Estimating Semantic Networks of Groups and Individuals from Fluency Data
One popular and classic theory of how the mind encodes knowledge is an associative semantic network, where concepts and associations between concepts correspond to nodes and edges, respectively. A major issue in semantic network research is that there is no consensus among researchers as to the best...
Gespeichert in:
Veröffentlicht in: | Computational brain & behavior 2018-03, Vol.1 (1), p.36-58 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | 1 |
container_start_page | 36 |
container_title | Computational brain & behavior |
container_volume | 1 |
creator | Zemla, Jeffrey C. Austerweil, Joseph L. |
description | One popular and classic theory of how the mind encodes knowledge is an associative semantic network, where concepts and associations between concepts correspond to nodes and edges, respectively. A major issue in semantic network research is that there is no consensus among researchers as to the best method for estimating the network of an individual or group. We propose a novel method (U-INVITE) for estimating semantic networks from semantic fluency data (listing items from a category) based on a censored random walk model of memory retrieval. We compare this method to several other methods in the literature for estimating networks from semantic fluency data. In simulations, we find that U-INVITE can recover semantic networks with low error rates given only a moderate amount of data. U-INVITE is the only known method derived from a psychologically plausible process model of memory retrieval and one of two known methods that we found to be consistent estimators of this process: if semantic memory retrieval is consistent with this process, the procedure will eventually estimate the true network (given enough data). We conduct the first exploration of different methods for estimating psychologically valid semantic networks by comparing people’s similarity judgments of edges estimated by each network estimation method. To encourage best practices, we discuss the merits of each network estimation technique, provide a flow chart that assists with choosing an appropriate method, and supply code for others to employ these techniques on their own data. |
doi_str_mv | 10.1007/s42113-018-0003-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6555428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340041837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-d008b93737c27e7ff2392fbcc4392ad798edd6760234288cafa86bec35306513</originalsourceid><addsrcrecordid>eNp9UbtOwzAUtRCIVqUfwII8sgT8SGJ3QUKlL6mCgQ5sluM4JSWxi50U9e9xlVLBgjxcS-dxHweAa4zuMELs3scEYxohzCOEEI3YGeiThJAIcfZ2fvqnuAeG3m8Ch4SHUn4JehRjNopp2gfziW_KWjalWcNXXUvTlAo-6-bLug8PbQFnzrZbD6XJ4cLk5a7MW1l5WDhbw2nVaqP28Ek28gpcFAHQw2MdgNV0shrPo-XLbDF-XEaKJoxFOUI8G1FGmSJMs6IgdESKTKk4VJmzEdd5nrIUERoTzpUsJE8zHcQUpQmmA_DQ2W7brNa50qZxshJbF5Zwe2FlKf4ipnwXa7sTaZIkwTEY3B4NnP1stW9EXXqlq0oabVsvQl-EYszDiAOAO6py1nuni1MbjMQhA9FlIEIG4pCBOGhufs93UvxcPBBIR_ABMmvtxMa2zoST_eP6DcXekb4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2340041837</pqid></control><display><type>article</type><title>Estimating Semantic Networks of Groups and Individuals from Fluency Data</title><source>SpringerLink (Online service)</source><creator>Zemla, Jeffrey C. ; Austerweil, Joseph L.</creator><creatorcontrib>Zemla, Jeffrey C. ; Austerweil, Joseph L.</creatorcontrib><description>One popular and classic theory of how the mind encodes knowledge is an associative semantic network, where concepts and associations between concepts correspond to nodes and edges, respectively. A major issue in semantic network research is that there is no consensus among researchers as to the best method for estimating the network of an individual or group. We propose a novel method (U-INVITE) for estimating semantic networks from semantic fluency data (listing items from a category) based on a censored random walk model of memory retrieval. We compare this method to several other methods in the literature for estimating networks from semantic fluency data. In simulations, we find that U-INVITE can recover semantic networks with low error rates given only a moderate amount of data. U-INVITE is the only known method derived from a psychologically plausible process model of memory retrieval and one of two known methods that we found to be consistent estimators of this process: if semantic memory retrieval is consistent with this process, the procedure will eventually estimate the true network (given enough data). We conduct the first exploration of different methods for estimating psychologically valid semantic networks by comparing people’s similarity judgments of edges estimated by each network estimation method. To encourage best practices, we discuss the merits of each network estimation technique, provide a flow chart that assists with choosing an appropriate method, and supply code for others to employ these techniques on their own data.</description><identifier>ISSN: 2522-0861</identifier><identifier>EISSN: 2522-087X</identifier><identifier>DOI: 10.1007/s42113-018-0003-7</identifier><identifier>PMID: 31179436</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Behavioral Science and Psychology ; Cognitive Psychology ; Mathematical Models of Cognitive Processes and Neural Networks ; Psychological Methods/Evaluation ; Psychology</subject><ispartof>Computational brain & behavior, 2018-03, Vol.1 (1), p.36-58</ispartof><rights>Springer International Publishing 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-d008b93737c27e7ff2392fbcc4392ad798edd6760234288cafa86bec35306513</citedby><cites>FETCH-LOGICAL-c3577-d008b93737c27e7ff2392fbcc4392ad798edd6760234288cafa86bec35306513</cites><orcidid>0000-0001-7334-4961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42113-018-0003-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s42113-018-0003-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31179436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zemla, Jeffrey C.</creatorcontrib><creatorcontrib>Austerweil, Joseph L.</creatorcontrib><title>Estimating Semantic Networks of Groups and Individuals from Fluency Data</title><title>Computational brain & behavior</title><addtitle>Comput Brain Behav</addtitle><addtitle>Comput Brain Behav</addtitle><description>One popular and classic theory of how the mind encodes knowledge is an associative semantic network, where concepts and associations between concepts correspond to nodes and edges, respectively. A major issue in semantic network research is that there is no consensus among researchers as to the best method for estimating the network of an individual or group. We propose a novel method (U-INVITE) for estimating semantic networks from semantic fluency data (listing items from a category) based on a censored random walk model of memory retrieval. We compare this method to several other methods in the literature for estimating networks from semantic fluency data. In simulations, we find that U-INVITE can recover semantic networks with low error rates given only a moderate amount of data. U-INVITE is the only known method derived from a psychologically plausible process model of memory retrieval and one of two known methods that we found to be consistent estimators of this process: if semantic memory retrieval is consistent with this process, the procedure will eventually estimate the true network (given enough data). We conduct the first exploration of different methods for estimating psychologically valid semantic networks by comparing people’s similarity judgments of edges estimated by each network estimation method. To encourage best practices, we discuss the merits of each network estimation technique, provide a flow chart that assists with choosing an appropriate method, and supply code for others to employ these techniques on their own data.</description><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Mathematical Models of Cognitive Processes and Neural Networks</subject><subject>Psychological Methods/Evaluation</subject><subject>Psychology</subject><issn>2522-0861</issn><issn>2522-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UbtOwzAUtRCIVqUfwII8sgT8SGJ3QUKlL6mCgQ5sluM4JSWxi50U9e9xlVLBgjxcS-dxHweAa4zuMELs3scEYxohzCOEEI3YGeiThJAIcfZ2fvqnuAeG3m8Ch4SHUn4JehRjNopp2gfziW_KWjalWcNXXUvTlAo-6-bLug8PbQFnzrZbD6XJ4cLk5a7MW1l5WDhbw2nVaqP28Ek28gpcFAHQw2MdgNV0shrPo-XLbDF-XEaKJoxFOUI8G1FGmSJMs6IgdESKTKk4VJmzEdd5nrIUERoTzpUsJE8zHcQUpQmmA_DQ2W7brNa50qZxshJbF5Zwe2FlKf4ipnwXa7sTaZIkwTEY3B4NnP1stW9EXXqlq0oabVsvQl-EYszDiAOAO6py1nuni1MbjMQhA9FlIEIG4pCBOGhufs93UvxcPBBIR_ABMmvtxMa2zoST_eP6DcXekb4</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Zemla, Jeffrey C.</creator><creator>Austerweil, Joseph L.</creator><general>Springer International Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7334-4961</orcidid></search><sort><creationdate>20180301</creationdate><title>Estimating Semantic Networks of Groups and Individuals from Fluency Data</title><author>Zemla, Jeffrey C. ; Austerweil, Joseph L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-d008b93737c27e7ff2392fbcc4392ad798edd6760234288cafa86bec35306513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Mathematical Models of Cognitive Processes and Neural Networks</topic><topic>Psychological Methods/Evaluation</topic><topic>Psychology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zemla, Jeffrey C.</creatorcontrib><creatorcontrib>Austerweil, Joseph L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational brain & behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zemla, Jeffrey C.</au><au>Austerweil, Joseph L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Semantic Networks of Groups and Individuals from Fluency Data</atitle><jtitle>Computational brain & behavior</jtitle><stitle>Comput Brain Behav</stitle><addtitle>Comput Brain Behav</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>1</volume><issue>1</issue><spage>36</spage><epage>58</epage><pages>36-58</pages><issn>2522-0861</issn><eissn>2522-087X</eissn><abstract>One popular and classic theory of how the mind encodes knowledge is an associative semantic network, where concepts and associations between concepts correspond to nodes and edges, respectively. A major issue in semantic network research is that there is no consensus among researchers as to the best method for estimating the network of an individual or group. We propose a novel method (U-INVITE) for estimating semantic networks from semantic fluency data (listing items from a category) based on a censored random walk model of memory retrieval. We compare this method to several other methods in the literature for estimating networks from semantic fluency data. In simulations, we find that U-INVITE can recover semantic networks with low error rates given only a moderate amount of data. U-INVITE is the only known method derived from a psychologically plausible process model of memory retrieval and one of two known methods that we found to be consistent estimators of this process: if semantic memory retrieval is consistent with this process, the procedure will eventually estimate the true network (given enough data). We conduct the first exploration of different methods for estimating psychologically valid semantic networks by comparing people’s similarity judgments of edges estimated by each network estimation method. To encourage best practices, we discuss the merits of each network estimation technique, provide a flow chart that assists with choosing an appropriate method, and supply code for others to employ these techniques on their own data.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31179436</pmid><doi>10.1007/s42113-018-0003-7</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7334-4961</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-0861 |
ispartof | Computational brain & behavior, 2018-03, Vol.1 (1), p.36-58 |
issn | 2522-0861 2522-087X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6555428 |
source | SpringerLink (Online service) |
subjects | Behavioral Science and Psychology Cognitive Psychology Mathematical Models of Cognitive Processes and Neural Networks Psychological Methods/Evaluation Psychology |
title | Estimating Semantic Networks of Groups and Individuals from Fluency Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Semantic%20Networks%20of%20Groups%20and%20Individuals%20from%20Fluency%20Data&rft.jtitle=Computational%20brain%20&%20behavior&rft.au=Zemla,%20Jeffrey%20C.&rft.date=2018-03-01&rft.volume=1&rft.issue=1&rft.spage=36&rft.epage=58&rft.pages=36-58&rft.issn=2522-0861&rft.eissn=2522-087X&rft_id=info:doi/10.1007/s42113-018-0003-7&rft_dat=%3Cproquest_pubme%3E2340041837%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2340041837&rft_id=info:pmid/31179436&rfr_iscdi=true |