Excitatory versus inhibitory feedback in Bayesian formulations of scene construction

The selective attention for identification model (SAIM) is an established model of selective visual attention. SAIM implements translation-invariant object recognition, in scenes with multiple objects, using the parallel distributed processing (PDP) paradigm. Here, we show that SAIM can be formulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2019-05, Vol.16 (154), p.20180344
Hauptverfasser: Abadi, Alireza Khatoon, Yahya, Keyvan, Amini, Massoud, Friston, Karl, Heinke, Dietmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 154
container_start_page 20180344
container_title Journal of the Royal Society interface
container_volume 16
creator Abadi, Alireza Khatoon
Yahya, Keyvan
Amini, Massoud
Friston, Karl
Heinke, Dietmar
description The selective attention for identification model (SAIM) is an established model of selective visual attention. SAIM implements translation-invariant object recognition, in scenes with multiple objects, using the parallel distributed processing (PDP) paradigm. Here, we show that SAIM can be formulated as Bayesian inference. Crucially, SAIM uses excitatory feedback to combine top-down information (i.e. object knowledge) with bottom-up sensory information. By contrast, predictive coding implementations of Bayesian inference use inhibitory feedback. By formulating SAIM as a predictive coding scheme, we created a new version of SAIM that uses inhibitory feedback. Simulation studies showed that both types of architectures can reproduce the response time costs induced by multiple objects-as found in visual search experiments. However, due to the different nature of the feedback, the two SAIM schemes make distinct predictions about the motifs of microcircuits mediating the effects of top-down afferents. We discuss empirical (neuroimaging) methods to test the predictions of the two inference architectures.
doi_str_mv 10.1098/rsif.2018.0344
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2218302417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-239bfe9e7c4fcfa88abf52150d07c0ef425c2a8dcfd06c98a4d1ce88d48ea0193</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCIlsKVI8qRS4KfiX1Bgqo8pEpcytlyHJsa0rjYSUX_noSWCk5ez87OPgaASwQzBAW_CdHZDEPEM0goPQJjVFCcsjzHx4eYixE4i_EdQlIQxk7BiCBIRC7IGCxmX9q1qvVhm2xMiF1MXLN0pftBrDFVqfRHjyX3amuiU01ifVh1tWqdb2LibRK1aUyi-18bOj3A5-DEqjqai_07Aa8Ps8X0KZ2_PD5P7-apZoS1KSaitEaYQlOrreJclZZhxGAFCw2NpZhprHilbQVzLbiiFdKG84pyoyASZAJud7rrrlyZqp-jDaqW6-BWKmylV07-zzRuKd_8RuaMUi6KXuB6LxD8Z2diK1euX6euVWN8FyXGiBOIKRqo2Y6qg48xGHtog6AcrJCDFXKwQg5W9AVXf4c70H9vT74BrQqJTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218302417</pqid></control><display><type>article</type><title>Excitatory versus inhibitory feedback in Bayesian formulations of scene construction</title><source>MEDLINE</source><source>PubMed Central</source><creator>Abadi, Alireza Khatoon ; Yahya, Keyvan ; Amini, Massoud ; Friston, Karl ; Heinke, Dietmar</creator><creatorcontrib>Abadi, Alireza Khatoon ; Yahya, Keyvan ; Amini, Massoud ; Friston, Karl ; Heinke, Dietmar</creatorcontrib><description>The selective attention for identification model (SAIM) is an established model of selective visual attention. SAIM implements translation-invariant object recognition, in scenes with multiple objects, using the parallel distributed processing (PDP) paradigm. Here, we show that SAIM can be formulated as Bayesian inference. Crucially, SAIM uses excitatory feedback to combine top-down information (i.e. object knowledge) with bottom-up sensory information. By contrast, predictive coding implementations of Bayesian inference use inhibitory feedback. By formulating SAIM as a predictive coding scheme, we created a new version of SAIM that uses inhibitory feedback. Simulation studies showed that both types of architectures can reproduce the response time costs induced by multiple objects-as found in visual search experiments. However, due to the different nature of the feedback, the two SAIM schemes make distinct predictions about the motifs of microcircuits mediating the effects of top-down afferents. We discuss empirical (neuroimaging) methods to test the predictions of the two inference architectures.</description><identifier>ISSN: 1742-5689</identifier><identifier>ISSN: 1742-5662</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2018.0344</identifier><identifier>PMID: 31039693</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Bayes Theorem ; Feedback ; Humans ; Life Sciences–Mathematics interface ; Models, Neurological ; Visual Perception - physiology</subject><ispartof>Journal of the Royal Society interface, 2019-05, Vol.16 (154), p.20180344</ispartof><rights>2019 The Authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-239bfe9e7c4fcfa88abf52150d07c0ef425c2a8dcfd06c98a4d1ce88d48ea0193</citedby><cites>FETCH-LOGICAL-c535t-239bfe9e7c4fcfa88abf52150d07c0ef425c2a8dcfd06c98a4d1ce88d48ea0193</cites><orcidid>0000-0002-9253-5859 ; 0000-0003-3632-7569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544897/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544897/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31039693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abadi, Alireza Khatoon</creatorcontrib><creatorcontrib>Yahya, Keyvan</creatorcontrib><creatorcontrib>Amini, Massoud</creatorcontrib><creatorcontrib>Friston, Karl</creatorcontrib><creatorcontrib>Heinke, Dietmar</creatorcontrib><title>Excitatory versus inhibitory feedback in Bayesian formulations of scene construction</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>The selective attention for identification model (SAIM) is an established model of selective visual attention. SAIM implements translation-invariant object recognition, in scenes with multiple objects, using the parallel distributed processing (PDP) paradigm. Here, we show that SAIM can be formulated as Bayesian inference. Crucially, SAIM uses excitatory feedback to combine top-down information (i.e. object knowledge) with bottom-up sensory information. By contrast, predictive coding implementations of Bayesian inference use inhibitory feedback. By formulating SAIM as a predictive coding scheme, we created a new version of SAIM that uses inhibitory feedback. Simulation studies showed that both types of architectures can reproduce the response time costs induced by multiple objects-as found in visual search experiments. However, due to the different nature of the feedback, the two SAIM schemes make distinct predictions about the motifs of microcircuits mediating the effects of top-down afferents. We discuss empirical (neuroimaging) methods to test the predictions of the two inference architectures.</description><subject>Bayes Theorem</subject><subject>Feedback</subject><subject>Humans</subject><subject>Life Sciences–Mathematics interface</subject><subject>Models, Neurological</subject><subject>Visual Perception - physiology</subject><issn>1742-5689</issn><issn>1742-5662</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctOwzAQtBCIlsKVI8qRS4KfiX1Bgqo8pEpcytlyHJsa0rjYSUX_noSWCk5ez87OPgaASwQzBAW_CdHZDEPEM0goPQJjVFCcsjzHx4eYixE4i_EdQlIQxk7BiCBIRC7IGCxmX9q1qvVhm2xMiF1MXLN0pftBrDFVqfRHjyX3amuiU01ifVh1tWqdb2LibRK1aUyi-18bOj3A5-DEqjqai_07Aa8Ps8X0KZ2_PD5P7-apZoS1KSaitEaYQlOrreJclZZhxGAFCw2NpZhprHilbQVzLbiiFdKG84pyoyASZAJud7rrrlyZqp-jDaqW6-BWKmylV07-zzRuKd_8RuaMUi6KXuB6LxD8Z2diK1euX6euVWN8FyXGiBOIKRqo2Y6qg48xGHtog6AcrJCDFXKwQg5W9AVXf4c70H9vT74BrQqJTA</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Abadi, Alireza Khatoon</creator><creator>Yahya, Keyvan</creator><creator>Amini, Massoud</creator><creator>Friston, Karl</creator><creator>Heinke, Dietmar</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9253-5859</orcidid><orcidid>https://orcid.org/0000-0003-3632-7569</orcidid></search><sort><creationdate>20190501</creationdate><title>Excitatory versus inhibitory feedback in Bayesian formulations of scene construction</title><author>Abadi, Alireza Khatoon ; Yahya, Keyvan ; Amini, Massoud ; Friston, Karl ; Heinke, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-239bfe9e7c4fcfa88abf52150d07c0ef425c2a8dcfd06c98a4d1ce88d48ea0193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayes Theorem</topic><topic>Feedback</topic><topic>Humans</topic><topic>Life Sciences–Mathematics interface</topic><topic>Models, Neurological</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abadi, Alireza Khatoon</creatorcontrib><creatorcontrib>Yahya, Keyvan</creatorcontrib><creatorcontrib>Amini, Massoud</creatorcontrib><creatorcontrib>Friston, Karl</creatorcontrib><creatorcontrib>Heinke, Dietmar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abadi, Alireza Khatoon</au><au>Yahya, Keyvan</au><au>Amini, Massoud</au><au>Friston, Karl</au><au>Heinke, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitatory versus inhibitory feedback in Bayesian formulations of scene construction</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>16</volume><issue>154</issue><spage>20180344</spage><pages>20180344-</pages><issn>1742-5689</issn><issn>1742-5662</issn><eissn>1742-5662</eissn><abstract>The selective attention for identification model (SAIM) is an established model of selective visual attention. SAIM implements translation-invariant object recognition, in scenes with multiple objects, using the parallel distributed processing (PDP) paradigm. Here, we show that SAIM can be formulated as Bayesian inference. Crucially, SAIM uses excitatory feedback to combine top-down information (i.e. object knowledge) with bottom-up sensory information. By contrast, predictive coding implementations of Bayesian inference use inhibitory feedback. By formulating SAIM as a predictive coding scheme, we created a new version of SAIM that uses inhibitory feedback. Simulation studies showed that both types of architectures can reproduce the response time costs induced by multiple objects-as found in visual search experiments. However, due to the different nature of the feedback, the two SAIM schemes make distinct predictions about the motifs of microcircuits mediating the effects of top-down afferents. We discuss empirical (neuroimaging) methods to test the predictions of the two inference architectures.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>31039693</pmid><doi>10.1098/rsif.2018.0344</doi><orcidid>https://orcid.org/0000-0002-9253-5859</orcidid><orcidid>https://orcid.org/0000-0003-3632-7569</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2019-05, Vol.16 (154), p.20180344
issn 1742-5689
1742-5662
1742-5662
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544897
source MEDLINE; PubMed Central
subjects Bayes Theorem
Feedback
Humans
Life Sciences–Mathematics interface
Models, Neurological
Visual Perception - physiology
title Excitatory versus inhibitory feedback in Bayesian formulations of scene construction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitatory%20versus%20inhibitory%20feedback%20in%20Bayesian%20formulations%20of%20scene%20construction&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Abadi,%20Alireza%20Khatoon&rft.date=2019-05-01&rft.volume=16&rft.issue=154&rft.spage=20180344&rft.pages=20180344-&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2018.0344&rft_dat=%3Cproquest_pubme%3E2218302417%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218302417&rft_id=info:pmid/31039693&rfr_iscdi=true