Deep learning predicts hip fracture using confounding patient and healthcare variables
Hip fractures are a leading cause of death and disability among older adults. Hip fractures are also the most commonly missed diagnosis on pelvic radiographs, and delayed diagnosis leads to higher cost and worse outcomes. Computer-aided diagnosis (CAD) algorithms have shown promise for helping radio...
Gespeichert in:
Veröffentlicht in: | NPJ digital medicine 2019-04, Vol.2 (1), p.31-31, Article 31 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | NPJ digital medicine |
container_volume | 2 |
creator | Badgeley, Marcus A. Zech, John R. Oakden-Rayner, Luke Glicksberg, Benjamin S. Liu, Manway Gale, William McConnell, Michael V. Percha, Bethany Snyder, Thomas M. Dudley, Joel T. |
description | Hip fractures are a leading cause of death and disability among older adults. Hip fractures are also the most commonly missed diagnosis on pelvic radiographs, and delayed diagnosis leads to higher cost and worse outcomes. Computer-aided diagnosis (CAD) algorithms have shown promise for helping radiologists detect fractures, but the image features underpinning their predictions are notoriously difficult to understand. In this study, we trained deep-learning models on 17,587 radiographs to classify fracture, 5 patient traits, and 14 hospital process variables. All 20 variables could be individually predicted from a radiograph, with the best performances on scanner model (AUC = 1.00), scanner brand (AUC = 0.98), and whether the order was marked “priority” (AUC = 0.79). Fracture was predicted moderately well from the image (AUC = 0.78) and better when combining image features with patient data (AUC = 0.86, DeLong paired AUC comparison,
p
= 2e-9) or patient data plus hospital process features (AUC = 0.91,
p
= 1e-21). Fracture prediction on a test set that balanced fracture risk across patient variables was significantly lower than a random test set (AUC = 0.67, DeLong unpaired AUC comparison,
p
= 0.003); and on a test set with fracture risk balanced across patient and hospital process variables, the model performed randomly (AUC = 0.52, 95% CI 0.46–0.58), indicating that these variables were the main source of the model’s fracture predictions. A single model that directly combines image features, patient, and hospital process data outperforms a Naive Bayes ensemble of an image-only model prediction, patient, and hospital process data. If CAD algorithms are inexplicably leveraging patient and process variables in their predictions, it is unclear how radiologists should interpret their predictions in the context of other known patient data. Further research is needed to illuminate deep-learning decision processes so that computers and clinicians can effectively cooperate. |
doi_str_mv | 10.1038/s41746-019-0105-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6550136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528861063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-9951396bbf6763ca69cd0c6150ba922d363488a03e40de01c2501be18f9f57613</originalsourceid><addsrcrecordid>eNp1kc1q3DAUhUVJSIZJHiCbYOgmG7dXkqWRNoGS_sJANkm3QpavZxQ8siPZA337ajLTNAlkISQ4n869h0PIBYVPFLj6nCq6qGQJVOcDoqQfyIxxrUrJBTt68T4l5yk9AACDSulKnpBTTjlUfKFm5PdXxKHo0Mbgw6oYIjbejalY-6Foo3XjFLGY0k5zfWj7KTRPnB09hrGwoSnWaLtx7WwGtzZ6W3eYzshxa7uE54d7Tu6_f7u7-Vkub3_8uvmyLJ0EOZZaC8q1rOtWLiR3VmrXgJNUQG01Yw2XvFLKAscKGgTqmABaI1WtbsVCUj4n13vfYao32Li8U7SdGaLf2PjH9Nab10rwa7Pqt0aK7JTt5-TqYBD7xwnTaDY-Oew6G7CfkmFMKCoY5zqjH9-gD_0UQ45nmGBKSQqSZ4ruKRf7lCK2z8tQMLvizL44k4szu-LMLsXlyxTPP_7VlAG2B1KWwgrj_9Hvu_4FZpWjfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528861063</pqid></control><display><type>article</type><title>Deep learning predicts hip fracture using confounding patient and healthcare variables</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Badgeley, Marcus A. ; Zech, John R. ; Oakden-Rayner, Luke ; Glicksberg, Benjamin S. ; Liu, Manway ; Gale, William ; McConnell, Michael V. ; Percha, Bethany ; Snyder, Thomas M. ; Dudley, Joel T.</creator><creatorcontrib>Badgeley, Marcus A. ; Zech, John R. ; Oakden-Rayner, Luke ; Glicksberg, Benjamin S. ; Liu, Manway ; Gale, William ; McConnell, Michael V. ; Percha, Bethany ; Snyder, Thomas M. ; Dudley, Joel T.</creatorcontrib><description>Hip fractures are a leading cause of death and disability among older adults. Hip fractures are also the most commonly missed diagnosis on pelvic radiographs, and delayed diagnosis leads to higher cost and worse outcomes. Computer-aided diagnosis (CAD) algorithms have shown promise for helping radiologists detect fractures, but the image features underpinning their predictions are notoriously difficult to understand. In this study, we trained deep-learning models on 17,587 radiographs to classify fracture, 5 patient traits, and 14 hospital process variables. All 20 variables could be individually predicted from a radiograph, with the best performances on scanner model (AUC = 1.00), scanner brand (AUC = 0.98), and whether the order was marked “priority” (AUC = 0.79). Fracture was predicted moderately well from the image (AUC = 0.78) and better when combining image features with patient data (AUC = 0.86, DeLong paired AUC comparison,
p
= 2e-9) or patient data plus hospital process features (AUC = 0.91,
p
= 1e-21). Fracture prediction on a test set that balanced fracture risk across patient variables was significantly lower than a random test set (AUC = 0.67, DeLong unpaired AUC comparison,
p
= 0.003); and on a test set with fracture risk balanced across patient and hospital process variables, the model performed randomly (AUC = 0.52, 95% CI 0.46–0.58), indicating that these variables were the main source of the model’s fracture predictions. A single model that directly combines image features, patient, and hospital process data outperforms a Naive Bayes ensemble of an image-only model prediction, patient, and hospital process data. If CAD algorithms are inexplicably leveraging patient and process variables in their predictions, it is unclear how radiologists should interpret their predictions in the context of other known patient data. Further research is needed to illuminate deep-learning decision processes so that computers and clinicians can effectively cooperate.</description><identifier>ISSN: 2398-6352</identifier><identifier>EISSN: 2398-6352</identifier><identifier>DOI: 10.1038/s41746-019-0105-1</identifier><identifier>PMID: 31304378</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/117 ; 639/705/531 ; 692/700/1421/1770 ; Algorithms ; Biomedicine ; Biotechnology ; Data processing ; Deep learning ; Digital technology ; Fractures ; Health informatics ; Medical diagnosis ; Medicine ; Medicine & Public Health</subject><ispartof>NPJ digital medicine, 2019-04, Vol.2 (1), p.31-31, Article 31</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-9951396bbf6763ca69cd0c6150ba922d363488a03e40de01c2501be18f9f57613</citedby><cites>FETCH-LOGICAL-c606t-9951396bbf6763ca69cd0c6150ba922d363488a03e40de01c2501be18f9f57613</cites><orcidid>0000-0001-8743-0932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550136/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550136/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31304378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Badgeley, Marcus A.</creatorcontrib><creatorcontrib>Zech, John R.</creatorcontrib><creatorcontrib>Oakden-Rayner, Luke</creatorcontrib><creatorcontrib>Glicksberg, Benjamin S.</creatorcontrib><creatorcontrib>Liu, Manway</creatorcontrib><creatorcontrib>Gale, William</creatorcontrib><creatorcontrib>McConnell, Michael V.</creatorcontrib><creatorcontrib>Percha, Bethany</creatorcontrib><creatorcontrib>Snyder, Thomas M.</creatorcontrib><creatorcontrib>Dudley, Joel T.</creatorcontrib><title>Deep learning predicts hip fracture using confounding patient and healthcare variables</title><title>NPJ digital medicine</title><addtitle>npj Digit. Med</addtitle><addtitle>NPJ Digit Med</addtitle><description>Hip fractures are a leading cause of death and disability among older adults. Hip fractures are also the most commonly missed diagnosis on pelvic radiographs, and delayed diagnosis leads to higher cost and worse outcomes. Computer-aided diagnosis (CAD) algorithms have shown promise for helping radiologists detect fractures, but the image features underpinning their predictions are notoriously difficult to understand. In this study, we trained deep-learning models on 17,587 radiographs to classify fracture, 5 patient traits, and 14 hospital process variables. All 20 variables could be individually predicted from a radiograph, with the best performances on scanner model (AUC = 1.00), scanner brand (AUC = 0.98), and whether the order was marked “priority” (AUC = 0.79). Fracture was predicted moderately well from the image (AUC = 0.78) and better when combining image features with patient data (AUC = 0.86, DeLong paired AUC comparison,
p
= 2e-9) or patient data plus hospital process features (AUC = 0.91,
p
= 1e-21). Fracture prediction on a test set that balanced fracture risk across patient variables was significantly lower than a random test set (AUC = 0.67, DeLong unpaired AUC comparison,
p
= 0.003); and on a test set with fracture risk balanced across patient and hospital process variables, the model performed randomly (AUC = 0.52, 95% CI 0.46–0.58), indicating that these variables were the main source of the model’s fracture predictions. A single model that directly combines image features, patient, and hospital process data outperforms a Naive Bayes ensemble of an image-only model prediction, patient, and hospital process data. If CAD algorithms are inexplicably leveraging patient and process variables in their predictions, it is unclear how radiologists should interpret their predictions in the context of other known patient data. Further research is needed to illuminate deep-learning decision processes so that computers and clinicians can effectively cooperate.</description><subject>639/705/117</subject><subject>639/705/531</subject><subject>692/700/1421/1770</subject><subject>Algorithms</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Digital technology</subject><subject>Fractures</subject><subject>Health informatics</subject><subject>Medical diagnosis</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><issn>2398-6352</issn><issn>2398-6352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1q3DAUhUVJSIZJHiCbYOgmG7dXkqWRNoGS_sJANkm3QpavZxQ8siPZA337ajLTNAlkISQ4n869h0PIBYVPFLj6nCq6qGQJVOcDoqQfyIxxrUrJBTt68T4l5yk9AACDSulKnpBTTjlUfKFm5PdXxKHo0Mbgw6oYIjbejalY-6Foo3XjFLGY0k5zfWj7KTRPnB09hrGwoSnWaLtx7WwGtzZ6W3eYzshxa7uE54d7Tu6_f7u7-Vkub3_8uvmyLJ0EOZZaC8q1rOtWLiR3VmrXgJNUQG01Yw2XvFLKAscKGgTqmABaI1WtbsVCUj4n13vfYao32Li8U7SdGaLf2PjH9Nab10rwa7Pqt0aK7JTt5-TqYBD7xwnTaDY-Oew6G7CfkmFMKCoY5zqjH9-gD_0UQ45nmGBKSQqSZ4ruKRf7lCK2z8tQMLvizL44k4szu-LMLsXlyxTPP_7VlAG2B1KWwgrj_9Hvu_4FZpWjfw</recordid><startdate>20190430</startdate><enddate>20190430</enddate><creator>Badgeley, Marcus A.</creator><creator>Zech, John R.</creator><creator>Oakden-Rayner, Luke</creator><creator>Glicksberg, Benjamin S.</creator><creator>Liu, Manway</creator><creator>Gale, William</creator><creator>McConnell, Michael V.</creator><creator>Percha, Bethany</creator><creator>Snyder, Thomas M.</creator><creator>Dudley, Joel T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8743-0932</orcidid></search><sort><creationdate>20190430</creationdate><title>Deep learning predicts hip fracture using confounding patient and healthcare variables</title><author>Badgeley, Marcus A. ; Zech, John R. ; Oakden-Rayner, Luke ; Glicksberg, Benjamin S. ; Liu, Manway ; Gale, William ; McConnell, Michael V. ; Percha, Bethany ; Snyder, Thomas M. ; Dudley, Joel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-9951396bbf6763ca69cd0c6150ba922d363488a03e40de01c2501be18f9f57613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/705/117</topic><topic>639/705/531</topic><topic>692/700/1421/1770</topic><topic>Algorithms</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Digital technology</topic><topic>Fractures</topic><topic>Health informatics</topic><topic>Medical diagnosis</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badgeley, Marcus A.</creatorcontrib><creatorcontrib>Zech, John R.</creatorcontrib><creatorcontrib>Oakden-Rayner, Luke</creatorcontrib><creatorcontrib>Glicksberg, Benjamin S.</creatorcontrib><creatorcontrib>Liu, Manway</creatorcontrib><creatorcontrib>Gale, William</creatorcontrib><creatorcontrib>McConnell, Michael V.</creatorcontrib><creatorcontrib>Percha, Bethany</creatorcontrib><creatorcontrib>Snyder, Thomas M.</creatorcontrib><creatorcontrib>Dudley, Joel T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NPJ digital medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badgeley, Marcus A.</au><au>Zech, John R.</au><au>Oakden-Rayner, Luke</au><au>Glicksberg, Benjamin S.</au><au>Liu, Manway</au><au>Gale, William</au><au>McConnell, Michael V.</au><au>Percha, Bethany</au><au>Snyder, Thomas M.</au><au>Dudley, Joel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning predicts hip fracture using confounding patient and healthcare variables</atitle><jtitle>NPJ digital medicine</jtitle><stitle>npj Digit. Med</stitle><addtitle>NPJ Digit Med</addtitle><date>2019-04-30</date><risdate>2019</risdate><volume>2</volume><issue>1</issue><spage>31</spage><epage>31</epage><pages>31-31</pages><artnum>31</artnum><issn>2398-6352</issn><eissn>2398-6352</eissn><abstract>Hip fractures are a leading cause of death and disability among older adults. Hip fractures are also the most commonly missed diagnosis on pelvic radiographs, and delayed diagnosis leads to higher cost and worse outcomes. Computer-aided diagnosis (CAD) algorithms have shown promise for helping radiologists detect fractures, but the image features underpinning their predictions are notoriously difficult to understand. In this study, we trained deep-learning models on 17,587 radiographs to classify fracture, 5 patient traits, and 14 hospital process variables. All 20 variables could be individually predicted from a radiograph, with the best performances on scanner model (AUC = 1.00), scanner brand (AUC = 0.98), and whether the order was marked “priority” (AUC = 0.79). Fracture was predicted moderately well from the image (AUC = 0.78) and better when combining image features with patient data (AUC = 0.86, DeLong paired AUC comparison,
p
= 2e-9) or patient data plus hospital process features (AUC = 0.91,
p
= 1e-21). Fracture prediction on a test set that balanced fracture risk across patient variables was significantly lower than a random test set (AUC = 0.67, DeLong unpaired AUC comparison,
p
= 0.003); and on a test set with fracture risk balanced across patient and hospital process variables, the model performed randomly (AUC = 0.52, 95% CI 0.46–0.58), indicating that these variables were the main source of the model’s fracture predictions. A single model that directly combines image features, patient, and hospital process data outperforms a Naive Bayes ensemble of an image-only model prediction, patient, and hospital process data. If CAD algorithms are inexplicably leveraging patient and process variables in their predictions, it is unclear how radiologists should interpret their predictions in the context of other known patient data. Further research is needed to illuminate deep-learning decision processes so that computers and clinicians can effectively cooperate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31304378</pmid><doi>10.1038/s41746-019-0105-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8743-0932</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2398-6352 |
ispartof | NPJ digital medicine, 2019-04, Vol.2 (1), p.31-31, Article 31 |
issn | 2398-6352 2398-6352 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6550136 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | 639/705/117 639/705/531 692/700/1421/1770 Algorithms Biomedicine Biotechnology Data processing Deep learning Digital technology Fractures Health informatics Medical diagnosis Medicine Medicine & Public Health |
title | Deep learning predicts hip fracture using confounding patient and healthcare variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20predicts%20hip%20fracture%20using%20confounding%20patient%20and%20healthcare%20variables&rft.jtitle=NPJ%20digital%20medicine&rft.au=Badgeley,%20Marcus%20A.&rft.date=2019-04-30&rft.volume=2&rft.issue=1&rft.spage=31&rft.epage=31&rft.pages=31-31&rft.artnum=31&rft.issn=2398-6352&rft.eissn=2398-6352&rft_id=info:doi/10.1038/s41746-019-0105-1&rft_dat=%3Cproquest_pubme%3E2528861063%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528861063&rft_id=info:pmid/31304378&rfr_iscdi=true |