Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons
Subcellular RNAseq promises to dissect transcriptional dynamics but is not well characterized. Furthermore, FACS may introduce bias but has not been benchmarked genome-wide. Finally, D1 and D2 dopamine receptor-expressing medium spiny neurons (MSNs) of the nucleus accumbens (NAc) are fundamental to...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-06, Vol.9 (1), p.8350-8350, Article 8350 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8350 |
---|---|
container_issue | 1 |
container_start_page | 8350 |
container_title | Scientific reports |
container_volume | 9 |
creator | Kronman, Hope Richter, Felix Labonté, Benoit Chandra, Ramesh Zhao, Shan Hoffman, Gabriel Lobo, Mary Kay Schadt, Eric E. Nestler, Eric J. |
description | Subcellular RNAseq promises to dissect transcriptional dynamics but is not well characterized. Furthermore, FACS may introduce bias but has not been benchmarked genome-wide. Finally, D1 and D2 dopamine receptor-expressing medium spiny neurons (MSNs) of the nucleus accumbens (NAc) are fundamental to neuropsychiatric traits but have only a short list of canonical surface markers. We address these gaps by systematically comparing nuclear-FACS, whole cell-FACS, and RiboTag affinity purification from D1- and D2-MSNs. Using differential expression, variance partitioning, and co-expression, we identify the following trade-offs for each method. RiboTag-seq best distinguishes D1- and D2-MSNs but has the lowest transcriptome coverage. Nuclear-FACS-seq generates the most differentially expressed genes and overlaps significantly with neuropsychiatric genetic risk loci, but un-annotated genes hamper interpretation. Whole cell-FACS is more similar to nuclear-FACS than RiboTag, but captures aspects of both. Using pan-method approaches, we discover that transcriptional regulation is predominant in D1-MSNs, while D2-MSNs tend towards cytosolic regulation. We are also the first to find evidence for moderate sexual dimorphism in these cell types at baseline. As these results are from 49 mice (n
male
= 39, n
female
= 10), they represent generalizable ground-truths. Together, these results guide RNAseq methods selection, define MSN transcriptomes, highlight neuronal sex differences, and provide a baseline for D1- and D2-MSNs. |
doi_str_mv | 10.1038/s41598-019-44798-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6554355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267017433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-15d0428fba0f3c0302c990f054a7695b2a7949952e0b64283cf3bffcb5f4ad373</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi1UBAj4AxyQpV56CfgziS-VllULSLCVClWPluPYW6PEDva60v77GpavcmAuM9I889ozLwBHGJ1gRNvTxDAXbYWwqBhrSiW2wB5BjFeEEvLpTb0LDlO6QyU4EQyLHbBLMW5wi9o98PvMhSEs11D5Hp45laDzcG6GAd6uJ1PdTEY76zT8uZglcw-DhYusB5MTnGmdx874BK9N7_IIbybn13Bhcgw-HYBtq4ZkDp_yPvj1_dvt_KK6-nF-OZ9dVZpjvKow7xEjre0UslQjiogWAlnEmWpqwTuiGsGE4MSgri4g1ZZ21uqOW6Z62tB98HWjO-VuNL02fhXVIKfoRhXXMign_-9490cuw19Zc84o50Xgy5NADPfZpJUcXdLlAMqbkJMkpG4QbhilBf38Dr0LOfqyXqFojXlbTlwosqF0DClFY18-g5F8sE5urJPFOvlonRRl6PjtGi8jz0YVgG6AVFp-aeLr2x_I_gMPOKNI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236158005</pqid></control><display><type>article</type><title>Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kronman, Hope ; Richter, Felix ; Labonté, Benoit ; Chandra, Ramesh ; Zhao, Shan ; Hoffman, Gabriel ; Lobo, Mary Kay ; Schadt, Eric E. ; Nestler, Eric J.</creator><creatorcontrib>Kronman, Hope ; Richter, Felix ; Labonté, Benoit ; Chandra, Ramesh ; Zhao, Shan ; Hoffman, Gabriel ; Lobo, Mary Kay ; Schadt, Eric E. ; Nestler, Eric J.</creatorcontrib><description>Subcellular RNAseq promises to dissect transcriptional dynamics but is not well characterized. Furthermore, FACS may introduce bias but has not been benchmarked genome-wide. Finally, D1 and D2 dopamine receptor-expressing medium spiny neurons (MSNs) of the nucleus accumbens (NAc) are fundamental to neuropsychiatric traits but have only a short list of canonical surface markers. We address these gaps by systematically comparing nuclear-FACS, whole cell-FACS, and RiboTag affinity purification from D1- and D2-MSNs. Using differential expression, variance partitioning, and co-expression, we identify the following trade-offs for each method. RiboTag-seq best distinguishes D1- and D2-MSNs but has the lowest transcriptome coverage. Nuclear-FACS-seq generates the most differentially expressed genes and overlaps significantly with neuropsychiatric genetic risk loci, but un-annotated genes hamper interpretation. Whole cell-FACS is more similar to nuclear-FACS than RiboTag, but captures aspects of both. Using pan-method approaches, we discover that transcriptional regulation is predominant in D1-MSNs, while D2-MSNs tend towards cytosolic regulation. We are also the first to find evidence for moderate sexual dimorphism in these cell types at baseline. As these results are from 49 mice (n
male
= 39, n
female
= 10), they represent generalizable ground-truths. Together, these results guide RNAseq methods selection, define MSN transcriptomes, highlight neuronal sex differences, and provide a baseline for D1- and D2-MSNs.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-44798-9</identifier><identifier>PMID: 31171808</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/31 ; 38 ; 45 ; 631/1647/2017 ; 631/1647/48 ; 631/378/2583 ; Animals ; Bias ; Biology ; Cell Separation ; Computational Biology ; Dopamine ; Dopamine D1 receptors ; Dopamine D2 receptors ; Female ; Flow Cytometry ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Gene Library ; Gene regulation ; Genomes ; Humanities and Social Sciences ; Male ; Medicine ; Methods ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; multidisciplinary ; Neurons - metabolism ; Neurosciences ; Nucleus accumbens ; Nucleus Accumbens - diagnostic imaging ; Purification ; Receptors, Dopamine D1 - metabolism ; Receptors, Dopamine D2 - metabolism ; RNA-Seq ; Science ; Science (multidisciplinary) ; Sex differences ; Sexual dimorphism ; Spiny neurons ; Surface markers ; Transcription</subject><ispartof>Scientific reports, 2019-06, Vol.9 (1), p.8350-8350, Article 8350</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-15d0428fba0f3c0302c990f054a7695b2a7949952e0b64283cf3bffcb5f4ad373</citedby><cites>FETCH-LOGICAL-c511t-15d0428fba0f3c0302c990f054a7695b2a7949952e0b64283cf3bffcb5f4ad373</cites><orcidid>0000-0002-9419-2079 ; 0000-0003-3429-9621 ; 0000-0002-7905-2000 ; 0000-0002-0957-0224 ; 0000-0002-7892-8808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554355/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554355/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31171808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kronman, Hope</creatorcontrib><creatorcontrib>Richter, Felix</creatorcontrib><creatorcontrib>Labonté, Benoit</creatorcontrib><creatorcontrib>Chandra, Ramesh</creatorcontrib><creatorcontrib>Zhao, Shan</creatorcontrib><creatorcontrib>Hoffman, Gabriel</creatorcontrib><creatorcontrib>Lobo, Mary Kay</creatorcontrib><creatorcontrib>Schadt, Eric E.</creatorcontrib><creatorcontrib>Nestler, Eric J.</creatorcontrib><title>Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Subcellular RNAseq promises to dissect transcriptional dynamics but is not well characterized. Furthermore, FACS may introduce bias but has not been benchmarked genome-wide. Finally, D1 and D2 dopamine receptor-expressing medium spiny neurons (MSNs) of the nucleus accumbens (NAc) are fundamental to neuropsychiatric traits but have only a short list of canonical surface markers. We address these gaps by systematically comparing nuclear-FACS, whole cell-FACS, and RiboTag affinity purification from D1- and D2-MSNs. Using differential expression, variance partitioning, and co-expression, we identify the following trade-offs for each method. RiboTag-seq best distinguishes D1- and D2-MSNs but has the lowest transcriptome coverage. Nuclear-FACS-seq generates the most differentially expressed genes and overlaps significantly with neuropsychiatric genetic risk loci, but un-annotated genes hamper interpretation. Whole cell-FACS is more similar to nuclear-FACS than RiboTag, but captures aspects of both. Using pan-method approaches, we discover that transcriptional regulation is predominant in D1-MSNs, while D2-MSNs tend towards cytosolic regulation. We are also the first to find evidence for moderate sexual dimorphism in these cell types at baseline. As these results are from 49 mice (n
male
= 39, n
female
= 10), they represent generalizable ground-truths. Together, these results guide RNAseq methods selection, define MSN transcriptomes, highlight neuronal sex differences, and provide a baseline for D1- and D2-MSNs.</description><subject>13</subject><subject>13/31</subject><subject>38</subject><subject>45</subject><subject>631/1647/2017</subject><subject>631/1647/48</subject><subject>631/378/2583</subject><subject>Animals</subject><subject>Bias</subject><subject>Biology</subject><subject>Cell Separation</subject><subject>Computational Biology</subject><subject>Dopamine</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine D2 receptors</subject><subject>Female</subject><subject>Flow Cytometry</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Gene Library</subject><subject>Gene regulation</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Male</subject><subject>Medicine</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>multidisciplinary</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Nucleus accumbens</subject><subject>Nucleus Accumbens - diagnostic imaging</subject><subject>Purification</subject><subject>Receptors, Dopamine D1 - metabolism</subject><subject>Receptors, Dopamine D2 - metabolism</subject><subject>RNA-Seq</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sex differences</subject><subject>Sexual dimorphism</subject><subject>Spiny neurons</subject><subject>Surface markers</subject><subject>Transcription</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1P3DAQhi1UBAj4AxyQpV56CfgziS-VllULSLCVClWPluPYW6PEDva60v77GpavcmAuM9I889ozLwBHGJ1gRNvTxDAXbYWwqBhrSiW2wB5BjFeEEvLpTb0LDlO6QyU4EQyLHbBLMW5wi9o98PvMhSEs11D5Hp45laDzcG6GAd6uJ1PdTEY76zT8uZglcw-DhYusB5MTnGmdx874BK9N7_IIbybn13Bhcgw-HYBtq4ZkDp_yPvj1_dvt_KK6-nF-OZ9dVZpjvKow7xEjre0UslQjiogWAlnEmWpqwTuiGsGE4MSgri4g1ZZ21uqOW6Z62tB98HWjO-VuNL02fhXVIKfoRhXXMign_-9490cuw19Zc84o50Xgy5NADPfZpJUcXdLlAMqbkJMkpG4QbhilBf38Dr0LOfqyXqFojXlbTlwosqF0DClFY18-g5F8sE5urJPFOvlonRRl6PjtGi8jz0YVgG6AVFp-aeLr2x_I_gMPOKNI</recordid><startdate>20190606</startdate><enddate>20190606</enddate><creator>Kronman, Hope</creator><creator>Richter, Felix</creator><creator>Labonté, Benoit</creator><creator>Chandra, Ramesh</creator><creator>Zhao, Shan</creator><creator>Hoffman, Gabriel</creator><creator>Lobo, Mary Kay</creator><creator>Schadt, Eric E.</creator><creator>Nestler, Eric J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9419-2079</orcidid><orcidid>https://orcid.org/0000-0003-3429-9621</orcidid><orcidid>https://orcid.org/0000-0002-7905-2000</orcidid><orcidid>https://orcid.org/0000-0002-0957-0224</orcidid><orcidid>https://orcid.org/0000-0002-7892-8808</orcidid></search><sort><creationdate>20190606</creationdate><title>Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons</title><author>Kronman, Hope ; Richter, Felix ; Labonté, Benoit ; Chandra, Ramesh ; Zhao, Shan ; Hoffman, Gabriel ; Lobo, Mary Kay ; Schadt, Eric E. ; Nestler, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-15d0428fba0f3c0302c990f054a7695b2a7949952e0b64283cf3bffcb5f4ad373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>13/31</topic><topic>38</topic><topic>45</topic><topic>631/1647/2017</topic><topic>631/1647/48</topic><topic>631/378/2583</topic><topic>Animals</topic><topic>Bias</topic><topic>Biology</topic><topic>Cell Separation</topic><topic>Computational Biology</topic><topic>Dopamine</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine D2 receptors</topic><topic>Female</topic><topic>Flow Cytometry</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Gene Library</topic><topic>Gene regulation</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Male</topic><topic>Medicine</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>multidisciplinary</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Nucleus accumbens</topic><topic>Nucleus Accumbens - diagnostic imaging</topic><topic>Purification</topic><topic>Receptors, Dopamine D1 - metabolism</topic><topic>Receptors, Dopamine D2 - metabolism</topic><topic>RNA-Seq</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sex differences</topic><topic>Sexual dimorphism</topic><topic>Spiny neurons</topic><topic>Surface markers</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kronman, Hope</creatorcontrib><creatorcontrib>Richter, Felix</creatorcontrib><creatorcontrib>Labonté, Benoit</creatorcontrib><creatorcontrib>Chandra, Ramesh</creatorcontrib><creatorcontrib>Zhao, Shan</creatorcontrib><creatorcontrib>Hoffman, Gabriel</creatorcontrib><creatorcontrib>Lobo, Mary Kay</creatorcontrib><creatorcontrib>Schadt, Eric E.</creatorcontrib><creatorcontrib>Nestler, Eric J.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kronman, Hope</au><au>Richter, Felix</au><au>Labonté, Benoit</au><au>Chandra, Ramesh</au><au>Zhao, Shan</au><au>Hoffman, Gabriel</au><au>Lobo, Mary Kay</au><au>Schadt, Eric E.</au><au>Nestler, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-06-06</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>8350</spage><epage>8350</epage><pages>8350-8350</pages><artnum>8350</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Subcellular RNAseq promises to dissect transcriptional dynamics but is not well characterized. Furthermore, FACS may introduce bias but has not been benchmarked genome-wide. Finally, D1 and D2 dopamine receptor-expressing medium spiny neurons (MSNs) of the nucleus accumbens (NAc) are fundamental to neuropsychiatric traits but have only a short list of canonical surface markers. We address these gaps by systematically comparing nuclear-FACS, whole cell-FACS, and RiboTag affinity purification from D1- and D2-MSNs. Using differential expression, variance partitioning, and co-expression, we identify the following trade-offs for each method. RiboTag-seq best distinguishes D1- and D2-MSNs but has the lowest transcriptome coverage. Nuclear-FACS-seq generates the most differentially expressed genes and overlaps significantly with neuropsychiatric genetic risk loci, but un-annotated genes hamper interpretation. Whole cell-FACS is more similar to nuclear-FACS than RiboTag, but captures aspects of both. Using pan-method approaches, we discover that transcriptional regulation is predominant in D1-MSNs, while D2-MSNs tend towards cytosolic regulation. We are also the first to find evidence for moderate sexual dimorphism in these cell types at baseline. As these results are from 49 mice (n
male
= 39, n
female
= 10), they represent generalizable ground-truths. Together, these results guide RNAseq methods selection, define MSN transcriptomes, highlight neuronal sex differences, and provide a baseline for D1- and D2-MSNs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31171808</pmid><doi>10.1038/s41598-019-44798-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9419-2079</orcidid><orcidid>https://orcid.org/0000-0003-3429-9621</orcidid><orcidid>https://orcid.org/0000-0002-7905-2000</orcidid><orcidid>https://orcid.org/0000-0002-0957-0224</orcidid><orcidid>https://orcid.org/0000-0002-7892-8808</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-06, Vol.9 (1), p.8350-8350, Article 8350 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6554355 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 13 13/31 38 45 631/1647/2017 631/1647/48 631/378/2583 Animals Bias Biology Cell Separation Computational Biology Dopamine Dopamine D1 receptors Dopamine D2 receptors Female Flow Cytometry Gene expression Gene Expression Profiling Gene Expression Regulation Gene Library Gene regulation Genomes Humanities and Social Sciences Male Medicine Methods Mice Mice, Inbred C57BL Mice, Transgenic multidisciplinary Neurons - metabolism Neurosciences Nucleus accumbens Nucleus Accumbens - diagnostic imaging Purification Receptors, Dopamine D1 - metabolism Receptors, Dopamine D2 - metabolism RNA-Seq Science Science (multidisciplinary) Sex differences Sexual dimorphism Spiny neurons Surface markers Transcription |
title | Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biology%20and%20Bias%20in%20Cell%20Type-Specific%20RNAseq%20of%20Nucleus%20Accumbens%20Medium%20Spiny%20Neurons&rft.jtitle=Scientific%20reports&rft.au=Kronman,%20Hope&rft.date=2019-06-06&rft.volume=9&rft.issue=1&rft.spage=8350&rft.epage=8350&rft.pages=8350-8350&rft.artnum=8350&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-44798-9&rft_dat=%3Cproquest_pubme%3E2267017433%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236158005&rft_id=info:pmid/31171808&rfr_iscdi=true |