The thermodynamic uncertainty relation in biochemical oscillations

Living systems regulate many aspects of their behaviour through periodic oscillations of molecular concentrations, which function as 'biochemical clocks.' The chemical reactions that drive these clocks are intrinsically stochastic at the molecular level, so that the duration of a full osci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2019-05, Vol.16 (154), p.20190098-20190098
Hauptverfasser: Marsland, 3rd, Robert, Cui, Wenping, Horowitz, Jordan M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20190098
container_issue 154
container_start_page 20190098
container_title Journal of the Royal Society interface
container_volume 16
creator Marsland, 3rd, Robert
Cui, Wenping
Horowitz, Jordan M
description Living systems regulate many aspects of their behaviour through periodic oscillations of molecular concentrations, which function as 'biochemical clocks.' The chemical reactions that drive these clocks are intrinsically stochastic at the molecular level, so that the duration of a full oscillation cycle is subject to random fluctuations. Their success in carrying out their biological function is thought to depend on the degree to which these fluctuations in the cycle period can be suppressed. Biochemical oscillators also require a constant supply of free energy in order to break detailed balance and maintain their cyclic dynamics. For a given free energy budget, the recently discovered 'thermodynamic uncertainty relation' yields the magnitude of period fluctuations in the most precise conceivable free-running clock. In this paper, we show that computational models of real biochemical clocks severely underperform this optimum, with fluctuations several orders of magnitude larger than the theoretical minimum. We argue that this suboptimal performance is due to the small number of internal states per molecule in these models, combined with the high level of thermodynamic force required to maintain the system in the oscillatory phase. We introduce a new model with a tunable number of internal states per molecule and confirm that it approaches the optimal precision as this number increases.
doi_str_mv 10.1098/rsif.2019.0098
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2218302437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-5f8d188dc03208ae3a2a49068df430943d43572c05cb7107124e8c074ce491b43</originalsourceid><addsrcrecordid>eNpVkE1PwzAMhiMEYjC4ckQ9culwvtrkggQTX9IkLuMcpWlKg9pmJC3S_j2tNiY42ZZfv7YfhK4wLDBIcRuiqxYEsFzAWB6hM5wzkvIsI8eHXMgZOo_xE4DmlPNTNKMYqMwkP0MP69omfW1D68ttp1tnkqEzNvTadf02CbbRvfNd4rqkcN7UdlToJvHRuGbXihfopNJNtJf7OEfvT4_r5Uu6ent-Xd6vUsMB-pRXosRClAYoAaEt1UQzCZkoK0ZBMloyynNigJsix5BjwqwwkDNjmcQFo3N0t_PdDEVrS2O7PuhGbYJrddgqr5363-lcrT78t8o4Y0KK0eBmbxD812Bjr1oXjR3_6KwfoiIECwqEjZTmaLGTmuBjDLY6rMGgJvBqAq8m8GoCPw5c_z3uIP8lTX8A6D6AWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218302437</pqid></control><display><type>article</type><title>The thermodynamic uncertainty relation in biochemical oscillations</title><source>MEDLINE</source><source>PubMed Central</source><creator>Marsland, 3rd, Robert ; Cui, Wenping ; Horowitz, Jordan M</creator><creatorcontrib>Marsland, 3rd, Robert ; Cui, Wenping ; Horowitz, Jordan M</creatorcontrib><description>Living systems regulate many aspects of their behaviour through periodic oscillations of molecular concentrations, which function as 'biochemical clocks.' The chemical reactions that drive these clocks are intrinsically stochastic at the molecular level, so that the duration of a full oscillation cycle is subject to random fluctuations. Their success in carrying out their biological function is thought to depend on the degree to which these fluctuations in the cycle period can be suppressed. Biochemical oscillators also require a constant supply of free energy in order to break detailed balance and maintain their cyclic dynamics. For a given free energy budget, the recently discovered 'thermodynamic uncertainty relation' yields the magnitude of period fluctuations in the most precise conceivable free-running clock. In this paper, we show that computational models of real biochemical clocks severely underperform this optimum, with fluctuations several orders of magnitude larger than the theoretical minimum. We argue that this suboptimal performance is due to the small number of internal states per molecule in these models, combined with the high level of thermodynamic force required to maintain the system in the oscillatory phase. We introduce a new model with a tunable number of internal states per molecule and confirm that it approaches the optimal precision as this number increases.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2019.0098</identifier><identifier>PMID: 31039695</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Biological Clocks ; Entropy ; Life Sciences–Physics interface ; Models, Biological ; Uncertainty</subject><ispartof>Journal of the Royal Society interface, 2019-05, Vol.16 (154), p.20190098-20190098</ispartof><rights>2019 The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-5f8d188dc03208ae3a2a49068df430943d43572c05cb7107124e8c074ce491b43</citedby><cites>FETCH-LOGICAL-c500t-5f8d188dc03208ae3a2a49068df430943d43572c05cb7107124e8c074ce491b43</cites><orcidid>0000-0002-5007-6877 ; 0000-0002-9139-0811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544898/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544898/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31039695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marsland, 3rd, Robert</creatorcontrib><creatorcontrib>Cui, Wenping</creatorcontrib><creatorcontrib>Horowitz, Jordan M</creatorcontrib><title>The thermodynamic uncertainty relation in biochemical oscillations</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>Living systems regulate many aspects of their behaviour through periodic oscillations of molecular concentrations, which function as 'biochemical clocks.' The chemical reactions that drive these clocks are intrinsically stochastic at the molecular level, so that the duration of a full oscillation cycle is subject to random fluctuations. Their success in carrying out their biological function is thought to depend on the degree to which these fluctuations in the cycle period can be suppressed. Biochemical oscillators also require a constant supply of free energy in order to break detailed balance and maintain their cyclic dynamics. For a given free energy budget, the recently discovered 'thermodynamic uncertainty relation' yields the magnitude of period fluctuations in the most precise conceivable free-running clock. In this paper, we show that computational models of real biochemical clocks severely underperform this optimum, with fluctuations several orders of magnitude larger than the theoretical minimum. We argue that this suboptimal performance is due to the small number of internal states per molecule in these models, combined with the high level of thermodynamic force required to maintain the system in the oscillatory phase. We introduce a new model with a tunable number of internal states per molecule and confirm that it approaches the optimal precision as this number increases.</description><subject>Biological Clocks</subject><subject>Entropy</subject><subject>Life Sciences–Physics interface</subject><subject>Models, Biological</subject><subject>Uncertainty</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1PwzAMhiMEYjC4ckQ9culwvtrkggQTX9IkLuMcpWlKg9pmJC3S_j2tNiY42ZZfv7YfhK4wLDBIcRuiqxYEsFzAWB6hM5wzkvIsI8eHXMgZOo_xE4DmlPNTNKMYqMwkP0MP69omfW1D68ttp1tnkqEzNvTadf02CbbRvfNd4rqkcN7UdlToJvHRuGbXihfopNJNtJf7OEfvT4_r5Uu6ent-Xd6vUsMB-pRXosRClAYoAaEt1UQzCZkoK0ZBMloyynNigJsix5BjwqwwkDNjmcQFo3N0t_PdDEVrS2O7PuhGbYJrddgqr5363-lcrT78t8o4Y0KK0eBmbxD812Bjr1oXjR3_6KwfoiIECwqEjZTmaLGTmuBjDLY6rMGgJvBqAq8m8GoCPw5c_z3uIP8lTX8A6D6AWQ</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Marsland, 3rd, Robert</creator><creator>Cui, Wenping</creator><creator>Horowitz, Jordan M</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5007-6877</orcidid><orcidid>https://orcid.org/0000-0002-9139-0811</orcidid></search><sort><creationdate>20190501</creationdate><title>The thermodynamic uncertainty relation in biochemical oscillations</title><author>Marsland, 3rd, Robert ; Cui, Wenping ; Horowitz, Jordan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-5f8d188dc03208ae3a2a49068df430943d43572c05cb7107124e8c074ce491b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological Clocks</topic><topic>Entropy</topic><topic>Life Sciences–Physics interface</topic><topic>Models, Biological</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marsland, 3rd, Robert</creatorcontrib><creatorcontrib>Cui, Wenping</creatorcontrib><creatorcontrib>Horowitz, Jordan M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marsland, 3rd, Robert</au><au>Cui, Wenping</au><au>Horowitz, Jordan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The thermodynamic uncertainty relation in biochemical oscillations</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>16</volume><issue>154</issue><spage>20190098</spage><epage>20190098</epage><pages>20190098-20190098</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Living systems regulate many aspects of their behaviour through periodic oscillations of molecular concentrations, which function as 'biochemical clocks.' The chemical reactions that drive these clocks are intrinsically stochastic at the molecular level, so that the duration of a full oscillation cycle is subject to random fluctuations. Their success in carrying out their biological function is thought to depend on the degree to which these fluctuations in the cycle period can be suppressed. Biochemical oscillators also require a constant supply of free energy in order to break detailed balance and maintain their cyclic dynamics. For a given free energy budget, the recently discovered 'thermodynamic uncertainty relation' yields the magnitude of period fluctuations in the most precise conceivable free-running clock. In this paper, we show that computational models of real biochemical clocks severely underperform this optimum, with fluctuations several orders of magnitude larger than the theoretical minimum. We argue that this suboptimal performance is due to the small number of internal states per molecule in these models, combined with the high level of thermodynamic force required to maintain the system in the oscillatory phase. We introduce a new model with a tunable number of internal states per molecule and confirm that it approaches the optimal precision as this number increases.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>31039695</pmid><doi>10.1098/rsif.2019.0098</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5007-6877</orcidid><orcidid>https://orcid.org/0000-0002-9139-0811</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2019-05, Vol.16 (154), p.20190098-20190098
issn 1742-5689
1742-5662
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544898
source MEDLINE; PubMed Central
subjects Biological Clocks
Entropy
Life Sciences–Physics interface
Models, Biological
Uncertainty
title The thermodynamic uncertainty relation in biochemical oscillations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20thermodynamic%20uncertainty%20relation%20in%20biochemical%20oscillations&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Marsland,%203rd,%20Robert&rft.date=2019-05-01&rft.volume=16&rft.issue=154&rft.spage=20190098&rft.epage=20190098&rft.pages=20190098-20190098&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2019.0098&rft_dat=%3Cproquest_pubme%3E2218302437%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218302437&rft_id=info:pmid/31039695&rfr_iscdi=true