Excitatory versus inhibitory feedback in Bayesian formulations of scene construction
The selective attention for identification model (SAIM) is an established model of selective visual attention. SAIM implements translation-invariant object recognition, in scenes with multiple objects, using the parallel distributed processing (PDP) paradigm. Here, we show that SAIM can be formulate...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2019-05, Vol.16 (154), p.20180344 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 154 |
container_start_page | 20180344 |
container_title | Journal of the Royal Society interface |
container_volume | 16 |
creator | Abadi, Alireza Khatoon Yahya, Keyvan Amini, Massoud Friston, Karl Heinke, Dietmar |
description | The selective attention for identification model (SAIM) is an established model of selective visual attention. SAIM implements translation-invariant object recognition, in scenes with multiple objects, using the parallel distributed processing (PDP) paradigm. Here, we show that SAIM can be formulated as Bayesian inference. Crucially, SAIM uses excitatory feedback to combine top-down information (i.e. object knowledge) with bottom-up sensory information. By contrast, predictive coding implementations of Bayesian inference use inhibitory feedback. By formulating SAIM as a predictive coding scheme, we created a new version of SAIM that uses inhibitory feedback. Simulation studies showed that both types of architectures can reproduce the response time costs induced by multiple objects-as found in visual search experiments. However, due to the different nature of the feedback, the two SAIM schemes make distinct predictions about the motifs of microcircuits mediating the effects of top-down afferents. We discuss empirical (neuroimaging) methods to test the predictions of the two inference architectures. |
doi_str_mv | 10.1098/rsif.2018.0344 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2218302417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-239bfe9e7c4fcfa88abf52150d07c0ef425c2a8dcfd06c98a4d1ce88d48ea0193</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCIlsKVI8qRS4KfiX1Bgqo8pEpcytlyHJsa0rjYSUX_noSWCk5ez87OPgaASwQzBAW_CdHZDEPEM0goPQJjVFCcsjzHx4eYixE4i_EdQlIQxk7BiCBIRC7IGCxmX9q1qvVhm2xMiF1MXLN0pftBrDFVqfRHjyX3amuiU01ifVh1tWqdb2LibRK1aUyi-18bOj3A5-DEqjqai_07Aa8Ps8X0KZ2_PD5P7-apZoS1KSaitEaYQlOrreJclZZhxGAFCw2NpZhprHilbQVzLbiiFdKG84pyoyASZAJud7rrrlyZqp-jDaqW6-BWKmylV07-zzRuKd_8RuaMUi6KXuB6LxD8Z2diK1euX6euVWN8FyXGiBOIKRqo2Y6qg48xGHtog6AcrJCDFXKwQg5W9AVXf4c70H9vT74BrQqJTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218302417</pqid></control><display><type>article</type><title>Excitatory versus inhibitory feedback in Bayesian formulations of scene construction</title><source>MEDLINE</source><source>PubMed Central</source><creator>Abadi, Alireza Khatoon ; Yahya, Keyvan ; Amini, Massoud ; Friston, Karl ; Heinke, Dietmar</creator><creatorcontrib>Abadi, Alireza Khatoon ; Yahya, Keyvan ; Amini, Massoud ; Friston, Karl ; Heinke, Dietmar</creatorcontrib><description>The selective attention for identification model (SAIM) is an established model of selective visual attention. SAIM implements translation-invariant object recognition, in scenes with multiple objects, using the parallel distributed processing (PDP) paradigm. Here, we show that SAIM can be formulated as Bayesian inference. Crucially, SAIM uses excitatory feedback to combine top-down information (i.e. object knowledge) with bottom-up sensory information. By contrast, predictive coding implementations of Bayesian inference use inhibitory feedback. By formulating SAIM as a predictive coding scheme, we created a new version of SAIM that uses inhibitory feedback. Simulation studies showed that both types of architectures can reproduce the response time costs induced by multiple objects-as found in visual search experiments. However, due to the different nature of the feedback, the two SAIM schemes make distinct predictions about the motifs of microcircuits mediating the effects of top-down afferents. We discuss empirical (neuroimaging) methods to test the predictions of the two inference architectures.</description><identifier>ISSN: 1742-5689</identifier><identifier>ISSN: 1742-5662</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2018.0344</identifier><identifier>PMID: 31039693</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Bayes Theorem ; Feedback ; Humans ; Life Sciences–Mathematics interface ; Models, Neurological ; Visual Perception - physiology</subject><ispartof>Journal of the Royal Society interface, 2019-05, Vol.16 (154), p.20180344</ispartof><rights>2019 The Authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-239bfe9e7c4fcfa88abf52150d07c0ef425c2a8dcfd06c98a4d1ce88d48ea0193</citedby><cites>FETCH-LOGICAL-c535t-239bfe9e7c4fcfa88abf52150d07c0ef425c2a8dcfd06c98a4d1ce88d48ea0193</cites><orcidid>0000-0002-9253-5859 ; 0000-0003-3632-7569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544897/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544897/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31039693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abadi, Alireza Khatoon</creatorcontrib><creatorcontrib>Yahya, Keyvan</creatorcontrib><creatorcontrib>Amini, Massoud</creatorcontrib><creatorcontrib>Friston, Karl</creatorcontrib><creatorcontrib>Heinke, Dietmar</creatorcontrib><title>Excitatory versus inhibitory feedback in Bayesian formulations of scene construction</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>The selective attention for identification model (SAIM) is an established model of selective visual attention. SAIM implements translation-invariant object recognition, in scenes with multiple objects, using the parallel distributed processing (PDP) paradigm. Here, we show that SAIM can be formulated as Bayesian inference. Crucially, SAIM uses excitatory feedback to combine top-down information (i.e. object knowledge) with bottom-up sensory information. By contrast, predictive coding implementations of Bayesian inference use inhibitory feedback. By formulating SAIM as a predictive coding scheme, we created a new version of SAIM that uses inhibitory feedback. Simulation studies showed that both types of architectures can reproduce the response time costs induced by multiple objects-as found in visual search experiments. However, due to the different nature of the feedback, the two SAIM schemes make distinct predictions about the motifs of microcircuits mediating the effects of top-down afferents. We discuss empirical (neuroimaging) methods to test the predictions of the two inference architectures.</description><subject>Bayes Theorem</subject><subject>Feedback</subject><subject>Humans</subject><subject>Life Sciences–Mathematics interface</subject><subject>Models, Neurological</subject><subject>Visual Perception - physiology</subject><issn>1742-5689</issn><issn>1742-5662</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctOwzAQtBCIlsKVI8qRS4KfiX1Bgqo8pEpcytlyHJsa0rjYSUX_noSWCk5ez87OPgaASwQzBAW_CdHZDEPEM0goPQJjVFCcsjzHx4eYixE4i_EdQlIQxk7BiCBIRC7IGCxmX9q1qvVhm2xMiF1MXLN0pftBrDFVqfRHjyX3amuiU01ifVh1tWqdb2LibRK1aUyi-18bOj3A5-DEqjqai_07Aa8Ps8X0KZ2_PD5P7-apZoS1KSaitEaYQlOrreJclZZhxGAFCw2NpZhprHilbQVzLbiiFdKG84pyoyASZAJud7rrrlyZqp-jDaqW6-BWKmylV07-zzRuKd_8RuaMUi6KXuB6LxD8Z2diK1euX6euVWN8FyXGiBOIKRqo2Y6qg48xGHtog6AcrJCDFXKwQg5W9AVXf4c70H9vT74BrQqJTA</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Abadi, Alireza Khatoon</creator><creator>Yahya, Keyvan</creator><creator>Amini, Massoud</creator><creator>Friston, Karl</creator><creator>Heinke, Dietmar</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9253-5859</orcidid><orcidid>https://orcid.org/0000-0003-3632-7569</orcidid></search><sort><creationdate>20190501</creationdate><title>Excitatory versus inhibitory feedback in Bayesian formulations of scene construction</title><author>Abadi, Alireza Khatoon ; Yahya, Keyvan ; Amini, Massoud ; Friston, Karl ; Heinke, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-239bfe9e7c4fcfa88abf52150d07c0ef425c2a8dcfd06c98a4d1ce88d48ea0193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayes Theorem</topic><topic>Feedback</topic><topic>Humans</topic><topic>Life Sciences–Mathematics interface</topic><topic>Models, Neurological</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abadi, Alireza Khatoon</creatorcontrib><creatorcontrib>Yahya, Keyvan</creatorcontrib><creatorcontrib>Amini, Massoud</creatorcontrib><creatorcontrib>Friston, Karl</creatorcontrib><creatorcontrib>Heinke, Dietmar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abadi, Alireza Khatoon</au><au>Yahya, Keyvan</au><au>Amini, Massoud</au><au>Friston, Karl</au><au>Heinke, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitatory versus inhibitory feedback in Bayesian formulations of scene construction</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>16</volume><issue>154</issue><spage>20180344</spage><pages>20180344-</pages><issn>1742-5689</issn><issn>1742-5662</issn><eissn>1742-5662</eissn><abstract>The selective attention for identification model (SAIM) is an established model of selective visual attention. SAIM implements translation-invariant object recognition, in scenes with multiple objects, using the parallel distributed processing (PDP) paradigm. Here, we show that SAIM can be formulated as Bayesian inference. Crucially, SAIM uses excitatory feedback to combine top-down information (i.e. object knowledge) with bottom-up sensory information. By contrast, predictive coding implementations of Bayesian inference use inhibitory feedback. By formulating SAIM as a predictive coding scheme, we created a new version of SAIM that uses inhibitory feedback. Simulation studies showed that both types of architectures can reproduce the response time costs induced by multiple objects-as found in visual search experiments. However, due to the different nature of the feedback, the two SAIM schemes make distinct predictions about the motifs of microcircuits mediating the effects of top-down afferents. We discuss empirical (neuroimaging) methods to test the predictions of the two inference architectures.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>31039693</pmid><doi>10.1098/rsif.2018.0344</doi><orcidid>https://orcid.org/0000-0002-9253-5859</orcidid><orcidid>https://orcid.org/0000-0003-3632-7569</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5689 |
ispartof | Journal of the Royal Society interface, 2019-05, Vol.16 (154), p.20180344 |
issn | 1742-5689 1742-5662 1742-5662 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544897 |
source | MEDLINE; PubMed Central |
subjects | Bayes Theorem Feedback Humans Life Sciences–Mathematics interface Models, Neurological Visual Perception - physiology |
title | Excitatory versus inhibitory feedback in Bayesian formulations of scene construction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitatory%20versus%20inhibitory%20feedback%20in%20Bayesian%20formulations%20of%20scene%20construction&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Abadi,%20Alireza%20Khatoon&rft.date=2019-05-01&rft.volume=16&rft.issue=154&rft.spage=20180344&rft.pages=20180344-&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2018.0344&rft_dat=%3Cproquest_pubme%3E2218302417%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218302417&rft_id=info:pmid/31039693&rfr_iscdi=true |