Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons

Subcellular RNAseq promises to dissect transcriptional dynamics but is not well characterized. Furthermore, FACS may introduce bias but has not been benchmarked genome-wide. Finally, D1 and D2 dopamine receptor-expressing medium spiny neurons (MSNs) of the nucleus accumbens (NAc) are fundamental to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-06, Vol.9 (1), p.8350-8350, Article 8350
Hauptverfasser: Kronman, Hope, Richter, Felix, Labonté, Benoit, Chandra, Ramesh, Zhao, Shan, Hoffman, Gabriel, Lobo, Mary Kay, Schadt, Eric E., Nestler, Eric J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8350
container_issue 1
container_start_page 8350
container_title Scientific reports
container_volume 9
creator Kronman, Hope
Richter, Felix
Labonté, Benoit
Chandra, Ramesh
Zhao, Shan
Hoffman, Gabriel
Lobo, Mary Kay
Schadt, Eric E.
Nestler, Eric J.
description Subcellular RNAseq promises to dissect transcriptional dynamics but is not well characterized. Furthermore, FACS may introduce bias but has not been benchmarked genome-wide. Finally, D1 and D2 dopamine receptor-expressing medium spiny neurons (MSNs) of the nucleus accumbens (NAc) are fundamental to neuropsychiatric traits but have only a short list of canonical surface markers. We address these gaps by systematically comparing nuclear-FACS, whole cell-FACS, and RiboTag affinity purification from D1- and D2-MSNs. Using differential expression, variance partitioning, and co-expression, we identify the following trade-offs for each method. RiboTag-seq best distinguishes D1- and D2-MSNs but has the lowest transcriptome coverage. Nuclear-FACS-seq generates the most differentially expressed genes and overlaps significantly with neuropsychiatric genetic risk loci, but un-annotated genes hamper interpretation. Whole cell-FACS is more similar to nuclear-FACS than RiboTag, but captures aspects of both. Using pan-method approaches, we discover that transcriptional regulation is predominant in D1-MSNs, while D2-MSNs tend towards cytosolic regulation. We are also the first to find evidence for moderate sexual dimorphism in these cell types at baseline. As these results are from 49 mice (n male  = 39, n female  = 10), they represent generalizable ground-truths. Together, these results guide RNAseq methods selection, define MSN transcriptomes, highlight neuronal sex differences, and provide a baseline for D1- and D2-MSNs.
doi_str_mv 10.1038/s41598-019-44798-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6554355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267017433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-15d0428fba0f3c0302c990f054a7695b2a7949952e0b64283cf3bffcb5f4ad373</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi1UBAj4AxyQpV56CfgziS-VllULSLCVClWPluPYW6PEDva60v77GpavcmAuM9I889ozLwBHGJ1gRNvTxDAXbYWwqBhrSiW2wB5BjFeEEvLpTb0LDlO6QyU4EQyLHbBLMW5wi9o98PvMhSEs11D5Hp45laDzcG6GAd6uJ1PdTEY76zT8uZglcw-DhYusB5MTnGmdx874BK9N7_IIbybn13Bhcgw-HYBtq4ZkDp_yPvj1_dvt_KK6-nF-OZ9dVZpjvKow7xEjre0UslQjiogWAlnEmWpqwTuiGsGE4MSgri4g1ZZ21uqOW6Z62tB98HWjO-VuNL02fhXVIKfoRhXXMign_-9490cuw19Zc84o50Xgy5NADPfZpJUcXdLlAMqbkJMkpG4QbhilBf38Dr0LOfqyXqFojXlbTlwosqF0DClFY18-g5F8sE5urJPFOvlonRRl6PjtGi8jz0YVgG6AVFp-aeLr2x_I_gMPOKNI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236158005</pqid></control><display><type>article</type><title>Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kronman, Hope ; Richter, Felix ; Labonté, Benoit ; Chandra, Ramesh ; Zhao, Shan ; Hoffman, Gabriel ; Lobo, Mary Kay ; Schadt, Eric E. ; Nestler, Eric J.</creator><creatorcontrib>Kronman, Hope ; Richter, Felix ; Labonté, Benoit ; Chandra, Ramesh ; Zhao, Shan ; Hoffman, Gabriel ; Lobo, Mary Kay ; Schadt, Eric E. ; Nestler, Eric J.</creatorcontrib><description>Subcellular RNAseq promises to dissect transcriptional dynamics but is not well characterized. Furthermore, FACS may introduce bias but has not been benchmarked genome-wide. Finally, D1 and D2 dopamine receptor-expressing medium spiny neurons (MSNs) of the nucleus accumbens (NAc) are fundamental to neuropsychiatric traits but have only a short list of canonical surface markers. We address these gaps by systematically comparing nuclear-FACS, whole cell-FACS, and RiboTag affinity purification from D1- and D2-MSNs. Using differential expression, variance partitioning, and co-expression, we identify the following trade-offs for each method. RiboTag-seq best distinguishes D1- and D2-MSNs but has the lowest transcriptome coverage. Nuclear-FACS-seq generates the most differentially expressed genes and overlaps significantly with neuropsychiatric genetic risk loci, but un-annotated genes hamper interpretation. Whole cell-FACS is more similar to nuclear-FACS than RiboTag, but captures aspects of both. Using pan-method approaches, we discover that transcriptional regulation is predominant in D1-MSNs, while D2-MSNs tend towards cytosolic regulation. We are also the first to find evidence for moderate sexual dimorphism in these cell types at baseline. As these results are from 49 mice (n male  = 39, n female  = 10), they represent generalizable ground-truths. Together, these results guide RNAseq methods selection, define MSN transcriptomes, highlight neuronal sex differences, and provide a baseline for D1- and D2-MSNs.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-44798-9</identifier><identifier>PMID: 31171808</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/31 ; 38 ; 45 ; 631/1647/2017 ; 631/1647/48 ; 631/378/2583 ; Animals ; Bias ; Biology ; Cell Separation ; Computational Biology ; Dopamine ; Dopamine D1 receptors ; Dopamine D2 receptors ; Female ; Flow Cytometry ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Gene Library ; Gene regulation ; Genomes ; Humanities and Social Sciences ; Male ; Medicine ; Methods ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; multidisciplinary ; Neurons - metabolism ; Neurosciences ; Nucleus accumbens ; Nucleus Accumbens - diagnostic imaging ; Purification ; Receptors, Dopamine D1 - metabolism ; Receptors, Dopamine D2 - metabolism ; RNA-Seq ; Science ; Science (multidisciplinary) ; Sex differences ; Sexual dimorphism ; Spiny neurons ; Surface markers ; Transcription</subject><ispartof>Scientific reports, 2019-06, Vol.9 (1), p.8350-8350, Article 8350</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-15d0428fba0f3c0302c990f054a7695b2a7949952e0b64283cf3bffcb5f4ad373</citedby><cites>FETCH-LOGICAL-c511t-15d0428fba0f3c0302c990f054a7695b2a7949952e0b64283cf3bffcb5f4ad373</cites><orcidid>0000-0002-9419-2079 ; 0000-0003-3429-9621 ; 0000-0002-7905-2000 ; 0000-0002-0957-0224 ; 0000-0002-7892-8808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554355/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554355/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31171808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kronman, Hope</creatorcontrib><creatorcontrib>Richter, Felix</creatorcontrib><creatorcontrib>Labonté, Benoit</creatorcontrib><creatorcontrib>Chandra, Ramesh</creatorcontrib><creatorcontrib>Zhao, Shan</creatorcontrib><creatorcontrib>Hoffman, Gabriel</creatorcontrib><creatorcontrib>Lobo, Mary Kay</creatorcontrib><creatorcontrib>Schadt, Eric E.</creatorcontrib><creatorcontrib>Nestler, Eric J.</creatorcontrib><title>Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Subcellular RNAseq promises to dissect transcriptional dynamics but is not well characterized. Furthermore, FACS may introduce bias but has not been benchmarked genome-wide. Finally, D1 and D2 dopamine receptor-expressing medium spiny neurons (MSNs) of the nucleus accumbens (NAc) are fundamental to neuropsychiatric traits but have only a short list of canonical surface markers. We address these gaps by systematically comparing nuclear-FACS, whole cell-FACS, and RiboTag affinity purification from D1- and D2-MSNs. Using differential expression, variance partitioning, and co-expression, we identify the following trade-offs for each method. RiboTag-seq best distinguishes D1- and D2-MSNs but has the lowest transcriptome coverage. Nuclear-FACS-seq generates the most differentially expressed genes and overlaps significantly with neuropsychiatric genetic risk loci, but un-annotated genes hamper interpretation. Whole cell-FACS is more similar to nuclear-FACS than RiboTag, but captures aspects of both. Using pan-method approaches, we discover that transcriptional regulation is predominant in D1-MSNs, while D2-MSNs tend towards cytosolic regulation. We are also the first to find evidence for moderate sexual dimorphism in these cell types at baseline. As these results are from 49 mice (n male  = 39, n female  = 10), they represent generalizable ground-truths. Together, these results guide RNAseq methods selection, define MSN transcriptomes, highlight neuronal sex differences, and provide a baseline for D1- and D2-MSNs.</description><subject>13</subject><subject>13/31</subject><subject>38</subject><subject>45</subject><subject>631/1647/2017</subject><subject>631/1647/48</subject><subject>631/378/2583</subject><subject>Animals</subject><subject>Bias</subject><subject>Biology</subject><subject>Cell Separation</subject><subject>Computational Biology</subject><subject>Dopamine</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine D2 receptors</subject><subject>Female</subject><subject>Flow Cytometry</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Gene Library</subject><subject>Gene regulation</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Male</subject><subject>Medicine</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>multidisciplinary</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Nucleus accumbens</subject><subject>Nucleus Accumbens - diagnostic imaging</subject><subject>Purification</subject><subject>Receptors, Dopamine D1 - metabolism</subject><subject>Receptors, Dopamine D2 - metabolism</subject><subject>RNA-Seq</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sex differences</subject><subject>Sexual dimorphism</subject><subject>Spiny neurons</subject><subject>Surface markers</subject><subject>Transcription</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1P3DAQhi1UBAj4AxyQpV56CfgziS-VllULSLCVClWPluPYW6PEDva60v77GpavcmAuM9I889ozLwBHGJ1gRNvTxDAXbYWwqBhrSiW2wB5BjFeEEvLpTb0LDlO6QyU4EQyLHbBLMW5wi9o98PvMhSEs11D5Hp45laDzcG6GAd6uJ1PdTEY76zT8uZglcw-DhYusB5MTnGmdx874BK9N7_IIbybn13Bhcgw-HYBtq4ZkDp_yPvj1_dvt_KK6-nF-OZ9dVZpjvKow7xEjre0UslQjiogWAlnEmWpqwTuiGsGE4MSgri4g1ZZ21uqOW6Z62tB98HWjO-VuNL02fhXVIKfoRhXXMign_-9490cuw19Zc84o50Xgy5NADPfZpJUcXdLlAMqbkJMkpG4QbhilBf38Dr0LOfqyXqFojXlbTlwosqF0DClFY18-g5F8sE5urJPFOvlonRRl6PjtGi8jz0YVgG6AVFp-aeLr2x_I_gMPOKNI</recordid><startdate>20190606</startdate><enddate>20190606</enddate><creator>Kronman, Hope</creator><creator>Richter, Felix</creator><creator>Labonté, Benoit</creator><creator>Chandra, Ramesh</creator><creator>Zhao, Shan</creator><creator>Hoffman, Gabriel</creator><creator>Lobo, Mary Kay</creator><creator>Schadt, Eric E.</creator><creator>Nestler, Eric J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9419-2079</orcidid><orcidid>https://orcid.org/0000-0003-3429-9621</orcidid><orcidid>https://orcid.org/0000-0002-7905-2000</orcidid><orcidid>https://orcid.org/0000-0002-0957-0224</orcidid><orcidid>https://orcid.org/0000-0002-7892-8808</orcidid></search><sort><creationdate>20190606</creationdate><title>Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons</title><author>Kronman, Hope ; Richter, Felix ; Labonté, Benoit ; Chandra, Ramesh ; Zhao, Shan ; Hoffman, Gabriel ; Lobo, Mary Kay ; Schadt, Eric E. ; Nestler, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-15d0428fba0f3c0302c990f054a7695b2a7949952e0b64283cf3bffcb5f4ad373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>13/31</topic><topic>38</topic><topic>45</topic><topic>631/1647/2017</topic><topic>631/1647/48</topic><topic>631/378/2583</topic><topic>Animals</topic><topic>Bias</topic><topic>Biology</topic><topic>Cell Separation</topic><topic>Computational Biology</topic><topic>Dopamine</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine D2 receptors</topic><topic>Female</topic><topic>Flow Cytometry</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Gene Library</topic><topic>Gene regulation</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Male</topic><topic>Medicine</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>multidisciplinary</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Nucleus accumbens</topic><topic>Nucleus Accumbens - diagnostic imaging</topic><topic>Purification</topic><topic>Receptors, Dopamine D1 - metabolism</topic><topic>Receptors, Dopamine D2 - metabolism</topic><topic>RNA-Seq</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sex differences</topic><topic>Sexual dimorphism</topic><topic>Spiny neurons</topic><topic>Surface markers</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kronman, Hope</creatorcontrib><creatorcontrib>Richter, Felix</creatorcontrib><creatorcontrib>Labonté, Benoit</creatorcontrib><creatorcontrib>Chandra, Ramesh</creatorcontrib><creatorcontrib>Zhao, Shan</creatorcontrib><creatorcontrib>Hoffman, Gabriel</creatorcontrib><creatorcontrib>Lobo, Mary Kay</creatorcontrib><creatorcontrib>Schadt, Eric E.</creatorcontrib><creatorcontrib>Nestler, Eric J.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kronman, Hope</au><au>Richter, Felix</au><au>Labonté, Benoit</au><au>Chandra, Ramesh</au><au>Zhao, Shan</au><au>Hoffman, Gabriel</au><au>Lobo, Mary Kay</au><au>Schadt, Eric E.</au><au>Nestler, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-06-06</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>8350</spage><epage>8350</epage><pages>8350-8350</pages><artnum>8350</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Subcellular RNAseq promises to dissect transcriptional dynamics but is not well characterized. Furthermore, FACS may introduce bias but has not been benchmarked genome-wide. Finally, D1 and D2 dopamine receptor-expressing medium spiny neurons (MSNs) of the nucleus accumbens (NAc) are fundamental to neuropsychiatric traits but have only a short list of canonical surface markers. We address these gaps by systematically comparing nuclear-FACS, whole cell-FACS, and RiboTag affinity purification from D1- and D2-MSNs. Using differential expression, variance partitioning, and co-expression, we identify the following trade-offs for each method. RiboTag-seq best distinguishes D1- and D2-MSNs but has the lowest transcriptome coverage. Nuclear-FACS-seq generates the most differentially expressed genes and overlaps significantly with neuropsychiatric genetic risk loci, but un-annotated genes hamper interpretation. Whole cell-FACS is more similar to nuclear-FACS than RiboTag, but captures aspects of both. Using pan-method approaches, we discover that transcriptional regulation is predominant in D1-MSNs, while D2-MSNs tend towards cytosolic regulation. We are also the first to find evidence for moderate sexual dimorphism in these cell types at baseline. As these results are from 49 mice (n male  = 39, n female  = 10), they represent generalizable ground-truths. Together, these results guide RNAseq methods selection, define MSN transcriptomes, highlight neuronal sex differences, and provide a baseline for D1- and D2-MSNs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31171808</pmid><doi>10.1038/s41598-019-44798-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9419-2079</orcidid><orcidid>https://orcid.org/0000-0003-3429-9621</orcidid><orcidid>https://orcid.org/0000-0002-7905-2000</orcidid><orcidid>https://orcid.org/0000-0002-0957-0224</orcidid><orcidid>https://orcid.org/0000-0002-7892-8808</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-06, Vol.9 (1), p.8350-8350, Article 8350
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6554355
source MEDLINE; DOAJ Directory of Open Access Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 13
13/31
38
45
631/1647/2017
631/1647/48
631/378/2583
Animals
Bias
Biology
Cell Separation
Computational Biology
Dopamine
Dopamine D1 receptors
Dopamine D2 receptors
Female
Flow Cytometry
Gene expression
Gene Expression Profiling
Gene Expression Regulation
Gene Library
Gene regulation
Genomes
Humanities and Social Sciences
Male
Medicine
Methods
Mice
Mice, Inbred C57BL
Mice, Transgenic
multidisciplinary
Neurons - metabolism
Neurosciences
Nucleus accumbens
Nucleus Accumbens - diagnostic imaging
Purification
Receptors, Dopamine D1 - metabolism
Receptors, Dopamine D2 - metabolism
RNA-Seq
Science
Science (multidisciplinary)
Sex differences
Sexual dimorphism
Spiny neurons
Surface markers
Transcription
title Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biology%20and%20Bias%20in%20Cell%20Type-Specific%20RNAseq%20of%20Nucleus%20Accumbens%20Medium%20Spiny%20Neurons&rft.jtitle=Scientific%20reports&rft.au=Kronman,%20Hope&rft.date=2019-06-06&rft.volume=9&rft.issue=1&rft.spage=8350&rft.epage=8350&rft.pages=8350-8350&rft.artnum=8350&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-44798-9&rft_dat=%3Cproquest_pubme%3E2267017433%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236158005&rft_id=info:pmid/31171808&rfr_iscdi=true