Combination of Insulin with a GLP1 Agonist Is Associated with Better Memory and Normal Expression of Insulin Receptor Pathway Genes in a Mouse Model of Alzheimer’s Disease

Disruption of brain insulin signaling may explain the higher Alzheimer’s disease (AD) risk among type 2 diabetic (T2D) patients. There is evidence from in vitro and human postmortem studies that combination of insulin with hypoglycemic medications is neuroprotective and associated with less amyloid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular neuroscience 2019-04, Vol.67 (4), p.504-510
Hauptverfasser: Robinson, Ari, Lubitz, Irit, Atrakchi-Baranes, Dana, Licht-Murava, Avital, Katsel, Pavel, Leroith, Derek, Liraz-Zaltsman, Sigal, Haroutunian, Vahram, Beeri, Michal Schnaider
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 510
container_issue 4
container_start_page 504
container_title Journal of molecular neuroscience
container_volume 67
creator Robinson, Ari
Lubitz, Irit
Atrakchi-Baranes, Dana
Licht-Murava, Avital
Katsel, Pavel
Leroith, Derek
Liraz-Zaltsman, Sigal
Haroutunian, Vahram
Beeri, Michal Schnaider
description Disruption of brain insulin signaling may explain the higher Alzheimer’s disease (AD) risk among type 2 diabetic (T2D) patients. There is evidence from in vitro and human postmortem studies that combination of insulin with hypoglycemic medications is neuroprotective and associated with less amyloid aggregation. We examined the effect of 8-month intranasal administration of insulin, exenatide (a GLP-1 agonist), combination therapy (insulin + exenatide) or saline, in wild-type (WT) and an AD-like mouse model (Tg2576). Mice were assessed for learning, gene expression of key mediators and effectors of the insulin receptor signaling pathway (IRSP-IRS1, AKT1, CTNNB1, INSR, IRS2, GSK3B, IGF1R, AKT3), and brain Amyloid Beta (Aβ) levels. In Tg2576 mice, combination therapy reduced expression of IRSP genes which was accompanied by better learning. Cortical Aβ levels were decreased by 15–30% in all groups compared to saline but this difference did not reach statistical significance. WT mice groups, with or without treatment, did not differ in any comparison. Disentangling the mechanisms underlying the potential beneficial effects of combination therapy on the IR pathway and AD-like behavior is warranted.
doi_str_mv 10.1007/s12031-019-1257-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6549496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2166269613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-d1d4a32748f3e41f73dbb465ff5189d6d7616c90aa82975094ceac05fdae36633</originalsourceid><addsrcrecordid>eNp1ksFu1DAQhiMEotvCA3BBlrhwCdhx4sQXpGUpy0pbqBCcLW8y2XWV2FuPQ7uceA0egpfiSXCUUqASF1vW_83vGc2fJE8YfcEoLV8iyyhnKWUyZVlRpvJeMmNFEV9MiPvJjFaySCshxVFyjHhBacZyVj1MjjgVvCgrPkt-LFy_MVYH4yxxLVlZHDpjyZUJO6LJcn3OyHzrrMFAVkjmiK42OkAzEa8hBPDkDHrnD0Tbhrx3vtcdOb3ee0C84_oRatgH58m5DrsrfSBLsIAkKpqcuQEhng10Y8m8-7oD04P_-e07kjcGQSM8Sh60ukN4fHOfJJ_fnn5avEvXH5arxXyd1nlJQ9qwJtc8K_Oq5ZCztuTNZpOLom0LVslGNKVgopZU6yqTZUFlXoOuadE2GrgQnJ8krybf_bDpoanBBq87tfem1_6gnDbqX8Wandq6L0oUucyliAbPbwy8uxwAg-oN1tB12kKcU2WslFyUeTaiz-6gF27wNo4XKSGyuD42dsQmqvYO0UN72wyjagyDmsKgYhjUGAYlY83Tv6e4rfi9_QhkE4BRslvwf77-v-svcKvCoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166269613</pqid></control><display><type>article</type><title>Combination of Insulin with a GLP1 Agonist Is Associated with Better Memory and Normal Expression of Insulin Receptor Pathway Genes in a Mouse Model of Alzheimer’s Disease</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Robinson, Ari ; Lubitz, Irit ; Atrakchi-Baranes, Dana ; Licht-Murava, Avital ; Katsel, Pavel ; Leroith, Derek ; Liraz-Zaltsman, Sigal ; Haroutunian, Vahram ; Beeri, Michal Schnaider</creator><creatorcontrib>Robinson, Ari ; Lubitz, Irit ; Atrakchi-Baranes, Dana ; Licht-Murava, Avital ; Katsel, Pavel ; Leroith, Derek ; Liraz-Zaltsman, Sigal ; Haroutunian, Vahram ; Beeri, Michal Schnaider</creatorcontrib><description>Disruption of brain insulin signaling may explain the higher Alzheimer’s disease (AD) risk among type 2 diabetic (T2D) patients. There is evidence from in vitro and human postmortem studies that combination of insulin with hypoglycemic medications is neuroprotective and associated with less amyloid aggregation. We examined the effect of 8-month intranasal administration of insulin, exenatide (a GLP-1 agonist), combination therapy (insulin + exenatide) or saline, in wild-type (WT) and an AD-like mouse model (Tg2576). Mice were assessed for learning, gene expression of key mediators and effectors of the insulin receptor signaling pathway (IRSP-IRS1, AKT1, CTNNB1, INSR, IRS2, GSK3B, IGF1R, AKT3), and brain Amyloid Beta (Aβ) levels. In Tg2576 mice, combination therapy reduced expression of IRSP genes which was accompanied by better learning. Cortical Aβ levels were decreased by 15–30% in all groups compared to saline but this difference did not reach statistical significance. WT mice groups, with or without treatment, did not differ in any comparison. Disentangling the mechanisms underlying the potential beneficial effects of combination therapy on the IR pathway and AD-like behavior is warranted.</description><identifier>ISSN: 0895-8696</identifier><identifier>EISSN: 1559-1166</identifier><identifier>DOI: 10.1007/s12031-019-1257-9</identifier><identifier>PMID: 30635783</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>AKT1 protein ; Alzheimer Disease - drug therapy ; Alzheimer's disease ; Amyloid beta-Peptides - metabolism ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain - drug effects ; Brain - metabolism ; Cell Biology ; Cortex ; Diabetes mellitus ; Drug Combinations ; Exenatide - administration &amp; dosage ; Exenatide - pharmacology ; Exenatide - therapeutic use ; Gene expression ; Genes ; GLP-1 receptor agonists ; Health risks ; Hypoglycemic Agents - administration &amp; dosage ; Hypoglycemic Agents - pharmacology ; Hypoglycemic Agents - therapeutic use ; Insulin ; Insulin - administration &amp; dosage ; Insulin - pharmacology ; Insulin - therapeutic use ; Intranasal administration ; Male ; Maze Learning ; Mice ; Mice, Inbred C57BL ; Neurochemistry ; Neurology ; Neuroprotection ; Neurosciences ; Proteomics ; Receptor, Insulin - metabolism ; Signal Transduction ; Signaling ; Therapy</subject><ispartof>Journal of molecular neuroscience, 2019-04, Vol.67 (4), p.504-510</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Molecular Neuroscience is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-d1d4a32748f3e41f73dbb465ff5189d6d7616c90aa82975094ceac05fdae36633</citedby><cites>FETCH-LOGICAL-c470t-d1d4a32748f3e41f73dbb465ff5189d6d7616c90aa82975094ceac05fdae36633</cites><orcidid>0000-0002-0330-0207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12031-019-1257-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12031-019-1257-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30635783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robinson, Ari</creatorcontrib><creatorcontrib>Lubitz, Irit</creatorcontrib><creatorcontrib>Atrakchi-Baranes, Dana</creatorcontrib><creatorcontrib>Licht-Murava, Avital</creatorcontrib><creatorcontrib>Katsel, Pavel</creatorcontrib><creatorcontrib>Leroith, Derek</creatorcontrib><creatorcontrib>Liraz-Zaltsman, Sigal</creatorcontrib><creatorcontrib>Haroutunian, Vahram</creatorcontrib><creatorcontrib>Beeri, Michal Schnaider</creatorcontrib><title>Combination of Insulin with a GLP1 Agonist Is Associated with Better Memory and Normal Expression of Insulin Receptor Pathway Genes in a Mouse Model of Alzheimer’s Disease</title><title>Journal of molecular neuroscience</title><addtitle>J Mol Neurosci</addtitle><addtitle>J Mol Neurosci</addtitle><description>Disruption of brain insulin signaling may explain the higher Alzheimer’s disease (AD) risk among type 2 diabetic (T2D) patients. There is evidence from in vitro and human postmortem studies that combination of insulin with hypoglycemic medications is neuroprotective and associated with less amyloid aggregation. We examined the effect of 8-month intranasal administration of insulin, exenatide (a GLP-1 agonist), combination therapy (insulin + exenatide) or saline, in wild-type (WT) and an AD-like mouse model (Tg2576). Mice were assessed for learning, gene expression of key mediators and effectors of the insulin receptor signaling pathway (IRSP-IRS1, AKT1, CTNNB1, INSR, IRS2, GSK3B, IGF1R, AKT3), and brain Amyloid Beta (Aβ) levels. In Tg2576 mice, combination therapy reduced expression of IRSP genes which was accompanied by better learning. Cortical Aβ levels were decreased by 15–30% in all groups compared to saline but this difference did not reach statistical significance. WT mice groups, with or without treatment, did not differ in any comparison. Disentangling the mechanisms underlying the potential beneficial effects of combination therapy on the IR pathway and AD-like behavior is warranted.</description><subject>AKT1 protein</subject><subject>Alzheimer Disease - drug therapy</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Cell Biology</subject><subject>Cortex</subject><subject>Diabetes mellitus</subject><subject>Drug Combinations</subject><subject>Exenatide - administration &amp; dosage</subject><subject>Exenatide - pharmacology</subject><subject>Exenatide - therapeutic use</subject><subject>Gene expression</subject><subject>Genes</subject><subject>GLP-1 receptor agonists</subject><subject>Health risks</subject><subject>Hypoglycemic Agents - administration &amp; dosage</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Hypoglycemic Agents - therapeutic use</subject><subject>Insulin</subject><subject>Insulin - administration &amp; dosage</subject><subject>Insulin - pharmacology</subject><subject>Insulin - therapeutic use</subject><subject>Intranasal administration</subject><subject>Male</subject><subject>Maze Learning</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neuroprotection</subject><subject>Neurosciences</subject><subject>Proteomics</subject><subject>Receptor, Insulin - metabolism</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Therapy</subject><issn>0895-8696</issn><issn>1559-1166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1ksFu1DAQhiMEotvCA3BBlrhwCdhx4sQXpGUpy0pbqBCcLW8y2XWV2FuPQ7uceA0egpfiSXCUUqASF1vW_83vGc2fJE8YfcEoLV8iyyhnKWUyZVlRpvJeMmNFEV9MiPvJjFaySCshxVFyjHhBacZyVj1MjjgVvCgrPkt-LFy_MVYH4yxxLVlZHDpjyZUJO6LJcn3OyHzrrMFAVkjmiK42OkAzEa8hBPDkDHrnD0Tbhrx3vtcdOb3ee0C84_oRatgH58m5DrsrfSBLsIAkKpqcuQEhng10Y8m8-7oD04P_-e07kjcGQSM8Sh60ukN4fHOfJJ_fnn5avEvXH5arxXyd1nlJQ9qwJtc8K_Oq5ZCztuTNZpOLom0LVslGNKVgopZU6yqTZUFlXoOuadE2GrgQnJ8krybf_bDpoanBBq87tfem1_6gnDbqX8Wandq6L0oUucyliAbPbwy8uxwAg-oN1tB12kKcU2WslFyUeTaiz-6gF27wNo4XKSGyuD42dsQmqvYO0UN72wyjagyDmsKgYhjUGAYlY83Tv6e4rfi9_QhkE4BRslvwf77-v-svcKvCoQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Robinson, Ari</creator><creator>Lubitz, Irit</creator><creator>Atrakchi-Baranes, Dana</creator><creator>Licht-Murava, Avital</creator><creator>Katsel, Pavel</creator><creator>Leroith, Derek</creator><creator>Liraz-Zaltsman, Sigal</creator><creator>Haroutunian, Vahram</creator><creator>Beeri, Michal Schnaider</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7N</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0330-0207</orcidid></search><sort><creationdate>20190401</creationdate><title>Combination of Insulin with a GLP1 Agonist Is Associated with Better Memory and Normal Expression of Insulin Receptor Pathway Genes in a Mouse Model of Alzheimer’s Disease</title><author>Robinson, Ari ; Lubitz, Irit ; Atrakchi-Baranes, Dana ; Licht-Murava, Avital ; Katsel, Pavel ; Leroith, Derek ; Liraz-Zaltsman, Sigal ; Haroutunian, Vahram ; Beeri, Michal Schnaider</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-d1d4a32748f3e41f73dbb465ff5189d6d7616c90aa82975094ceac05fdae36633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AKT1 protein</topic><topic>Alzheimer Disease - drug therapy</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Cell Biology</topic><topic>Cortex</topic><topic>Diabetes mellitus</topic><topic>Drug Combinations</topic><topic>Exenatide - administration &amp; dosage</topic><topic>Exenatide - pharmacology</topic><topic>Exenatide - therapeutic use</topic><topic>Gene expression</topic><topic>Genes</topic><topic>GLP-1 receptor agonists</topic><topic>Health risks</topic><topic>Hypoglycemic Agents - administration &amp; dosage</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Hypoglycemic Agents - therapeutic use</topic><topic>Insulin</topic><topic>Insulin - administration &amp; dosage</topic><topic>Insulin - pharmacology</topic><topic>Insulin - therapeutic use</topic><topic>Intranasal administration</topic><topic>Male</topic><topic>Maze Learning</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neuroprotection</topic><topic>Neurosciences</topic><topic>Proteomics</topic><topic>Receptor, Insulin - metabolism</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Ari</creatorcontrib><creatorcontrib>Lubitz, Irit</creatorcontrib><creatorcontrib>Atrakchi-Baranes, Dana</creatorcontrib><creatorcontrib>Licht-Murava, Avital</creatorcontrib><creatorcontrib>Katsel, Pavel</creatorcontrib><creatorcontrib>Leroith, Derek</creatorcontrib><creatorcontrib>Liraz-Zaltsman, Sigal</creatorcontrib><creatorcontrib>Haroutunian, Vahram</creatorcontrib><creatorcontrib>Beeri, Michal Schnaider</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Ari</au><au>Lubitz, Irit</au><au>Atrakchi-Baranes, Dana</au><au>Licht-Murava, Avital</au><au>Katsel, Pavel</au><au>Leroith, Derek</au><au>Liraz-Zaltsman, Sigal</au><au>Haroutunian, Vahram</au><au>Beeri, Michal Schnaider</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of Insulin with a GLP1 Agonist Is Associated with Better Memory and Normal Expression of Insulin Receptor Pathway Genes in a Mouse Model of Alzheimer’s Disease</atitle><jtitle>Journal of molecular neuroscience</jtitle><stitle>J Mol Neurosci</stitle><addtitle>J Mol Neurosci</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>67</volume><issue>4</issue><spage>504</spage><epage>510</epage><pages>504-510</pages><issn>0895-8696</issn><eissn>1559-1166</eissn><abstract>Disruption of brain insulin signaling may explain the higher Alzheimer’s disease (AD) risk among type 2 diabetic (T2D) patients. There is evidence from in vitro and human postmortem studies that combination of insulin with hypoglycemic medications is neuroprotective and associated with less amyloid aggregation. We examined the effect of 8-month intranasal administration of insulin, exenatide (a GLP-1 agonist), combination therapy (insulin + exenatide) or saline, in wild-type (WT) and an AD-like mouse model (Tg2576). Mice were assessed for learning, gene expression of key mediators and effectors of the insulin receptor signaling pathway (IRSP-IRS1, AKT1, CTNNB1, INSR, IRS2, GSK3B, IGF1R, AKT3), and brain Amyloid Beta (Aβ) levels. In Tg2576 mice, combination therapy reduced expression of IRSP genes which was accompanied by better learning. Cortical Aβ levels were decreased by 15–30% in all groups compared to saline but this difference did not reach statistical significance. WT mice groups, with or without treatment, did not differ in any comparison. Disentangling the mechanisms underlying the potential beneficial effects of combination therapy on the IR pathway and AD-like behavior is warranted.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30635783</pmid><doi>10.1007/s12031-019-1257-9</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0330-0207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-8696
ispartof Journal of molecular neuroscience, 2019-04, Vol.67 (4), p.504-510
issn 0895-8696
1559-1166
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6549496
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects AKT1 protein
Alzheimer Disease - drug therapy
Alzheimer's disease
Amyloid beta-Peptides - metabolism
Animals
Biomedical and Life Sciences
Biomedicine
Brain
Brain - drug effects
Brain - metabolism
Cell Biology
Cortex
Diabetes mellitus
Drug Combinations
Exenatide - administration & dosage
Exenatide - pharmacology
Exenatide - therapeutic use
Gene expression
Genes
GLP-1 receptor agonists
Health risks
Hypoglycemic Agents - administration & dosage
Hypoglycemic Agents - pharmacology
Hypoglycemic Agents - therapeutic use
Insulin
Insulin - administration & dosage
Insulin - pharmacology
Insulin - therapeutic use
Intranasal administration
Male
Maze Learning
Mice
Mice, Inbred C57BL
Neurochemistry
Neurology
Neuroprotection
Neurosciences
Proteomics
Receptor, Insulin - metabolism
Signal Transduction
Signaling
Therapy
title Combination of Insulin with a GLP1 Agonist Is Associated with Better Memory and Normal Expression of Insulin Receptor Pathway Genes in a Mouse Model of Alzheimer’s Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20Insulin%20with%20a%20GLP1%20Agonist%20Is%20Associated%20with%20Better%20Memory%20and%20Normal%20Expression%20of%20Insulin%20Receptor%20Pathway%20Genes%20in%20a%20Mouse%20Model%20of%20Alzheimer%E2%80%99s%20Disease&rft.jtitle=Journal%20of%20molecular%20neuroscience&rft.au=Robinson,%20Ari&rft.date=2019-04-01&rft.volume=67&rft.issue=4&rft.spage=504&rft.epage=510&rft.pages=504-510&rft.issn=0895-8696&rft.eissn=1559-1166&rft_id=info:doi/10.1007/s12031-019-1257-9&rft_dat=%3Cproquest_pubme%3E2166269613%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2166269613&rft_id=info:pmid/30635783&rfr_iscdi=true