Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction?
Duality of iron as an essential cofactor of many enzymatic metabolic processes and as a catalyst of poorly controlled redox-cycling reactions defines its possible biological beneficial and hazardous role in the body. In this review, we discuss these two “faces” of iron in a newly conceptualized prog...
Gespeichert in:
Veröffentlicht in: | Free radical biology & medicine 2019-03, Vol.133, p.153-161 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 161 |
---|---|
container_issue | |
container_start_page | 153 |
container_title | Free radical biology & medicine |
container_volume | 133 |
creator | Stoyanovsky, D.A. Tyurina, Y.Y. Shrivastava, I. Bahar, I. Tyurin, V.A. Protchenko, O. Jadhav, S. Bolevich, S.B. Kozlov, A.V. Vladimirov, Y.A. Shvedova, A.A. Philpott, C.C. Bayir, H. Kagan, V.E. |
description | Duality of iron as an essential cofactor of many enzymatic metabolic processes and as a catalyst of poorly controlled redox-cycling reactions defines its possible biological beneficial and hazardous role in the body. In this review, we discuss these two “faces” of iron in a newly conceptualized program of regulated cell death, ferroptosis. Ferroptosis is a genetically programmed iron-dependent form of regulated cell death driven by enhanced lipid peroxidation and insufficient capacity of thiol-dependent mechanisms (glutathione peroxidase 4, GPX4) to eliminate hydroperoxy-lipids. We present arguments favoring the enzymatic mechanisms of ferroptotically engaged non-heme iron of 15-lipoxygenases (15-LOX) in complexes with phosphatidylethanolamine binding protein 1 (PEBP1) as a catalyst of highly selective and specific oxidation reactions of arachidonoyl- (AA) and adrenoyl-phosphatidylethanolamines (PE). We discuss possible role of iron chaperons as control mechanisms for guided iron delivery directly to their “protein clients” thus limiting non-enzymatic redox-cycling reactions. We also consider opportunities of loosely-bound iron to contribute to the production of pro-ferroptotic lipid oxidation products. Finally, we propose a two-stage iron-dependent mechanism for iron in ferroptosis by combining its catalytic role in the 15-LOX-driven production of 15-hydroperoxy-AA-PE (HOO-AA-PE) as well as possible involvement of loosely-bound iron in oxidative cleavage of HOO-AA-PE to oxidatively truncated electrophiles capable of attacking nucleophilic targets in yet to be identified proteins leading to cell demise.
[Display omitted]
•Phospholipid peroxidation in ferroptosis.•Lipoxygenase oxidation of arachidonoyl phosphatidylethanolamine.•Guided transportation of iron to target destinations in cells.•GPX4 reduction of hydroperoxy-arachidonoyl-phosphatidylethanolamine.•ACSL4 biosynthesis of arachidonoyl phosphatidylethanolamine is required for. |
doi_str_mv | 10.1016/j.freeradbiomed.2018.09.008 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6555767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584918315636</els_id><sourcerecordid>30217775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-1a52f54f515ccd0fbc1849a3e31aa8af4ac316eb668354b973beb880d3dd07943</originalsourceid><addsrcrecordid>eNqNUV1LxDAQDKLo-fEXJOBza3Jp2lRBEfELBEH0OWyTjeboNSWth-evN8ep6JtPu7Azs7szhBxxlnPGy-NZ7iJiBNv4MEebTxlXOatzxtQGmXBViayQdblJJkzVPJOqqHfI7jDMGGOFFGqb7Ag25VVVyQnxdzF01MAI7XLwAw2Otr73lvYYw7u3MPo09x11GGPox5BAJ_QRX95aGNFS7D6W8wQyNEQaobNhTlfnpd56Ay2NCGalcb5Pthy0Ax581T3yfH31dHmb3T_c3F1e3GdGymrMOMipk4WTXBpjmWsMTw-AQMEBFLgCjOAlNmWphCyauhINNkoxK6xlVV2IPXK21u3fmmSPwW6M0Oo--jnEpQ7g9d9J51_1S1joUqYDyioJnK4FTAzDENH9cDnTqwT0TP9JQK8S0KzWKYHEPvy9_of7bXkCXK0BmExYeIx6MB47g9ZHNKO2wf9r0SfKhaOZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction?</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Stoyanovsky, D.A. ; Tyurina, Y.Y. ; Shrivastava, I. ; Bahar, I. ; Tyurin, V.A. ; Protchenko, O. ; Jadhav, S. ; Bolevich, S.B. ; Kozlov, A.V. ; Vladimirov, Y.A. ; Shvedova, A.A. ; Philpott, C.C. ; Bayir, H. ; Kagan, V.E.</creator><creatorcontrib>Stoyanovsky, D.A. ; Tyurina, Y.Y. ; Shrivastava, I. ; Bahar, I. ; Tyurin, V.A. ; Protchenko, O. ; Jadhav, S. ; Bolevich, S.B. ; Kozlov, A.V. ; Vladimirov, Y.A. ; Shvedova, A.A. ; Philpott, C.C. ; Bayir, H. ; Kagan, V.E.</creatorcontrib><description>Duality of iron as an essential cofactor of many enzymatic metabolic processes and as a catalyst of poorly controlled redox-cycling reactions defines its possible biological beneficial and hazardous role in the body. In this review, we discuss these two “faces” of iron in a newly conceptualized program of regulated cell death, ferroptosis. Ferroptosis is a genetically programmed iron-dependent form of regulated cell death driven by enhanced lipid peroxidation and insufficient capacity of thiol-dependent mechanisms (glutathione peroxidase 4, GPX4) to eliminate hydroperoxy-lipids. We present arguments favoring the enzymatic mechanisms of ferroptotically engaged non-heme iron of 15-lipoxygenases (15-LOX) in complexes with phosphatidylethanolamine binding protein 1 (PEBP1) as a catalyst of highly selective and specific oxidation reactions of arachidonoyl- (AA) and adrenoyl-phosphatidylethanolamines (PE). We discuss possible role of iron chaperons as control mechanisms for guided iron delivery directly to their “protein clients” thus limiting non-enzymatic redox-cycling reactions. We also consider opportunities of loosely-bound iron to contribute to the production of pro-ferroptotic lipid oxidation products. Finally, we propose a two-stage iron-dependent mechanism for iron in ferroptosis by combining its catalytic role in the 15-LOX-driven production of 15-hydroperoxy-AA-PE (HOO-AA-PE) as well as possible involvement of loosely-bound iron in oxidative cleavage of HOO-AA-PE to oxidatively truncated electrophiles capable of attacking nucleophilic targets in yet to be identified proteins leading to cell demise.
[Display omitted]
•Phospholipid peroxidation in ferroptosis.•Lipoxygenase oxidation of arachidonoyl phosphatidylethanolamine.•Guided transportation of iron to target destinations in cells.•GPX4 reduction of hydroperoxy-arachidonoyl-phosphatidylethanolamine.•ACSL4 biosynthesis of arachidonoyl phosphatidylethanolamine is required for.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2018.09.008</identifier><identifier>PMID: 30217775</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>15-lipoxygenase ; Animals ; Arachidonate 15-Lipoxygenase - genetics ; Arachidonate 15-Lipoxygenase - metabolism ; Ferroptosis ; Ferroptosis - genetics ; Free Radicals - metabolism ; Glutathione ; GPX4 ; Humans ; Hydroperoxy-arachidonoyl-phosphatidylethanolamine ; Iron ; Iron - metabolism ; Iron chaperons ; Lipid peroxidation ; Lipid Peroxidation - genetics ; Oxidation-Reduction ; Phosphatidylethanolamine Binding Protein - genetics ; Phosphatidylethanolamine Binding Protein - metabolism ; Phospholipid Hydroperoxide Glutathione Peroxidase - genetics ; Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism</subject><ispartof>Free radical biology & medicine, 2019-03, Vol.133, p.153-161</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-1a52f54f515ccd0fbc1849a3e31aa8af4ac316eb668354b973beb880d3dd07943</citedby><cites>FETCH-LOGICAL-c557t-1a52f54f515ccd0fbc1849a3e31aa8af4ac316eb668354b973beb880d3dd07943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0891584918315636$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30217775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stoyanovsky, D.A.</creatorcontrib><creatorcontrib>Tyurina, Y.Y.</creatorcontrib><creatorcontrib>Shrivastava, I.</creatorcontrib><creatorcontrib>Bahar, I.</creatorcontrib><creatorcontrib>Tyurin, V.A.</creatorcontrib><creatorcontrib>Protchenko, O.</creatorcontrib><creatorcontrib>Jadhav, S.</creatorcontrib><creatorcontrib>Bolevich, S.B.</creatorcontrib><creatorcontrib>Kozlov, A.V.</creatorcontrib><creatorcontrib>Vladimirov, Y.A.</creatorcontrib><creatorcontrib>Shvedova, A.A.</creatorcontrib><creatorcontrib>Philpott, C.C.</creatorcontrib><creatorcontrib>Bayir, H.</creatorcontrib><creatorcontrib>Kagan, V.E.</creatorcontrib><title>Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction?</title><title>Free radical biology & medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Duality of iron as an essential cofactor of many enzymatic metabolic processes and as a catalyst of poorly controlled redox-cycling reactions defines its possible biological beneficial and hazardous role in the body. In this review, we discuss these two “faces” of iron in a newly conceptualized program of regulated cell death, ferroptosis. Ferroptosis is a genetically programmed iron-dependent form of regulated cell death driven by enhanced lipid peroxidation and insufficient capacity of thiol-dependent mechanisms (glutathione peroxidase 4, GPX4) to eliminate hydroperoxy-lipids. We present arguments favoring the enzymatic mechanisms of ferroptotically engaged non-heme iron of 15-lipoxygenases (15-LOX) in complexes with phosphatidylethanolamine binding protein 1 (PEBP1) as a catalyst of highly selective and specific oxidation reactions of arachidonoyl- (AA) and adrenoyl-phosphatidylethanolamines (PE). We discuss possible role of iron chaperons as control mechanisms for guided iron delivery directly to their “protein clients” thus limiting non-enzymatic redox-cycling reactions. We also consider opportunities of loosely-bound iron to contribute to the production of pro-ferroptotic lipid oxidation products. Finally, we propose a two-stage iron-dependent mechanism for iron in ferroptosis by combining its catalytic role in the 15-LOX-driven production of 15-hydroperoxy-AA-PE (HOO-AA-PE) as well as possible involvement of loosely-bound iron in oxidative cleavage of HOO-AA-PE to oxidatively truncated electrophiles capable of attacking nucleophilic targets in yet to be identified proteins leading to cell demise.
[Display omitted]
•Phospholipid peroxidation in ferroptosis.•Lipoxygenase oxidation of arachidonoyl phosphatidylethanolamine.•Guided transportation of iron to target destinations in cells.•GPX4 reduction of hydroperoxy-arachidonoyl-phosphatidylethanolamine.•ACSL4 biosynthesis of arachidonoyl phosphatidylethanolamine is required for.</description><subject>15-lipoxygenase</subject><subject>Animals</subject><subject>Arachidonate 15-Lipoxygenase - genetics</subject><subject>Arachidonate 15-Lipoxygenase - metabolism</subject><subject>Ferroptosis</subject><subject>Ferroptosis - genetics</subject><subject>Free Radicals - metabolism</subject><subject>Glutathione</subject><subject>GPX4</subject><subject>Humans</subject><subject>Hydroperoxy-arachidonoyl-phosphatidylethanolamine</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron chaperons</subject><subject>Lipid peroxidation</subject><subject>Lipid Peroxidation - genetics</subject><subject>Oxidation-Reduction</subject><subject>Phosphatidylethanolamine Binding Protein - genetics</subject><subject>Phosphatidylethanolamine Binding Protein - metabolism</subject><subject>Phospholipid Hydroperoxide Glutathione Peroxidase - genetics</subject><subject>Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUV1LxDAQDKLo-fEXJOBza3Jp2lRBEfELBEH0OWyTjeboNSWth-evN8ep6JtPu7Azs7szhBxxlnPGy-NZ7iJiBNv4MEebTxlXOatzxtQGmXBViayQdblJJkzVPJOqqHfI7jDMGGOFFGqb7Ag25VVVyQnxdzF01MAI7XLwAw2Otr73lvYYw7u3MPo09x11GGPox5BAJ_QRX95aGNFS7D6W8wQyNEQaobNhTlfnpd56Ay2NCGalcb5Pthy0Ax581T3yfH31dHmb3T_c3F1e3GdGymrMOMipk4WTXBpjmWsMTw-AQMEBFLgCjOAlNmWphCyauhINNkoxK6xlVV2IPXK21u3fmmSPwW6M0Oo--jnEpQ7g9d9J51_1S1joUqYDyioJnK4FTAzDENH9cDnTqwT0TP9JQK8S0KzWKYHEPvy9_of7bXkCXK0BmExYeIx6MB47g9ZHNKO2wf9r0SfKhaOZ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Stoyanovsky, D.A.</creator><creator>Tyurina, Y.Y.</creator><creator>Shrivastava, I.</creator><creator>Bahar, I.</creator><creator>Tyurin, V.A.</creator><creator>Protchenko, O.</creator><creator>Jadhav, S.</creator><creator>Bolevich, S.B.</creator><creator>Kozlov, A.V.</creator><creator>Vladimirov, Y.A.</creator><creator>Shvedova, A.A.</creator><creator>Philpott, C.C.</creator><creator>Bayir, H.</creator><creator>Kagan, V.E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20190301</creationdate><title>Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction?</title><author>Stoyanovsky, D.A. ; Tyurina, Y.Y. ; Shrivastava, I. ; Bahar, I. ; Tyurin, V.A. ; Protchenko, O. ; Jadhav, S. ; Bolevich, S.B. ; Kozlov, A.V. ; Vladimirov, Y.A. ; Shvedova, A.A. ; Philpott, C.C. ; Bayir, H. ; Kagan, V.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-1a52f54f515ccd0fbc1849a3e31aa8af4ac316eb668354b973beb880d3dd07943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>15-lipoxygenase</topic><topic>Animals</topic><topic>Arachidonate 15-Lipoxygenase - genetics</topic><topic>Arachidonate 15-Lipoxygenase - metabolism</topic><topic>Ferroptosis</topic><topic>Ferroptosis - genetics</topic><topic>Free Radicals - metabolism</topic><topic>Glutathione</topic><topic>GPX4</topic><topic>Humans</topic><topic>Hydroperoxy-arachidonoyl-phosphatidylethanolamine</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron chaperons</topic><topic>Lipid peroxidation</topic><topic>Lipid Peroxidation - genetics</topic><topic>Oxidation-Reduction</topic><topic>Phosphatidylethanolamine Binding Protein - genetics</topic><topic>Phosphatidylethanolamine Binding Protein - metabolism</topic><topic>Phospholipid Hydroperoxide Glutathione Peroxidase - genetics</topic><topic>Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoyanovsky, D.A.</creatorcontrib><creatorcontrib>Tyurina, Y.Y.</creatorcontrib><creatorcontrib>Shrivastava, I.</creatorcontrib><creatorcontrib>Bahar, I.</creatorcontrib><creatorcontrib>Tyurin, V.A.</creatorcontrib><creatorcontrib>Protchenko, O.</creatorcontrib><creatorcontrib>Jadhav, S.</creatorcontrib><creatorcontrib>Bolevich, S.B.</creatorcontrib><creatorcontrib>Kozlov, A.V.</creatorcontrib><creatorcontrib>Vladimirov, Y.A.</creatorcontrib><creatorcontrib>Shvedova, A.A.</creatorcontrib><creatorcontrib>Philpott, C.C.</creatorcontrib><creatorcontrib>Bayir, H.</creatorcontrib><creatorcontrib>Kagan, V.E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Free radical biology & medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoyanovsky, D.A.</au><au>Tyurina, Y.Y.</au><au>Shrivastava, I.</au><au>Bahar, I.</au><au>Tyurin, V.A.</au><au>Protchenko, O.</au><au>Jadhav, S.</au><au>Bolevich, S.B.</au><au>Kozlov, A.V.</au><au>Vladimirov, Y.A.</au><au>Shvedova, A.A.</au><au>Philpott, C.C.</au><au>Bayir, H.</au><au>Kagan, V.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction?</atitle><jtitle>Free radical biology & medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>133</volume><spage>153</spage><epage>161</epage><pages>153-161</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>Duality of iron as an essential cofactor of many enzymatic metabolic processes and as a catalyst of poorly controlled redox-cycling reactions defines its possible biological beneficial and hazardous role in the body. In this review, we discuss these two “faces” of iron in a newly conceptualized program of regulated cell death, ferroptosis. Ferroptosis is a genetically programmed iron-dependent form of regulated cell death driven by enhanced lipid peroxidation and insufficient capacity of thiol-dependent mechanisms (glutathione peroxidase 4, GPX4) to eliminate hydroperoxy-lipids. We present arguments favoring the enzymatic mechanisms of ferroptotically engaged non-heme iron of 15-lipoxygenases (15-LOX) in complexes with phosphatidylethanolamine binding protein 1 (PEBP1) as a catalyst of highly selective and specific oxidation reactions of arachidonoyl- (AA) and adrenoyl-phosphatidylethanolamines (PE). We discuss possible role of iron chaperons as control mechanisms for guided iron delivery directly to their “protein clients” thus limiting non-enzymatic redox-cycling reactions. We also consider opportunities of loosely-bound iron to contribute to the production of pro-ferroptotic lipid oxidation products. Finally, we propose a two-stage iron-dependent mechanism for iron in ferroptosis by combining its catalytic role in the 15-LOX-driven production of 15-hydroperoxy-AA-PE (HOO-AA-PE) as well as possible involvement of loosely-bound iron in oxidative cleavage of HOO-AA-PE to oxidatively truncated electrophiles capable of attacking nucleophilic targets in yet to be identified proteins leading to cell demise.
[Display omitted]
•Phospholipid peroxidation in ferroptosis.•Lipoxygenase oxidation of arachidonoyl phosphatidylethanolamine.•Guided transportation of iron to target destinations in cells.•GPX4 reduction of hydroperoxy-arachidonoyl-phosphatidylethanolamine.•ACSL4 biosynthesis of arachidonoyl phosphatidylethanolamine is required for.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30217775</pmid><doi>10.1016/j.freeradbiomed.2018.09.008</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0891-5849 |
ispartof | Free radical biology & medicine, 2019-03, Vol.133, p.153-161 |
issn | 0891-5849 1873-4596 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6555767 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | 15-lipoxygenase Animals Arachidonate 15-Lipoxygenase - genetics Arachidonate 15-Lipoxygenase - metabolism Ferroptosis Ferroptosis - genetics Free Radicals - metabolism Glutathione GPX4 Humans Hydroperoxy-arachidonoyl-phosphatidylethanolamine Iron Iron - metabolism Iron chaperons Lipid peroxidation Lipid Peroxidation - genetics Oxidation-Reduction Phosphatidylethanolamine Binding Protein - genetics Phosphatidylethanolamine Binding Protein - metabolism Phospholipid Hydroperoxide Glutathione Peroxidase - genetics Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism |
title | Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20catalysis%20of%20lipid%20peroxidation%20in%20ferroptosis:%20Regulated%20enzymatic%20or%20random%20free%20radical%20reaction?&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Stoyanovsky,%20D.A.&rft.date=2019-03-01&rft.volume=133&rft.spage=153&rft.epage=161&rft.pages=153-161&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2018.09.008&rft_dat=%3Cpubmed_cross%3E30217775%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30217775&rft_els_id=S0891584918315636&rfr_iscdi=true |