.5 (1), p.vez011-vez011 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | vez011 |
---|---|
container_issue | 1 |
container_start_page | vez011 |
container_title | Virus Evolution |
container_volume | 5 |
creator | Zinger, Tal Gelbart, Maoz Miller, Danielle Pennings, Pleuni S Stern, Adi |
description | With the advent of deep sequencing techniques, it is now possible to track the evolution of viruses with ever-increasing detail. Here, we present Flexible Inference from Time-Series (FITS)-a computational tool that allows inference of one of three parameters: the fitness of a specific mutation, the mutation rate or the population size from genomic time-series sequencing data. FITS was designed first and foremost for analysis of either short-term Evolve & Resequence (E&R) experiments or rapidly recombining populations of viruses. We thoroughly explore the performance of FITS on simulated data and highlight its ability to infer the fitness/mutation rate/population size. We further show that FITS can infer meaningful information even when the input parameters are inexact. In particular, FITS is able to successfully categorize a mutation as advantageous or deleterious. We next apply FITS to empirical data from an E&R experiment on poliovirus where parameters were determined experimentally and demonstrate high accuracy in inference. |
doi_str_mv | 10.1093/ve/vez011 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6555871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A607432480</galeid><sourcerecordid>A607432480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-6fba9a6ca656e8e63b8c2bbd2fe1cd0a3e348535dca21f8946d68ec864aa706e3</originalsourceid><addsrcrecordid>eNpVkc1q3TAQhUVpaUKaRV-geJkunErWn70JhJA2gUAXbddiLI9uFWzJkWxD8vTV5aYhYQQzGn1zGHEI-czoOaMd_7ZhOU-UsXfkuKFS10xq_f5VfUROc76nlDLJtWD8IznijHWs090x-XUbHKbkw66a47yOsPgYqh0GXLzN1QwJJlww5Sq6Crc4bnt082nNmKs172-Ln7DOmHzpDLDAJ_LBwZjx9DmfkD_fr39f3dR3P3_cXl3e1VZotdTK9dCBsqCkwhYV71vb9P3QOGR2oMCRi1ZyOVhomGs7oQbVom2VANBUIT8hFwfdee0nHCyGJcFo5uQnSI8mgjdvX4L_a3ZxM0pK2WpWBM6eBVJ8WDEvZvLZ4jhCwLhm03BBqeBcqoKeH9AdjGh8cLEo2hIDTt7GgM6X_qWiWvBGtLQMfD0M2BRzTuhe9mLU7I0zG5qDcYX98vojL-R_m_g_h8qXTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2340043356</pqid></control><display><type>article</type><title>Inferring population genetics parameters of evolving viruses using time-series data</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Zinger, Tal ; Gelbart, Maoz ; Miller, Danielle ; Pennings, Pleuni S ; Stern, Adi</creator><creatorcontrib>Zinger, Tal ; Gelbart, Maoz ; Miller, Danielle ; Pennings, Pleuni S ; Stern, Adi</creatorcontrib><description>With the advent of deep sequencing techniques, it is now possible to track the evolution of viruses with ever-increasing detail. Here, we present Flexible Inference from Time-Series (FITS)-a computational tool that allows inference of one of three parameters: the fitness of a specific mutation, the mutation rate or the population size from genomic time-series sequencing data. FITS was designed first and foremost for analysis of either short-term Evolve & Resequence (E&R) experiments or rapidly recombining populations of viruses. We thoroughly explore the performance of FITS on simulated data and highlight its ability to infer the fitness/mutation rate/population size. We further show that FITS can infer meaningful information even when the input parameters are inexact. In particular, FITS is able to successfully categorize a mutation as advantageous or deleterious. We next apply FITS to empirical data from an E&R experiment on poliovirus where parameters were determined experimentally and demonstrate high accuracy in inference.</description><identifier>ISSN: 2057-1577</identifier><identifier>EISSN: 2057-1577</identifier><identifier>DOI: 10.1093/ve/vez011</identifier><identifier>PMID: 31191979</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Evolutionary genetics ; Gene mutation ; Genetic research ; Population genetics ; Resources ; Testing ; Viral genetics</subject><ispartof>Virus Evolution, 2019-01, Vol.5 (1), p.vez011-vez011</ispartof><rights>COPYRIGHT 2019 Oxford University Press</rights><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-6fba9a6ca656e8e63b8c2bbd2fe1cd0a3e348535dca21f8946d68ec864aa706e3</citedby><cites>FETCH-LOGICAL-c476t-6fba9a6ca656e8e63b8c2bbd2fe1cd0a3e348535dca21f8946d68ec864aa706e3</cites><orcidid>0000-0001-9268-9404 ; 0000-0002-5580-5282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555871/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555871/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31191979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zinger, Tal</creatorcontrib><creatorcontrib>Gelbart, Maoz</creatorcontrib><creatorcontrib>Miller, Danielle</creatorcontrib><creatorcontrib>Pennings, Pleuni S</creatorcontrib><creatorcontrib>Stern, Adi</creatorcontrib><title>Inferring population genetics parameters of evolving viruses using time-series data</title><title>Virus Evolution</title><addtitle>Virus Evol</addtitle><description>With the advent of deep sequencing techniques, it is now possible to track the evolution of viruses with ever-increasing detail. Here, we present Flexible Inference from Time-Series (FITS)-a computational tool that allows inference of one of three parameters: the fitness of a specific mutation, the mutation rate or the population size from genomic time-series sequencing data. FITS was designed first and foremost for analysis of either short-term Evolve & Resequence (E&R) experiments or rapidly recombining populations of viruses. We thoroughly explore the performance of FITS on simulated data and highlight its ability to infer the fitness/mutation rate/population size. We further show that FITS can infer meaningful information even when the input parameters are inexact. In particular, FITS is able to successfully categorize a mutation as advantageous or deleterious. We next apply FITS to empirical data from an E&R experiment on poliovirus where parameters were determined experimentally and demonstrate high accuracy in inference.</description><subject>Evolutionary genetics</subject><subject>Gene mutation</subject><subject>Genetic research</subject><subject>Population genetics</subject><subject>Resources</subject><subject>Testing</subject><subject>Viral genetics</subject><issn>2057-1577</issn><issn>2057-1577</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkc1q3TAQhUVpaUKaRV-geJkunErWn70JhJA2gUAXbddiLI9uFWzJkWxD8vTV5aYhYQQzGn1zGHEI-czoOaMd_7ZhOU-UsXfkuKFS10xq_f5VfUROc76nlDLJtWD8IznijHWs090x-XUbHKbkw66a47yOsPgYqh0GXLzN1QwJJlww5Sq6Crc4bnt082nNmKs172-Ln7DOmHzpDLDAJ_LBwZjx9DmfkD_fr39f3dR3P3_cXl3e1VZotdTK9dCBsqCkwhYV71vb9P3QOGR2oMCRi1ZyOVhomGs7oQbVom2VANBUIT8hFwfdee0nHCyGJcFo5uQnSI8mgjdvX4L_a3ZxM0pK2WpWBM6eBVJ8WDEvZvLZ4jhCwLhm03BBqeBcqoKeH9AdjGh8cLEo2hIDTt7GgM6X_qWiWvBGtLQMfD0M2BRzTuhe9mLU7I0zG5qDcYX98vojL-R_m_g_h8qXTA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Zinger, Tal</creator><creator>Gelbart, Maoz</creator><creator>Miller, Danielle</creator><creator>Pennings, Pleuni S</creator><creator>Stern, Adi</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9268-9404</orcidid><orcidid>https://orcid.org/0000-0002-5580-5282</orcidid></search><sort><creationdate>20190101</creationdate><title>Inferring population genetics parameters of evolving viruses using time-series data</title><author>Zinger, Tal ; Gelbart, Maoz ; Miller, Danielle ; Pennings, Pleuni S ; Stern, Adi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-6fba9a6ca656e8e63b8c2bbd2fe1cd0a3e348535dca21f8946d68ec864aa706e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Evolutionary genetics</topic><topic>Gene mutation</topic><topic>Genetic research</topic><topic>Population genetics</topic><topic>Resources</topic><topic>Testing</topic><topic>Viral genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zinger, Tal</creatorcontrib><creatorcontrib>Gelbart, Maoz</creatorcontrib><creatorcontrib>Miller, Danielle</creatorcontrib><creatorcontrib>Pennings, Pleuni S</creatorcontrib><creatorcontrib>Stern, Adi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Virus Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zinger, Tal</au><au>Gelbart, Maoz</au><au>Miller, Danielle</au><au>Pennings, Pleuni S</au><au>Stern, Adi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring population genetics parameters of evolving viruses using time-series data</atitle><jtitle>Virus Evolution</jtitle><addtitle>Virus Evol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>vez011</spage><epage>vez011</epage><pages>vez011-vez011</pages><issn>2057-1577</issn><eissn>2057-1577</eissn><abstract>With the advent of deep sequencing techniques, it is now possible to track the evolution of viruses with ever-increasing detail. Here, we present Flexible Inference from Time-Series (FITS)-a computational tool that allows inference of one of three parameters: the fitness of a specific mutation, the mutation rate or the population size from genomic time-series sequencing data. FITS was designed first and foremost for analysis of either short-term Evolve & Resequence (E&R) experiments or rapidly recombining populations of viruses. We thoroughly explore the performance of FITS on simulated data and highlight its ability to infer the fitness/mutation rate/population size. We further show that FITS can infer meaningful information even when the input parameters are inexact. In particular, FITS is able to successfully categorize a mutation as advantageous or deleterious. We next apply FITS to empirical data from an E&R experiment on poliovirus where parameters were determined experimentally and demonstrate high accuracy in inference.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31191979</pmid><doi>10.1093/ve/vez011</doi><orcidid>https://orcid.org/0000-0001-9268-9404</orcidid><orcidid>https://orcid.org/0000-0002-5580-5282</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-1577 |
ispartof | Virus Evolution, 2019-01, Vol.5 (1), p.vez011-vez011 |
issn | 2057-1577 2057-1577 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6555871 |
source | Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Evolutionary genetics Gene mutation Genetic research Population genetics Resources Testing Viral genetics |
title | Inferring population genetics parameters of evolving viruses using time-series data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20population%20genetics%20parameters%20of%20evolving%20viruses%20using%20time-series%20data&rft.jtitle=Virus%20Evolution&rft.au=Zinger,%20Tal&rft.date=2019-01-01&rft.volume=5&rft.issue=1&rft.spage=vez011&rft.epage=vez011&rft.pages=vez011-vez011&rft.issn=2057-1577&rft.eissn=2057-1577&rft_id=info:doi/10.1093/ve/vez011&rft_dat=%3Cgale_pubme%3EA607432480%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2340043356&rft_id=info:pmid/31191979&rft_galeid=A607432480&rfr_iscdi=true |