Deep learning predicts hip fracture using confounding patient and healthcare variables

Hip fractures are a leading cause of death and disability among older adults. Hip fractures are also the most commonly missed diagnosis on pelvic radiographs, and delayed diagnosis leads to higher cost and worse outcomes. Computer-aided diagnosis (CAD) algorithms have shown promise for helping radio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ digital medicine 2019-04, Vol.2 (1), p.31-31, Article 31
Hauptverfasser: Badgeley, Marcus A., Zech, John R., Oakden-Rayner, Luke, Glicksberg, Benjamin S., Liu, Manway, Gale, William, McConnell, Michael V., Percha, Bethany, Snyder, Thomas M., Dudley, Joel T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 31
container_title NPJ digital medicine
container_volume 2
creator Badgeley, Marcus A.
Zech, John R.
Oakden-Rayner, Luke
Glicksberg, Benjamin S.
Liu, Manway
Gale, William
McConnell, Michael V.
Percha, Bethany
Snyder, Thomas M.
Dudley, Joel T.
description Hip fractures are a leading cause of death and disability among older adults. Hip fractures are also the most commonly missed diagnosis on pelvic radiographs, and delayed diagnosis leads to higher cost and worse outcomes. Computer-aided diagnosis (CAD) algorithms have shown promise for helping radiologists detect fractures, but the image features underpinning their predictions are notoriously difficult to understand. In this study, we trained deep-learning models on 17,587 radiographs to classify fracture, 5 patient traits, and 14 hospital process variables. All 20 variables could be individually predicted from a radiograph, with the best performances on scanner model (AUC = 1.00), scanner brand (AUC = 0.98), and whether the order was marked “priority” (AUC = 0.79). Fracture was predicted moderately well from the image (AUC = 0.78) and better when combining image features with patient data (AUC = 0.86, DeLong paired AUC comparison, p  = 2e-9) or patient data plus hospital process features (AUC = 0.91, p  = 1e-21). Fracture prediction on a test set that balanced fracture risk across patient variables was significantly lower than a random test set (AUC = 0.67, DeLong unpaired AUC comparison, p  = 0.003); and on a test set with fracture risk balanced across patient and hospital process variables, the model performed randomly (AUC = 0.52, 95% CI 0.46–0.58), indicating that these variables were the main source of the model’s fracture predictions. A single model that directly combines image features, patient, and hospital process data outperforms a Naive Bayes ensemble of an image-only model prediction, patient, and hospital process data. If CAD algorithms are inexplicably leveraging patient and process variables in their predictions, it is unclear how radiologists should interpret their predictions in the context of other known patient data. Further research is needed to illuminate deep-learning decision processes so that computers and clinicians can effectively cooperate.
doi_str_mv 10.1038/s41746-019-0105-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6550136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528861063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-9951396bbf6763ca69cd0c6150ba922d363488a03e40de01c2501be18f9f57613</originalsourceid><addsrcrecordid>eNp1kc1q3DAUhUVJSIZJHiCbYOgmG7dXkqWRNoGS_sJANkm3QpavZxQ8siPZA337ajLTNAlkISQ4n869h0PIBYVPFLj6nCq6qGQJVOcDoqQfyIxxrUrJBTt68T4l5yk9AACDSulKnpBTTjlUfKFm5PdXxKHo0Mbgw6oYIjbejalY-6Foo3XjFLGY0k5zfWj7KTRPnB09hrGwoSnWaLtx7WwGtzZ6W3eYzshxa7uE54d7Tu6_f7u7-Vkub3_8uvmyLJ0EOZZaC8q1rOtWLiR3VmrXgJNUQG01Yw2XvFLKAscKGgTqmABaI1WtbsVCUj4n13vfYao32Li8U7SdGaLf2PjH9Nab10rwa7Pqt0aK7JTt5-TqYBD7xwnTaDY-Oew6G7CfkmFMKCoY5zqjH9-gD_0UQ45nmGBKSQqSZ4ruKRf7lCK2z8tQMLvizL44k4szu-LMLsXlyxTPP_7VlAG2B1KWwgrj_9Hvu_4FZpWjfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528861063</pqid></control><display><type>article</type><title>Deep learning predicts hip fracture using confounding patient and healthcare variables</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Badgeley, Marcus A. ; Zech, John R. ; Oakden-Rayner, Luke ; Glicksberg, Benjamin S. ; Liu, Manway ; Gale, William ; McConnell, Michael V. ; Percha, Bethany ; Snyder, Thomas M. ; Dudley, Joel T.</creator><creatorcontrib>Badgeley, Marcus A. ; Zech, John R. ; Oakden-Rayner, Luke ; Glicksberg, Benjamin S. ; Liu, Manway ; Gale, William ; McConnell, Michael V. ; Percha, Bethany ; Snyder, Thomas M. ; Dudley, Joel T.</creatorcontrib><description>Hip fractures are a leading cause of death and disability among older adults. Hip fractures are also the most commonly missed diagnosis on pelvic radiographs, and delayed diagnosis leads to higher cost and worse outcomes. Computer-aided diagnosis (CAD) algorithms have shown promise for helping radiologists detect fractures, but the image features underpinning their predictions are notoriously difficult to understand. In this study, we trained deep-learning models on 17,587 radiographs to classify fracture, 5 patient traits, and 14 hospital process variables. All 20 variables could be individually predicted from a radiograph, with the best performances on scanner model (AUC = 1.00), scanner brand (AUC = 0.98), and whether the order was marked “priority” (AUC = 0.79). Fracture was predicted moderately well from the image (AUC = 0.78) and better when combining image features with patient data (AUC = 0.86, DeLong paired AUC comparison, p  = 2e-9) or patient data plus hospital process features (AUC = 0.91, p  = 1e-21). Fracture prediction on a test set that balanced fracture risk across patient variables was significantly lower than a random test set (AUC = 0.67, DeLong unpaired AUC comparison, p  = 0.003); and on a test set with fracture risk balanced across patient and hospital process variables, the model performed randomly (AUC = 0.52, 95% CI 0.46–0.58), indicating that these variables were the main source of the model’s fracture predictions. A single model that directly combines image features, patient, and hospital process data outperforms a Naive Bayes ensemble of an image-only model prediction, patient, and hospital process data. If CAD algorithms are inexplicably leveraging patient and process variables in their predictions, it is unclear how radiologists should interpret their predictions in the context of other known patient data. Further research is needed to illuminate deep-learning decision processes so that computers and clinicians can effectively cooperate.</description><identifier>ISSN: 2398-6352</identifier><identifier>EISSN: 2398-6352</identifier><identifier>DOI: 10.1038/s41746-019-0105-1</identifier><identifier>PMID: 31304378</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/117 ; 639/705/531 ; 692/700/1421/1770 ; Algorithms ; Biomedicine ; Biotechnology ; Data processing ; Deep learning ; Digital technology ; Fractures ; Health informatics ; Medical diagnosis ; Medicine ; Medicine &amp; Public Health</subject><ispartof>NPJ digital medicine, 2019-04, Vol.2 (1), p.31-31, Article 31</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-9951396bbf6763ca69cd0c6150ba922d363488a03e40de01c2501be18f9f57613</citedby><cites>FETCH-LOGICAL-c606t-9951396bbf6763ca69cd0c6150ba922d363488a03e40de01c2501be18f9f57613</cites><orcidid>0000-0001-8743-0932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550136/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550136/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31304378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Badgeley, Marcus A.</creatorcontrib><creatorcontrib>Zech, John R.</creatorcontrib><creatorcontrib>Oakden-Rayner, Luke</creatorcontrib><creatorcontrib>Glicksberg, Benjamin S.</creatorcontrib><creatorcontrib>Liu, Manway</creatorcontrib><creatorcontrib>Gale, William</creatorcontrib><creatorcontrib>McConnell, Michael V.</creatorcontrib><creatorcontrib>Percha, Bethany</creatorcontrib><creatorcontrib>Snyder, Thomas M.</creatorcontrib><creatorcontrib>Dudley, Joel T.</creatorcontrib><title>Deep learning predicts hip fracture using confounding patient and healthcare variables</title><title>NPJ digital medicine</title><addtitle>npj Digit. Med</addtitle><addtitle>NPJ Digit Med</addtitle><description>Hip fractures are a leading cause of death and disability among older adults. Hip fractures are also the most commonly missed diagnosis on pelvic radiographs, and delayed diagnosis leads to higher cost and worse outcomes. Computer-aided diagnosis (CAD) algorithms have shown promise for helping radiologists detect fractures, but the image features underpinning their predictions are notoriously difficult to understand. In this study, we trained deep-learning models on 17,587 radiographs to classify fracture, 5 patient traits, and 14 hospital process variables. All 20 variables could be individually predicted from a radiograph, with the best performances on scanner model (AUC = 1.00), scanner brand (AUC = 0.98), and whether the order was marked “priority” (AUC = 0.79). Fracture was predicted moderately well from the image (AUC = 0.78) and better when combining image features with patient data (AUC = 0.86, DeLong paired AUC comparison, p  = 2e-9) or patient data plus hospital process features (AUC = 0.91, p  = 1e-21). Fracture prediction on a test set that balanced fracture risk across patient variables was significantly lower than a random test set (AUC = 0.67, DeLong unpaired AUC comparison, p  = 0.003); and on a test set with fracture risk balanced across patient and hospital process variables, the model performed randomly (AUC = 0.52, 95% CI 0.46–0.58), indicating that these variables were the main source of the model’s fracture predictions. A single model that directly combines image features, patient, and hospital process data outperforms a Naive Bayes ensemble of an image-only model prediction, patient, and hospital process data. If CAD algorithms are inexplicably leveraging patient and process variables in their predictions, it is unclear how radiologists should interpret their predictions in the context of other known patient data. Further research is needed to illuminate deep-learning decision processes so that computers and clinicians can effectively cooperate.</description><subject>639/705/117</subject><subject>639/705/531</subject><subject>692/700/1421/1770</subject><subject>Algorithms</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Digital technology</subject><subject>Fractures</subject><subject>Health informatics</subject><subject>Medical diagnosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><issn>2398-6352</issn><issn>2398-6352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1q3DAUhUVJSIZJHiCbYOgmG7dXkqWRNoGS_sJANkm3QpavZxQ8siPZA337ajLTNAlkISQ4n869h0PIBYVPFLj6nCq6qGQJVOcDoqQfyIxxrUrJBTt68T4l5yk9AACDSulKnpBTTjlUfKFm5PdXxKHo0Mbgw6oYIjbejalY-6Foo3XjFLGY0k5zfWj7KTRPnB09hrGwoSnWaLtx7WwGtzZ6W3eYzshxa7uE54d7Tu6_f7u7-Vkub3_8uvmyLJ0EOZZaC8q1rOtWLiR3VmrXgJNUQG01Yw2XvFLKAscKGgTqmABaI1WtbsVCUj4n13vfYao32Li8U7SdGaLf2PjH9Nab10rwa7Pqt0aK7JTt5-TqYBD7xwnTaDY-Oew6G7CfkmFMKCoY5zqjH9-gD_0UQ45nmGBKSQqSZ4ruKRf7lCK2z8tQMLvizL44k4szu-LMLsXlyxTPP_7VlAG2B1KWwgrj_9Hvu_4FZpWjfw</recordid><startdate>20190430</startdate><enddate>20190430</enddate><creator>Badgeley, Marcus A.</creator><creator>Zech, John R.</creator><creator>Oakden-Rayner, Luke</creator><creator>Glicksberg, Benjamin S.</creator><creator>Liu, Manway</creator><creator>Gale, William</creator><creator>McConnell, Michael V.</creator><creator>Percha, Bethany</creator><creator>Snyder, Thomas M.</creator><creator>Dudley, Joel T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8743-0932</orcidid></search><sort><creationdate>20190430</creationdate><title>Deep learning predicts hip fracture using confounding patient and healthcare variables</title><author>Badgeley, Marcus A. ; Zech, John R. ; Oakden-Rayner, Luke ; Glicksberg, Benjamin S. ; Liu, Manway ; Gale, William ; McConnell, Michael V. ; Percha, Bethany ; Snyder, Thomas M. ; Dudley, Joel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-9951396bbf6763ca69cd0c6150ba922d363488a03e40de01c2501be18f9f57613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/705/117</topic><topic>639/705/531</topic><topic>692/700/1421/1770</topic><topic>Algorithms</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Digital technology</topic><topic>Fractures</topic><topic>Health informatics</topic><topic>Medical diagnosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badgeley, Marcus A.</creatorcontrib><creatorcontrib>Zech, John R.</creatorcontrib><creatorcontrib>Oakden-Rayner, Luke</creatorcontrib><creatorcontrib>Glicksberg, Benjamin S.</creatorcontrib><creatorcontrib>Liu, Manway</creatorcontrib><creatorcontrib>Gale, William</creatorcontrib><creatorcontrib>McConnell, Michael V.</creatorcontrib><creatorcontrib>Percha, Bethany</creatorcontrib><creatorcontrib>Snyder, Thomas M.</creatorcontrib><creatorcontrib>Dudley, Joel T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NPJ digital medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badgeley, Marcus A.</au><au>Zech, John R.</au><au>Oakden-Rayner, Luke</au><au>Glicksberg, Benjamin S.</au><au>Liu, Manway</au><au>Gale, William</au><au>McConnell, Michael V.</au><au>Percha, Bethany</au><au>Snyder, Thomas M.</au><au>Dudley, Joel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning predicts hip fracture using confounding patient and healthcare variables</atitle><jtitle>NPJ digital medicine</jtitle><stitle>npj Digit. Med</stitle><addtitle>NPJ Digit Med</addtitle><date>2019-04-30</date><risdate>2019</risdate><volume>2</volume><issue>1</issue><spage>31</spage><epage>31</epage><pages>31-31</pages><artnum>31</artnum><issn>2398-6352</issn><eissn>2398-6352</eissn><abstract>Hip fractures are a leading cause of death and disability among older adults. Hip fractures are also the most commonly missed diagnosis on pelvic radiographs, and delayed diagnosis leads to higher cost and worse outcomes. Computer-aided diagnosis (CAD) algorithms have shown promise for helping radiologists detect fractures, but the image features underpinning their predictions are notoriously difficult to understand. In this study, we trained deep-learning models on 17,587 radiographs to classify fracture, 5 patient traits, and 14 hospital process variables. All 20 variables could be individually predicted from a radiograph, with the best performances on scanner model (AUC = 1.00), scanner brand (AUC = 0.98), and whether the order was marked “priority” (AUC = 0.79). Fracture was predicted moderately well from the image (AUC = 0.78) and better when combining image features with patient data (AUC = 0.86, DeLong paired AUC comparison, p  = 2e-9) or patient data plus hospital process features (AUC = 0.91, p  = 1e-21). Fracture prediction on a test set that balanced fracture risk across patient variables was significantly lower than a random test set (AUC = 0.67, DeLong unpaired AUC comparison, p  = 0.003); and on a test set with fracture risk balanced across patient and hospital process variables, the model performed randomly (AUC = 0.52, 95% CI 0.46–0.58), indicating that these variables were the main source of the model’s fracture predictions. A single model that directly combines image features, patient, and hospital process data outperforms a Naive Bayes ensemble of an image-only model prediction, patient, and hospital process data. If CAD algorithms are inexplicably leveraging patient and process variables in their predictions, it is unclear how radiologists should interpret their predictions in the context of other known patient data. Further research is needed to illuminate deep-learning decision processes so that computers and clinicians can effectively cooperate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31304378</pmid><doi>10.1038/s41746-019-0105-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8743-0932</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2398-6352
ispartof NPJ digital medicine, 2019-04, Vol.2 (1), p.31-31, Article 31
issn 2398-6352
2398-6352
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6550136
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals
subjects 639/705/117
639/705/531
692/700/1421/1770
Algorithms
Biomedicine
Biotechnology
Data processing
Deep learning
Digital technology
Fractures
Health informatics
Medical diagnosis
Medicine
Medicine & Public Health
title Deep learning predicts hip fracture using confounding patient and healthcare variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20predicts%20hip%20fracture%20using%20confounding%20patient%20and%20healthcare%20variables&rft.jtitle=NPJ%20digital%20medicine&rft.au=Badgeley,%20Marcus%20A.&rft.date=2019-04-30&rft.volume=2&rft.issue=1&rft.spage=31&rft.epage=31&rft.pages=31-31&rft.artnum=31&rft.issn=2398-6352&rft.eissn=2398-6352&rft_id=info:doi/10.1038/s41746-019-0105-1&rft_dat=%3Cproquest_pubme%3E2528861063%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528861063&rft_id=info:pmid/31304378&rfr_iscdi=true