The thermodynamic uncertainty relation in biochemical oscillations
Living systems regulate many aspects of their behaviour through periodic oscillations of molecular concentrations, which function as 'biochemical clocks.' The chemical reactions that drive these clocks are intrinsically stochastic at the molecular level, so that the duration of a full osci...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2019-05, Vol.16 (154), p.20190098-20190098 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20190098 |
---|---|
container_issue | 154 |
container_start_page | 20190098 |
container_title | Journal of the Royal Society interface |
container_volume | 16 |
creator | Marsland, 3rd, Robert Cui, Wenping Horowitz, Jordan M |
description | Living systems regulate many aspects of their behaviour through periodic oscillations of molecular concentrations, which function as 'biochemical clocks.' The chemical reactions that drive these clocks are intrinsically stochastic at the molecular level, so that the duration of a full oscillation cycle is subject to random fluctuations. Their success in carrying out their biological function is thought to depend on the degree to which these fluctuations in the cycle period can be suppressed. Biochemical oscillators also require a constant supply of free energy in order to break detailed balance and maintain their cyclic dynamics. For a given free energy budget, the recently discovered 'thermodynamic uncertainty relation' yields the magnitude of period fluctuations in the most precise conceivable free-running clock. In this paper, we show that computational models of real biochemical clocks severely underperform this optimum, with fluctuations several orders of magnitude larger than the theoretical minimum. We argue that this suboptimal performance is due to the small number of internal states per molecule in these models, combined with the high level of thermodynamic force required to maintain the system in the oscillatory phase. We introduce a new model with a tunable number of internal states per molecule and confirm that it approaches the optimal precision as this number increases. |
doi_str_mv | 10.1098/rsif.2019.0098 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2218302437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-5f8d188dc03208ae3a2a49068df430943d43572c05cb7107124e8c074ce491b43</originalsourceid><addsrcrecordid>eNpVkE1PwzAMhiMEYjC4ckQ9culwvtrkggQTX9IkLuMcpWlKg9pmJC3S_j2tNiY42ZZfv7YfhK4wLDBIcRuiqxYEsFzAWB6hM5wzkvIsI8eHXMgZOo_xE4DmlPNTNKMYqMwkP0MP69omfW1D68ttp1tnkqEzNvTadf02CbbRvfNd4rqkcN7UdlToJvHRuGbXihfopNJNtJf7OEfvT4_r5Uu6ent-Xd6vUsMB-pRXosRClAYoAaEt1UQzCZkoK0ZBMloyynNigJsix5BjwqwwkDNjmcQFo3N0t_PdDEVrS2O7PuhGbYJrddgqr5363-lcrT78t8o4Y0KK0eBmbxD812Bjr1oXjR3_6KwfoiIECwqEjZTmaLGTmuBjDLY6rMGgJvBqAq8m8GoCPw5c_z3uIP8lTX8A6D6AWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218302437</pqid></control><display><type>article</type><title>The thermodynamic uncertainty relation in biochemical oscillations</title><source>MEDLINE</source><source>PubMed Central</source><creator>Marsland, 3rd, Robert ; Cui, Wenping ; Horowitz, Jordan M</creator><creatorcontrib>Marsland, 3rd, Robert ; Cui, Wenping ; Horowitz, Jordan M</creatorcontrib><description>Living systems regulate many aspects of their behaviour through periodic oscillations of molecular concentrations, which function as 'biochemical clocks.' The chemical reactions that drive these clocks are intrinsically stochastic at the molecular level, so that the duration of a full oscillation cycle is subject to random fluctuations. Their success in carrying out their biological function is thought to depend on the degree to which these fluctuations in the cycle period can be suppressed. Biochemical oscillators also require a constant supply of free energy in order to break detailed balance and maintain their cyclic dynamics. For a given free energy budget, the recently discovered 'thermodynamic uncertainty relation' yields the magnitude of period fluctuations in the most precise conceivable free-running clock. In this paper, we show that computational models of real biochemical clocks severely underperform this optimum, with fluctuations several orders of magnitude larger than the theoretical minimum. We argue that this suboptimal performance is due to the small number of internal states per molecule in these models, combined with the high level of thermodynamic force required to maintain the system in the oscillatory phase. We introduce a new model with a tunable number of internal states per molecule and confirm that it approaches the optimal precision as this number increases.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2019.0098</identifier><identifier>PMID: 31039695</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Biological Clocks ; Entropy ; Life Sciences–Physics interface ; Models, Biological ; Uncertainty</subject><ispartof>Journal of the Royal Society interface, 2019-05, Vol.16 (154), p.20190098-20190098</ispartof><rights>2019 The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-5f8d188dc03208ae3a2a49068df430943d43572c05cb7107124e8c074ce491b43</citedby><cites>FETCH-LOGICAL-c500t-5f8d188dc03208ae3a2a49068df430943d43572c05cb7107124e8c074ce491b43</cites><orcidid>0000-0002-5007-6877 ; 0000-0002-9139-0811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544898/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544898/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31039695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marsland, 3rd, Robert</creatorcontrib><creatorcontrib>Cui, Wenping</creatorcontrib><creatorcontrib>Horowitz, Jordan M</creatorcontrib><title>The thermodynamic uncertainty relation in biochemical oscillations</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>Living systems regulate many aspects of their behaviour through periodic oscillations of molecular concentrations, which function as 'biochemical clocks.' The chemical reactions that drive these clocks are intrinsically stochastic at the molecular level, so that the duration of a full oscillation cycle is subject to random fluctuations. Their success in carrying out their biological function is thought to depend on the degree to which these fluctuations in the cycle period can be suppressed. Biochemical oscillators also require a constant supply of free energy in order to break detailed balance and maintain their cyclic dynamics. For a given free energy budget, the recently discovered 'thermodynamic uncertainty relation' yields the magnitude of period fluctuations in the most precise conceivable free-running clock. In this paper, we show that computational models of real biochemical clocks severely underperform this optimum, with fluctuations several orders of magnitude larger than the theoretical minimum. We argue that this suboptimal performance is due to the small number of internal states per molecule in these models, combined with the high level of thermodynamic force required to maintain the system in the oscillatory phase. We introduce a new model with a tunable number of internal states per molecule and confirm that it approaches the optimal precision as this number increases.</description><subject>Biological Clocks</subject><subject>Entropy</subject><subject>Life Sciences–Physics interface</subject><subject>Models, Biological</subject><subject>Uncertainty</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1PwzAMhiMEYjC4ckQ9culwvtrkggQTX9IkLuMcpWlKg9pmJC3S_j2tNiY42ZZfv7YfhK4wLDBIcRuiqxYEsFzAWB6hM5wzkvIsI8eHXMgZOo_xE4DmlPNTNKMYqMwkP0MP69omfW1D68ttp1tnkqEzNvTadf02CbbRvfNd4rqkcN7UdlToJvHRuGbXihfopNJNtJf7OEfvT4_r5Uu6ent-Xd6vUsMB-pRXosRClAYoAaEt1UQzCZkoK0ZBMloyynNigJsix5BjwqwwkDNjmcQFo3N0t_PdDEVrS2O7PuhGbYJrddgqr5363-lcrT78t8o4Y0KK0eBmbxD812Bjr1oXjR3_6KwfoiIECwqEjZTmaLGTmuBjDLY6rMGgJvBqAq8m8GoCPw5c_z3uIP8lTX8A6D6AWQ</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Marsland, 3rd, Robert</creator><creator>Cui, Wenping</creator><creator>Horowitz, Jordan M</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5007-6877</orcidid><orcidid>https://orcid.org/0000-0002-9139-0811</orcidid></search><sort><creationdate>20190501</creationdate><title>The thermodynamic uncertainty relation in biochemical oscillations</title><author>Marsland, 3rd, Robert ; Cui, Wenping ; Horowitz, Jordan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-5f8d188dc03208ae3a2a49068df430943d43572c05cb7107124e8c074ce491b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological Clocks</topic><topic>Entropy</topic><topic>Life Sciences–Physics interface</topic><topic>Models, Biological</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marsland, 3rd, Robert</creatorcontrib><creatorcontrib>Cui, Wenping</creatorcontrib><creatorcontrib>Horowitz, Jordan M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marsland, 3rd, Robert</au><au>Cui, Wenping</au><au>Horowitz, Jordan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The thermodynamic uncertainty relation in biochemical oscillations</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>16</volume><issue>154</issue><spage>20190098</spage><epage>20190098</epage><pages>20190098-20190098</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Living systems regulate many aspects of their behaviour through periodic oscillations of molecular concentrations, which function as 'biochemical clocks.' The chemical reactions that drive these clocks are intrinsically stochastic at the molecular level, so that the duration of a full oscillation cycle is subject to random fluctuations. Their success in carrying out their biological function is thought to depend on the degree to which these fluctuations in the cycle period can be suppressed. Biochemical oscillators also require a constant supply of free energy in order to break detailed balance and maintain their cyclic dynamics. For a given free energy budget, the recently discovered 'thermodynamic uncertainty relation' yields the magnitude of period fluctuations in the most precise conceivable free-running clock. In this paper, we show that computational models of real biochemical clocks severely underperform this optimum, with fluctuations several orders of magnitude larger than the theoretical minimum. We argue that this suboptimal performance is due to the small number of internal states per molecule in these models, combined with the high level of thermodynamic force required to maintain the system in the oscillatory phase. We introduce a new model with a tunable number of internal states per molecule and confirm that it approaches the optimal precision as this number increases.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>31039695</pmid><doi>10.1098/rsif.2019.0098</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5007-6877</orcidid><orcidid>https://orcid.org/0000-0002-9139-0811</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5689 |
ispartof | Journal of the Royal Society interface, 2019-05, Vol.16 (154), p.20190098-20190098 |
issn | 1742-5689 1742-5662 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544898 |
source | MEDLINE; PubMed Central |
subjects | Biological Clocks Entropy Life Sciences–Physics interface Models, Biological Uncertainty |
title | The thermodynamic uncertainty relation in biochemical oscillations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20thermodynamic%20uncertainty%20relation%20in%20biochemical%20oscillations&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Marsland,%203rd,%20Robert&rft.date=2019-05-01&rft.volume=16&rft.issue=154&rft.spage=20190098&rft.epage=20190098&rft.pages=20190098-20190098&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2019.0098&rft_dat=%3Cproquest_pubme%3E2218302437%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218302437&rft_id=info:pmid/31039695&rfr_iscdi=true |