Artificially Enhancing and Suppressing Hippocampus-Mediated Memories

Emerging evidence indicates that distinct hippocampal domains differentially drive cognition and emotion [1, 2]; dorsal regions encode spatial, temporal, and contextual information [3–5], whereas ventral regions regulate stress responses [6], anxiety-related behaviors [7, 8], and emotional states [8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2019-06, Vol.29 (11), p.1885-1894.e4
Hauptverfasser: Chen, Briana K., Murawski, Nathen J., Cincotta, Christine, McKissick, Olivia, Finkelstein, Abby, Hamidi, Anahita B., Merfeld, Emily, Doucette, Emily, Grella, Stephanie L., Shpokayte, Monika, Zaki, Yosif, Fortin, Amanda, Ramirez, Steve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1894.e4
container_issue 11
container_start_page 1885
container_title Current biology
container_volume 29
creator Chen, Briana K.
Murawski, Nathen J.
Cincotta, Christine
McKissick, Olivia
Finkelstein, Abby
Hamidi, Anahita B.
Merfeld, Emily
Doucette, Emily
Grella, Stephanie L.
Shpokayte, Monika
Zaki, Yosif
Fortin, Amanda
Ramirez, Steve
description Emerging evidence indicates that distinct hippocampal domains differentially drive cognition and emotion [1, 2]; dorsal regions encode spatial, temporal, and contextual information [3–5], whereas ventral regions regulate stress responses [6], anxiety-related behaviors [7, 8], and emotional states [8–10]. Although previous studies demonstrate that optically manipulating cells in the dorsal hippocampus can drive the behavioral expression of positive and negative memories, it is unknown whether changes in cellular activity in the ventral hippocampus can drive such behaviors [11–14]. Investigating the extent to which distinct hippocampal memories across the longitudinal axis modulate behavior could aid in the understanding of stress-related psychiatric disorders known to affect emotion, memory, and cognition [15]. Here, we asked whether tagging and stimulating cells along the dorsoventral axis of the hippocampus could acutely, chronically, and differentially promote context-specific behaviors. Acute reactivation of both dorsal and ventral hippocampus cells that were previously active during memory formation drove freezing behavior, place avoidance, and place preference. Moreover, chronic stimulation of dorsal or ventral hippocampal fear memories produced a context-specific reduction or enhancement of fear responses, respectively, thus demonstrating bi-directional and context-specific modulation of memories along the longitudinal axis of the hippocampus. Fear memory suppression was associated with a reduction in hippocampal cells active during retrieval, while fear memory enhancement was associated with an increase in basolateral amygdala activity. Together, our data demonstrate that discrete sets of cells throughout the hippocampus provide key nodes sufficient to bi-directionally reprogram both the neural and behavioral expression of memory. •Acute activation of dorsal and ventral HPC engrams drives reward and aversion•The ventral DG is preferentially reactivated in emotionally salient contexts•Chronic activation of HPC engrams decreases or increases context-specific freezing•Memory enhancement is disrupted when BLA cells processing fear are silenced Using optogenetic and chemogenetic manipulations, Chen et al. show that reactivation of fear and reward memory engrams via the dorsal and ventral hippocampus drive context-specific behaviors and bi-directionally control memory strength. The ventral DG and BLA are critical for linking emotional valence to specific
doi_str_mv 10.1016/j.cub.2019.04.065
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6548647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982219304944</els_id><sourcerecordid>2232116182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-c10671b38d61181408c8eb29945b71ea36d7a4cd9737ea910a03acc953e2b51e3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoaTZJf0AuYY-92JmRZFkiUAibNClk6aHpWcjybKLFX5XsQP59vew2pJeehmGeeWd4GDtHyBFQXW5zP1U5BzQ5yBxUccQWqEuTgZTFB7YAoyAzmvNjdpLSFgC5NuoTOxaIAmTBF-zmOo5hE3xwTfO6vO2eXedD97R0Xb38OQ1DpJR2_X0Yht67dphStqY6uJHq5ZraPgZKZ-zjxjWJPh_qKfv17fZxdZ89_Lj7vrp-yHyB5Zh5BFViJXStEDVK0F5TxY2RRVUiOaHq0klfm1KU5AyCA-G8N4UgXhVI4pR93ecOU9VS7akbo2vsEEPr4qvtXbD_TrrwbJ_6F6sKqZUs54Avh4DY_54ojbYNyVPTuI76KVnOBUdUqPmM4h71sU8p0ubtDILd2bdbO9u3O_sWpJ3tzzsX7_972_irewau9gDNll4CRZt8oM7PQiP50dZ9-E_8HxhtljE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232116182</pqid></control><display><type>article</type><title>Artificially Enhancing and Suppressing Hippocampus-Mediated Memories</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Briana K. ; Murawski, Nathen J. ; Cincotta, Christine ; McKissick, Olivia ; Finkelstein, Abby ; Hamidi, Anahita B. ; Merfeld, Emily ; Doucette, Emily ; Grella, Stephanie L. ; Shpokayte, Monika ; Zaki, Yosif ; Fortin, Amanda ; Ramirez, Steve</creator><creatorcontrib>Chen, Briana K. ; Murawski, Nathen J. ; Cincotta, Christine ; McKissick, Olivia ; Finkelstein, Abby ; Hamidi, Anahita B. ; Merfeld, Emily ; Doucette, Emily ; Grella, Stephanie L. ; Shpokayte, Monika ; Zaki, Yosif ; Fortin, Amanda ; Ramirez, Steve</creatorcontrib><description>Emerging evidence indicates that distinct hippocampal domains differentially drive cognition and emotion [1, 2]; dorsal regions encode spatial, temporal, and contextual information [3–5], whereas ventral regions regulate stress responses [6], anxiety-related behaviors [7, 8], and emotional states [8–10]. Although previous studies demonstrate that optically manipulating cells in the dorsal hippocampus can drive the behavioral expression of positive and negative memories, it is unknown whether changes in cellular activity in the ventral hippocampus can drive such behaviors [11–14]. Investigating the extent to which distinct hippocampal memories across the longitudinal axis modulate behavior could aid in the understanding of stress-related psychiatric disorders known to affect emotion, memory, and cognition [15]. Here, we asked whether tagging and stimulating cells along the dorsoventral axis of the hippocampus could acutely, chronically, and differentially promote context-specific behaviors. Acute reactivation of both dorsal and ventral hippocampus cells that were previously active during memory formation drove freezing behavior, place avoidance, and place preference. Moreover, chronic stimulation of dorsal or ventral hippocampal fear memories produced a context-specific reduction or enhancement of fear responses, respectively, thus demonstrating bi-directional and context-specific modulation of memories along the longitudinal axis of the hippocampus. Fear memory suppression was associated with a reduction in hippocampal cells active during retrieval, while fear memory enhancement was associated with an increase in basolateral amygdala activity. Together, our data demonstrate that discrete sets of cells throughout the hippocampus provide key nodes sufficient to bi-directionally reprogram both the neural and behavioral expression of memory. •Acute activation of dorsal and ventral HPC engrams drives reward and aversion•The ventral DG is preferentially reactivated in emotionally salient contexts•Chronic activation of HPC engrams decreases or increases context-specific freezing•Memory enhancement is disrupted when BLA cells processing fear are silenced Using optogenetic and chemogenetic manipulations, Chen et al. show that reactivation of fear and reward memory engrams via the dorsal and ventral hippocampus drive context-specific behaviors and bi-directionally control memory strength. The ventral DG and BLA are critical for linking emotional valence to specific contexts.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2019.04.065</identifier><identifier>PMID: 31130452</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>emotion ; engram ; hippocampus ; longitudinal axis ; memory ; optogenetics</subject><ispartof>Current biology, 2019-06, Vol.29 (11), p.1885-1894.e4</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-c10671b38d61181408c8eb29945b71ea36d7a4cd9737ea910a03acc953e2b51e3</citedby><cites>FETCH-LOGICAL-c517t-c10671b38d61181408c8eb29945b71ea36d7a4cd9737ea910a03acc953e2b51e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982219304944$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31130452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Briana K.</creatorcontrib><creatorcontrib>Murawski, Nathen J.</creatorcontrib><creatorcontrib>Cincotta, Christine</creatorcontrib><creatorcontrib>McKissick, Olivia</creatorcontrib><creatorcontrib>Finkelstein, Abby</creatorcontrib><creatorcontrib>Hamidi, Anahita B.</creatorcontrib><creatorcontrib>Merfeld, Emily</creatorcontrib><creatorcontrib>Doucette, Emily</creatorcontrib><creatorcontrib>Grella, Stephanie L.</creatorcontrib><creatorcontrib>Shpokayte, Monika</creatorcontrib><creatorcontrib>Zaki, Yosif</creatorcontrib><creatorcontrib>Fortin, Amanda</creatorcontrib><creatorcontrib>Ramirez, Steve</creatorcontrib><title>Artificially Enhancing and Suppressing Hippocampus-Mediated Memories</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Emerging evidence indicates that distinct hippocampal domains differentially drive cognition and emotion [1, 2]; dorsal regions encode spatial, temporal, and contextual information [3–5], whereas ventral regions regulate stress responses [6], anxiety-related behaviors [7, 8], and emotional states [8–10]. Although previous studies demonstrate that optically manipulating cells in the dorsal hippocampus can drive the behavioral expression of positive and negative memories, it is unknown whether changes in cellular activity in the ventral hippocampus can drive such behaviors [11–14]. Investigating the extent to which distinct hippocampal memories across the longitudinal axis modulate behavior could aid in the understanding of stress-related psychiatric disorders known to affect emotion, memory, and cognition [15]. Here, we asked whether tagging and stimulating cells along the dorsoventral axis of the hippocampus could acutely, chronically, and differentially promote context-specific behaviors. Acute reactivation of both dorsal and ventral hippocampus cells that were previously active during memory formation drove freezing behavior, place avoidance, and place preference. Moreover, chronic stimulation of dorsal or ventral hippocampal fear memories produced a context-specific reduction or enhancement of fear responses, respectively, thus demonstrating bi-directional and context-specific modulation of memories along the longitudinal axis of the hippocampus. Fear memory suppression was associated with a reduction in hippocampal cells active during retrieval, while fear memory enhancement was associated with an increase in basolateral amygdala activity. Together, our data demonstrate that discrete sets of cells throughout the hippocampus provide key nodes sufficient to bi-directionally reprogram both the neural and behavioral expression of memory. •Acute activation of dorsal and ventral HPC engrams drives reward and aversion•The ventral DG is preferentially reactivated in emotionally salient contexts•Chronic activation of HPC engrams decreases or increases context-specific freezing•Memory enhancement is disrupted when BLA cells processing fear are silenced Using optogenetic and chemogenetic manipulations, Chen et al. show that reactivation of fear and reward memory engrams via the dorsal and ventral hippocampus drive context-specific behaviors and bi-directionally control memory strength. The ventral DG and BLA are critical for linking emotional valence to specific contexts.</description><subject>emotion</subject><subject>engram</subject><subject>hippocampus</subject><subject>longitudinal axis</subject><subject>memory</subject><subject>optogenetics</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVoaTZJf0AuYY-92JmRZFkiUAibNClk6aHpWcjybKLFX5XsQP59vew2pJeehmGeeWd4GDtHyBFQXW5zP1U5BzQ5yBxUccQWqEuTgZTFB7YAoyAzmvNjdpLSFgC5NuoTOxaIAmTBF-zmOo5hE3xwTfO6vO2eXedD97R0Xb38OQ1DpJR2_X0Yht67dphStqY6uJHq5ZraPgZKZ-zjxjWJPh_qKfv17fZxdZ89_Lj7vrp-yHyB5Zh5BFViJXStEDVK0F5TxY2RRVUiOaHq0klfm1KU5AyCA-G8N4UgXhVI4pR93ecOU9VS7akbo2vsEEPr4qvtXbD_TrrwbJ_6F6sKqZUs54Avh4DY_54ojbYNyVPTuI76KVnOBUdUqPmM4h71sU8p0ubtDILd2bdbO9u3O_sWpJ3tzzsX7_972_irewau9gDNll4CRZt8oM7PQiP50dZ9-E_8HxhtljE</recordid><startdate>20190603</startdate><enddate>20190603</enddate><creator>Chen, Briana K.</creator><creator>Murawski, Nathen J.</creator><creator>Cincotta, Christine</creator><creator>McKissick, Olivia</creator><creator>Finkelstein, Abby</creator><creator>Hamidi, Anahita B.</creator><creator>Merfeld, Emily</creator><creator>Doucette, Emily</creator><creator>Grella, Stephanie L.</creator><creator>Shpokayte, Monika</creator><creator>Zaki, Yosif</creator><creator>Fortin, Amanda</creator><creator>Ramirez, Steve</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190603</creationdate><title>Artificially Enhancing and Suppressing Hippocampus-Mediated Memories</title><author>Chen, Briana K. ; Murawski, Nathen J. ; Cincotta, Christine ; McKissick, Olivia ; Finkelstein, Abby ; Hamidi, Anahita B. ; Merfeld, Emily ; Doucette, Emily ; Grella, Stephanie L. ; Shpokayte, Monika ; Zaki, Yosif ; Fortin, Amanda ; Ramirez, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-c10671b38d61181408c8eb29945b71ea36d7a4cd9737ea910a03acc953e2b51e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>emotion</topic><topic>engram</topic><topic>hippocampus</topic><topic>longitudinal axis</topic><topic>memory</topic><topic>optogenetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Briana K.</creatorcontrib><creatorcontrib>Murawski, Nathen J.</creatorcontrib><creatorcontrib>Cincotta, Christine</creatorcontrib><creatorcontrib>McKissick, Olivia</creatorcontrib><creatorcontrib>Finkelstein, Abby</creatorcontrib><creatorcontrib>Hamidi, Anahita B.</creatorcontrib><creatorcontrib>Merfeld, Emily</creatorcontrib><creatorcontrib>Doucette, Emily</creatorcontrib><creatorcontrib>Grella, Stephanie L.</creatorcontrib><creatorcontrib>Shpokayte, Monika</creatorcontrib><creatorcontrib>Zaki, Yosif</creatorcontrib><creatorcontrib>Fortin, Amanda</creatorcontrib><creatorcontrib>Ramirez, Steve</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Briana K.</au><au>Murawski, Nathen J.</au><au>Cincotta, Christine</au><au>McKissick, Olivia</au><au>Finkelstein, Abby</au><au>Hamidi, Anahita B.</au><au>Merfeld, Emily</au><au>Doucette, Emily</au><au>Grella, Stephanie L.</au><au>Shpokayte, Monika</au><au>Zaki, Yosif</au><au>Fortin, Amanda</au><au>Ramirez, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificially Enhancing and Suppressing Hippocampus-Mediated Memories</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2019-06-03</date><risdate>2019</risdate><volume>29</volume><issue>11</issue><spage>1885</spage><epage>1894.e4</epage><pages>1885-1894.e4</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Emerging evidence indicates that distinct hippocampal domains differentially drive cognition and emotion [1, 2]; dorsal regions encode spatial, temporal, and contextual information [3–5], whereas ventral regions regulate stress responses [6], anxiety-related behaviors [7, 8], and emotional states [8–10]. Although previous studies demonstrate that optically manipulating cells in the dorsal hippocampus can drive the behavioral expression of positive and negative memories, it is unknown whether changes in cellular activity in the ventral hippocampus can drive such behaviors [11–14]. Investigating the extent to which distinct hippocampal memories across the longitudinal axis modulate behavior could aid in the understanding of stress-related psychiatric disorders known to affect emotion, memory, and cognition [15]. Here, we asked whether tagging and stimulating cells along the dorsoventral axis of the hippocampus could acutely, chronically, and differentially promote context-specific behaviors. Acute reactivation of both dorsal and ventral hippocampus cells that were previously active during memory formation drove freezing behavior, place avoidance, and place preference. Moreover, chronic stimulation of dorsal or ventral hippocampal fear memories produced a context-specific reduction or enhancement of fear responses, respectively, thus demonstrating bi-directional and context-specific modulation of memories along the longitudinal axis of the hippocampus. Fear memory suppression was associated with a reduction in hippocampal cells active during retrieval, while fear memory enhancement was associated with an increase in basolateral amygdala activity. Together, our data demonstrate that discrete sets of cells throughout the hippocampus provide key nodes sufficient to bi-directionally reprogram both the neural and behavioral expression of memory. •Acute activation of dorsal and ventral HPC engrams drives reward and aversion•The ventral DG is preferentially reactivated in emotionally salient contexts•Chronic activation of HPC engrams decreases or increases context-specific freezing•Memory enhancement is disrupted when BLA cells processing fear are silenced Using optogenetic and chemogenetic manipulations, Chen et al. show that reactivation of fear and reward memory engrams via the dorsal and ventral hippocampus drive context-specific behaviors and bi-directionally control memory strength. The ventral DG and BLA are critical for linking emotional valence to specific contexts.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31130452</pmid><doi>10.1016/j.cub.2019.04.065</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2019-06, Vol.29 (11), p.1885-1894.e4
issn 0960-9822
1879-0445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6548647
source Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects emotion
engram
hippocampus
longitudinal axis
memory
optogenetics
title Artificially Enhancing and Suppressing Hippocampus-Mediated Memories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificially%20Enhancing%20and%20Suppressing%20Hippocampus-Mediated%20Memories&rft.jtitle=Current%20biology&rft.au=Chen,%20Briana%20K.&rft.date=2019-06-03&rft.volume=29&rft.issue=11&rft.spage=1885&rft.epage=1894.e4&rft.pages=1885-1894.e4&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2019.04.065&rft_dat=%3Cproquest_pubme%3E2232116182%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232116182&rft_id=info:pmid/31130452&rft_els_id=S0960982219304944&rfr_iscdi=true