Predictability of European winter 2016/2017

Winter 2016/2017 was one of the driest on record for central Europe and the United Kingdom. This was the result of blocked atmospheric circulation with high pressure centred over North‐West Europe dominating the winter mean circulation pattern. Using large ensembles of simulated winters, we find tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric science letters 2018-12, Vol.19 (12), p.e868-n/a
Hauptverfasser: Dunstone, Nick, Scaife, Adam A., MacLachlan, Craig, Knight, Jeff, Ineson, Sarah, Smith, Doug, Thornton, Hazel, Gordon, Margaret, McLean, Peter, Palin, Erika, Hardiman, Steven, Walker, Brent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e868
container_title Atmospheric science letters
container_volume 19
creator Dunstone, Nick
Scaife, Adam A.
MacLachlan, Craig
Knight, Jeff
Ineson, Sarah
Smith, Doug
Thornton, Hazel
Gordon, Margaret
McLean, Peter
Palin, Erika
Hardiman, Steven
Walker, Brent
description Winter 2016/2017 was one of the driest on record for central Europe and the United Kingdom. This was the result of blocked atmospheric circulation with high pressure centred over North‐West Europe dominating the winter mean circulation pattern. Using large ensembles of simulated winters, we find that the observed winter 2016/2017 circulation was very similar in pattern and strength to the circulation associated with the top 10% of driest Central European winters. Here, we explore whether seasonal forecasts were able to predict this circulation pattern. Despite the fact that the observed circulation anomaly did not project on to the North Atlantic Oscillation (NAO), we find that forecasts starting in November did predict a high‐pressure anomaly over North‐Western Europe. We use two independent data sets, and methods, to probe the drivers of this circulation pattern. We find evidence for a Rossby Wave propagating out of the tropical Atlantic where there were anomalous local rainfall anomalies. This case study is another example of real‐time seasonal forecast skill for Europe and provides evidence for predictability beyond the NAO pattern. European winter 2016/2017 was especially dry with parts of central Europe exceeding two SDs below climatology. This was driven by high pressure located over the North Sea that we show was predicted by seasonal forecasts starting in November. Further model analysis identifies large tropical Atlantic rainfall anomalies that appear to drive a Rossby wave‐train polewards and eastwards over Europe.
doi_str_mv 10.1002/asl.868
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6555434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340042609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4348-fce421216efdb88a472a6d59b393dc15f17ab609bb54f23d7d2f193ac717b6d3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk7xH0jBCwXtlpOkSXsjjDE_YKDgLrwLaZtqRtfOpHXs35uxOabgzcmBPDy850XoHHAfMCYD5cp-zOMD1IWI4pBweDvc2zvoxLkZxgCMi2PUoQAJgIAuunmxOjdZo1JTmmYV1EUwbm290KoKlqZqtA0IBj7wQ5yio0KVTp9t3x6a3o-no8dw8vzwNBpOwoxRFodFphkBAlwXeRrHigmieB4lKU1onkFUgFApx0maRqwgNBc5KSChKhMgUp7THrrbaBdtOtd5pqvGqlIurJkru5K1MvL3T2U-5Hv9JXkURT6BF1xvBbb-bLVr5Ny4TJelqnTdOkkow5gRH8Gjl3_QWd3ayl8nCbCYUUz4Wni1oTJbO2d1sQsDWK77l75_6fv35MV-9h33U7gHbjfA0pR69Z9HDl8nZO37BhyGjFo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2148430264</pqid></control><display><type>article</type><title>Predictability of European winter 2016/2017</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Dunstone, Nick ; Scaife, Adam A. ; MacLachlan, Craig ; Knight, Jeff ; Ineson, Sarah ; Smith, Doug ; Thornton, Hazel ; Gordon, Margaret ; McLean, Peter ; Palin, Erika ; Hardiman, Steven ; Walker, Brent</creator><creatorcontrib>Dunstone, Nick ; Scaife, Adam A. ; MacLachlan, Craig ; Knight, Jeff ; Ineson, Sarah ; Smith, Doug ; Thornton, Hazel ; Gordon, Margaret ; McLean, Peter ; Palin, Erika ; Hardiman, Steven ; Walker, Brent</creatorcontrib><description>Winter 2016/2017 was one of the driest on record for central Europe and the United Kingdom. This was the result of blocked atmospheric circulation with high pressure centred over North‐West Europe dominating the winter mean circulation pattern. Using large ensembles of simulated winters, we find that the observed winter 2016/2017 circulation was very similar in pattern and strength to the circulation associated with the top 10% of driest Central European winters. Here, we explore whether seasonal forecasts were able to predict this circulation pattern. Despite the fact that the observed circulation anomaly did not project on to the North Atlantic Oscillation (NAO), we find that forecasts starting in November did predict a high‐pressure anomaly over North‐Western Europe. We use two independent data sets, and methods, to probe the drivers of this circulation pattern. We find evidence for a Rossby Wave propagating out of the tropical Atlantic where there were anomalous local rainfall anomalies. This case study is another example of real‐time seasonal forecast skill for Europe and provides evidence for predictability beyond the NAO pattern. European winter 2016/2017 was especially dry with parts of central Europe exceeding two SDs below climatology. This was driven by high pressure located over the North Sea that we show was predicted by seasonal forecasts starting in November. Further model analysis identifies large tropical Atlantic rainfall anomalies that appear to drive a Rossby wave‐train polewards and eastwards over Europe.</description><identifier>ISSN: 1530-261X</identifier><identifier>EISSN: 1530-261X</identifier><identifier>DOI: 10.1002/asl.868</identifier><identifier>PMID: 31191171</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>2016/2017 ; Anomalies ; Atmospheric circulation ; Atmospheric circulation anomalies ; Atmospheric circulation patterns ; Atmospheric forcing ; Atmospheric sciences ; Case studies ; Circulation ; Circulation patterns ; European winter ; High pressure ; NAO ; North Atlantic Oscillation ; Ocean-atmosphere system ; Planetary waves ; Pressure ; Pressure anomalies ; Rain ; Rainfall ; Rainfall anomalies ; Rossby waves ; seasonal climate prediction ; Seasonal forecasting ; Tropical climate ; Wave propagation ; Winter ; Winter circulation</subject><ispartof>Atmospheric science letters, 2018-12, Vol.19 (12), p.e868-n/a</ispartof><rights>2018 The Authors. published by John Wiley &amp; Sons Ltd on behalf of the Royal Meteorological Society.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4348-fce421216efdb88a472a6d59b393dc15f17ab609bb54f23d7d2f193ac717b6d3</citedby><cites>FETCH-LOGICAL-c4348-fce421216efdb88a472a6d59b393dc15f17ab609bb54f23d7d2f193ac717b6d3</cites><orcidid>0000-0001-6859-6814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasl.868$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasl.868$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31191171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunstone, Nick</creatorcontrib><creatorcontrib>Scaife, Adam A.</creatorcontrib><creatorcontrib>MacLachlan, Craig</creatorcontrib><creatorcontrib>Knight, Jeff</creatorcontrib><creatorcontrib>Ineson, Sarah</creatorcontrib><creatorcontrib>Smith, Doug</creatorcontrib><creatorcontrib>Thornton, Hazel</creatorcontrib><creatorcontrib>Gordon, Margaret</creatorcontrib><creatorcontrib>McLean, Peter</creatorcontrib><creatorcontrib>Palin, Erika</creatorcontrib><creatorcontrib>Hardiman, Steven</creatorcontrib><creatorcontrib>Walker, Brent</creatorcontrib><title>Predictability of European winter 2016/2017</title><title>Atmospheric science letters</title><addtitle>Atmos Sci Lett</addtitle><description>Winter 2016/2017 was one of the driest on record for central Europe and the United Kingdom. This was the result of blocked atmospheric circulation with high pressure centred over North‐West Europe dominating the winter mean circulation pattern. Using large ensembles of simulated winters, we find that the observed winter 2016/2017 circulation was very similar in pattern and strength to the circulation associated with the top 10% of driest Central European winters. Here, we explore whether seasonal forecasts were able to predict this circulation pattern. Despite the fact that the observed circulation anomaly did not project on to the North Atlantic Oscillation (NAO), we find that forecasts starting in November did predict a high‐pressure anomaly over North‐Western Europe. We use two independent data sets, and methods, to probe the drivers of this circulation pattern. We find evidence for a Rossby Wave propagating out of the tropical Atlantic where there were anomalous local rainfall anomalies. This case study is another example of real‐time seasonal forecast skill for Europe and provides evidence for predictability beyond the NAO pattern. European winter 2016/2017 was especially dry with parts of central Europe exceeding two SDs below climatology. This was driven by high pressure located over the North Sea that we show was predicted by seasonal forecasts starting in November. Further model analysis identifies large tropical Atlantic rainfall anomalies that appear to drive a Rossby wave‐train polewards and eastwards over Europe.</description><subject>2016/2017</subject><subject>Anomalies</subject><subject>Atmospheric circulation</subject><subject>Atmospheric circulation anomalies</subject><subject>Atmospheric circulation patterns</subject><subject>Atmospheric forcing</subject><subject>Atmospheric sciences</subject><subject>Case studies</subject><subject>Circulation</subject><subject>Circulation patterns</subject><subject>European winter</subject><subject>High pressure</subject><subject>NAO</subject><subject>North Atlantic Oscillation</subject><subject>Ocean-atmosphere system</subject><subject>Planetary waves</subject><subject>Pressure</subject><subject>Pressure anomalies</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall anomalies</subject><subject>Rossby waves</subject><subject>seasonal climate prediction</subject><subject>Seasonal forecasting</subject><subject>Tropical climate</subject><subject>Wave propagation</subject><subject>Winter</subject><subject>Winter circulation</subject><issn>1530-261X</issn><issn>1530-261X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kF1LwzAUhoMobk7xH0jBCwXtlpOkSXsjjDE_YKDgLrwLaZtqRtfOpHXs35uxOabgzcmBPDy850XoHHAfMCYD5cp-zOMD1IWI4pBweDvc2zvoxLkZxgCMi2PUoQAJgIAuunmxOjdZo1JTmmYV1EUwbm290KoKlqZqtA0IBj7wQ5yio0KVTp9t3x6a3o-no8dw8vzwNBpOwoxRFodFphkBAlwXeRrHigmieB4lKU1onkFUgFApx0maRqwgNBc5KSChKhMgUp7THrrbaBdtOtd5pqvGqlIurJkru5K1MvL3T2U-5Hv9JXkURT6BF1xvBbb-bLVr5Ny4TJelqnTdOkkow5gRH8Gjl3_QWd3ayl8nCbCYUUz4Wni1oTJbO2d1sQsDWK77l75_6fv35MV-9h33U7gHbjfA0pR69Z9HDl8nZO37BhyGjFo</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Dunstone, Nick</creator><creator>Scaife, Adam A.</creator><creator>MacLachlan, Craig</creator><creator>Knight, Jeff</creator><creator>Ineson, Sarah</creator><creator>Smith, Doug</creator><creator>Thornton, Hazel</creator><creator>Gordon, Margaret</creator><creator>McLean, Peter</creator><creator>Palin, Erika</creator><creator>Hardiman, Steven</creator><creator>Walker, Brent</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6859-6814</orcidid></search><sort><creationdate>201812</creationdate><title>Predictability of European winter 2016/2017</title><author>Dunstone, Nick ; Scaife, Adam A. ; MacLachlan, Craig ; Knight, Jeff ; Ineson, Sarah ; Smith, Doug ; Thornton, Hazel ; Gordon, Margaret ; McLean, Peter ; Palin, Erika ; Hardiman, Steven ; Walker, Brent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4348-fce421216efdb88a472a6d59b393dc15f17ab609bb54f23d7d2f193ac717b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>2016/2017</topic><topic>Anomalies</topic><topic>Atmospheric circulation</topic><topic>Atmospheric circulation anomalies</topic><topic>Atmospheric circulation patterns</topic><topic>Atmospheric forcing</topic><topic>Atmospheric sciences</topic><topic>Case studies</topic><topic>Circulation</topic><topic>Circulation patterns</topic><topic>European winter</topic><topic>High pressure</topic><topic>NAO</topic><topic>North Atlantic Oscillation</topic><topic>Ocean-atmosphere system</topic><topic>Planetary waves</topic><topic>Pressure</topic><topic>Pressure anomalies</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall anomalies</topic><topic>Rossby waves</topic><topic>seasonal climate prediction</topic><topic>Seasonal forecasting</topic><topic>Tropical climate</topic><topic>Wave propagation</topic><topic>Winter</topic><topic>Winter circulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunstone, Nick</creatorcontrib><creatorcontrib>Scaife, Adam A.</creatorcontrib><creatorcontrib>MacLachlan, Craig</creatorcontrib><creatorcontrib>Knight, Jeff</creatorcontrib><creatorcontrib>Ineson, Sarah</creatorcontrib><creatorcontrib>Smith, Doug</creatorcontrib><creatorcontrib>Thornton, Hazel</creatorcontrib><creatorcontrib>Gordon, Margaret</creatorcontrib><creatorcontrib>McLean, Peter</creatorcontrib><creatorcontrib>Palin, Erika</creatorcontrib><creatorcontrib>Hardiman, Steven</creatorcontrib><creatorcontrib>Walker, Brent</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Atmospheric science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunstone, Nick</au><au>Scaife, Adam A.</au><au>MacLachlan, Craig</au><au>Knight, Jeff</au><au>Ineson, Sarah</au><au>Smith, Doug</au><au>Thornton, Hazel</au><au>Gordon, Margaret</au><au>McLean, Peter</au><au>Palin, Erika</au><au>Hardiman, Steven</au><au>Walker, Brent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictability of European winter 2016/2017</atitle><jtitle>Atmospheric science letters</jtitle><addtitle>Atmos Sci Lett</addtitle><date>2018-12</date><risdate>2018</risdate><volume>19</volume><issue>12</issue><spage>e868</spage><epage>n/a</epage><pages>e868-n/a</pages><issn>1530-261X</issn><eissn>1530-261X</eissn><abstract>Winter 2016/2017 was one of the driest on record for central Europe and the United Kingdom. This was the result of blocked atmospheric circulation with high pressure centred over North‐West Europe dominating the winter mean circulation pattern. Using large ensembles of simulated winters, we find that the observed winter 2016/2017 circulation was very similar in pattern and strength to the circulation associated with the top 10% of driest Central European winters. Here, we explore whether seasonal forecasts were able to predict this circulation pattern. Despite the fact that the observed circulation anomaly did not project on to the North Atlantic Oscillation (NAO), we find that forecasts starting in November did predict a high‐pressure anomaly over North‐Western Europe. We use two independent data sets, and methods, to probe the drivers of this circulation pattern. We find evidence for a Rossby Wave propagating out of the tropical Atlantic where there were anomalous local rainfall anomalies. This case study is another example of real‐time seasonal forecast skill for Europe and provides evidence for predictability beyond the NAO pattern. European winter 2016/2017 was especially dry with parts of central Europe exceeding two SDs below climatology. This was driven by high pressure located over the North Sea that we show was predicted by seasonal forecasts starting in November. Further model analysis identifies large tropical Atlantic rainfall anomalies that appear to drive a Rossby wave‐train polewards and eastwards over Europe.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>31191171</pmid><doi>10.1002/asl.868</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6859-6814</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-261X
ispartof Atmospheric science letters, 2018-12, Vol.19 (12), p.e868-n/a
issn 1530-261X
1530-261X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6555434
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection)
subjects 2016/2017
Anomalies
Atmospheric circulation
Atmospheric circulation anomalies
Atmospheric circulation patterns
Atmospheric forcing
Atmospheric sciences
Case studies
Circulation
Circulation patterns
European winter
High pressure
NAO
North Atlantic Oscillation
Ocean-atmosphere system
Planetary waves
Pressure
Pressure anomalies
Rain
Rainfall
Rainfall anomalies
Rossby waves
seasonal climate prediction
Seasonal forecasting
Tropical climate
Wave propagation
Winter
Winter circulation
title Predictability of European winter 2016/2017
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictability%20of%20European%20winter%202016/2017&rft.jtitle=Atmospheric%20science%20letters&rft.au=Dunstone,%20Nick&rft.date=2018-12&rft.volume=19&rft.issue=12&rft.spage=e868&rft.epage=n/a&rft.pages=e868-n/a&rft.issn=1530-261X&rft.eissn=1530-261X&rft_id=info:doi/10.1002/asl.868&rft_dat=%3Cproquest_pubme%3E2340042609%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2148430264&rft_id=info:pmid/31191171&rfr_iscdi=true