Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system

Understanding the molecular pathogenesis of Clostridioides difficile has relied on the use of ermB -based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-05, Vol.9 (1), p.8123, Article 8123
Hauptverfasser: Ingle, Patrick, Groothuis, Daphne, Rowe, Peter, Huang, He, Cockayne, Alan, Kuehne, Sarah A., Jiang, Weihong, Gu, Yang, Humphreys, Christopher M., Minton, Nigel P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 8123
container_title Scientific reports
container_volume 9
creator Ingle, Patrick
Groothuis, Daphne
Rowe, Peter
Huang, He
Cockayne, Alan
Kuehne, Sarah A.
Jiang, Weihong
Gu, Yang
Humphreys, Christopher M.
Minton, Nigel P.
description Understanding the molecular pathogenesis of Clostridioides difficile has relied on the use of ermB -based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, including virulence. CRISPR-Cas9 allows the direct selection of mutants, reducing the number of subcultures and thereby minimising the likelihood of acquiring additional mutations. Accordingly, CRISPR-Cas9 was used to sequentially remove from the C . difficile 630 reference strain (NCTC 13307) two ermB genes and pyrE . The genomes of the strains generated (630Δ erm * and 630Δ erm *Δ pyrE , respectively) contained no ancillary mutations compared to the NCTC 13307 parental strain, making these strains the preferred option where erythromycin-sensitive 630 strains are required. Intriguingly, the cas9 gene of the plasmid used contained a proximal frameshift mutation. Despite this, the frequency of mutant isolation was high (96% and 89% for ermB and pyrE , respectively) indicating that a functional Cas9 is still being produced. Re-initiation of translation from an internal AUG start codon would produce a foreshortened protein lacking a RuvCI nucleolytic domain, effectively a ‘nickase’. The mutation allowed cas9 to be cloned downstream of the strong P thl promoter. It may find application elsewhere where the use of strong, constitutive promoters is preferred.
doi_str_mv 10.1038/s41598-019-44458-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233077247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-c654adb60213e543b7fd6e7a47a194c7ec9f65522ecd5c7d5cec1fc578546da03</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxQdRbKn9Ai4k4MZNNH8nMxtBhloLBaXqOuQlN68pM0lNZh7Myq9u-l6t1YWBkIT7u-fmcJrmJSVvKeHduyKo7DtMaI-FELLD65PmmBEhMeOMPX10P2pOS7khdUnWC9o_b444paKTojtufp5DhGzmkCJKHhnkl3FcEeR1vs5pWm2IuEAsYQ47QGXOJuzBYUz1EVxIwUFBLngfbBgBLSXEbdWJaQcjGq4uvn65woMpPdpCTBMgcFWrImUtM0wvmmfejAVO78-T5vvHs2_DJ3z5-fxi-HCJraR0xraVwrhNSxjlIAXfKO9aUEYoQ3thFdjet1IyBtZJq-oGS72VqrpsnSH8pHl_0L1dNhM4C7FaGfVtDpPJq04m6L8rMVzrbdrpOliolleBN_cCOf1YoMx6CsXCOJoIaSmaMc47IUmvKvr6H_QmLTlWe3uKKMXEHcUOlM2plAz-4TOU6LuI9SFiXSPW-4j1WptePbbx0PI70ArwA1BqKW4h_5n9H9lfs9a1KA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233077247</pqid></control><display><type>article</type><title>Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Ingle, Patrick ; Groothuis, Daphne ; Rowe, Peter ; Huang, He ; Cockayne, Alan ; Kuehne, Sarah A. ; Jiang, Weihong ; Gu, Yang ; Humphreys, Christopher M. ; Minton, Nigel P.</creator><creatorcontrib>Ingle, Patrick ; Groothuis, Daphne ; Rowe, Peter ; Huang, He ; Cockayne, Alan ; Kuehne, Sarah A. ; Jiang, Weihong ; Gu, Yang ; Humphreys, Christopher M. ; Minton, Nigel P.</creatorcontrib><description>Understanding the molecular pathogenesis of Clostridioides difficile has relied on the use of ermB -based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, including virulence. CRISPR-Cas9 allows the direct selection of mutants, reducing the number of subcultures and thereby minimising the likelihood of acquiring additional mutations. Accordingly, CRISPR-Cas9 was used to sequentially remove from the C . difficile 630 reference strain (NCTC 13307) two ermB genes and pyrE . The genomes of the strains generated (630Δ erm * and 630Δ erm *Δ pyrE , respectively) contained no ancillary mutations compared to the NCTC 13307 parental strain, making these strains the preferred option where erythromycin-sensitive 630 strains are required. Intriguingly, the cas9 gene of the plasmid used contained a proximal frameshift mutation. Despite this, the frequency of mutant isolation was high (96% and 89% for ermB and pyrE , respectively) indicating that a functional Cas9 is still being produced. Re-initiation of translation from an internal AUG start codon would produce a foreshortened protein lacking a RuvCI nucleolytic domain, effectively a ‘nickase’. The mutation allowed cas9 to be cloned downstream of the strong P thl promoter. It may find application elsewhere where the use of strong, constitutive promoters is preferred.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-44458-y</identifier><identifier>PMID: 31148548</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 45/70 ; 45/77 ; 631/326/325 ; 631/326/421 ; Antibiotics ; Clostridioides difficile - drug effects ; Clostridioides difficile - genetics ; Codon, Initiator ; CRISPR ; CRISPR-Cas Systems ; Culture Media ; Erythromycin ; Erythromycin - pharmacology ; Escherichia coli ; Frameshift Mutation ; Gene Deletion ; Gene Editing ; Genetic Vectors ; Genome editing ; Genome, Bacterial ; Genomes ; Humanities and Social Sciences ; Methyltransferases - genetics ; multidisciplinary ; Mutagenesis ; Mutagens ; Mutation ; Phenotype ; Phenotypes ; Plasmids - genetics ; Polymerase Chain Reaction ; Promoter Regions, Genetic ; Science ; Science (multidisciplinary) ; Translation initiation ; Virulence</subject><ispartof>Scientific reports, 2019-05, Vol.9 (1), p.8123, Article 8123</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-c654adb60213e543b7fd6e7a47a194c7ec9f65522ecd5c7d5cec1fc578546da03</citedby><cites>FETCH-LOGICAL-c511t-c654adb60213e543b7fd6e7a47a194c7ec9f65522ecd5c7d5cec1fc578546da03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544763/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544763/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31148548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ingle, Patrick</creatorcontrib><creatorcontrib>Groothuis, Daphne</creatorcontrib><creatorcontrib>Rowe, Peter</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><creatorcontrib>Cockayne, Alan</creatorcontrib><creatorcontrib>Kuehne, Sarah A.</creatorcontrib><creatorcontrib>Jiang, Weihong</creatorcontrib><creatorcontrib>Gu, Yang</creatorcontrib><creatorcontrib>Humphreys, Christopher M.</creatorcontrib><creatorcontrib>Minton, Nigel P.</creatorcontrib><title>Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Understanding the molecular pathogenesis of Clostridioides difficile has relied on the use of ermB -based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, including virulence. CRISPR-Cas9 allows the direct selection of mutants, reducing the number of subcultures and thereby minimising the likelihood of acquiring additional mutations. Accordingly, CRISPR-Cas9 was used to sequentially remove from the C . difficile 630 reference strain (NCTC 13307) two ermB genes and pyrE . The genomes of the strains generated (630Δ erm * and 630Δ erm *Δ pyrE , respectively) contained no ancillary mutations compared to the NCTC 13307 parental strain, making these strains the preferred option where erythromycin-sensitive 630 strains are required. Intriguingly, the cas9 gene of the plasmid used contained a proximal frameshift mutation. Despite this, the frequency of mutant isolation was high (96% and 89% for ermB and pyrE , respectively) indicating that a functional Cas9 is still being produced. Re-initiation of translation from an internal AUG start codon would produce a foreshortened protein lacking a RuvCI nucleolytic domain, effectively a ‘nickase’. The mutation allowed cas9 to be cloned downstream of the strong P thl promoter. It may find application elsewhere where the use of strong, constitutive promoters is preferred.</description><subject>45/23</subject><subject>45/70</subject><subject>45/77</subject><subject>631/326/325</subject><subject>631/326/421</subject><subject>Antibiotics</subject><subject>Clostridioides difficile - drug effects</subject><subject>Clostridioides difficile - genetics</subject><subject>Codon, Initiator</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Culture Media</subject><subject>Erythromycin</subject><subject>Erythromycin - pharmacology</subject><subject>Escherichia coli</subject><subject>Frameshift Mutation</subject><subject>Gene Deletion</subject><subject>Gene Editing</subject><subject>Genetic Vectors</subject><subject>Genome editing</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Methyltransferases - genetics</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutagens</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Plasmids - genetics</subject><subject>Polymerase Chain Reaction</subject><subject>Promoter Regions, Genetic</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Translation initiation</subject><subject>Virulence</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9rFTEUxQdRbKn9Ai4k4MZNNH8nMxtBhloLBaXqOuQlN68pM0lNZh7Myq9u-l6t1YWBkIT7u-fmcJrmJSVvKeHduyKo7DtMaI-FELLD65PmmBEhMeOMPX10P2pOS7khdUnWC9o_b444paKTojtufp5DhGzmkCJKHhnkl3FcEeR1vs5pWm2IuEAsYQ47QGXOJuzBYUz1EVxIwUFBLngfbBgBLSXEbdWJaQcjGq4uvn65woMpPdpCTBMgcFWrImUtM0wvmmfejAVO78-T5vvHs2_DJ3z5-fxi-HCJraR0xraVwrhNSxjlIAXfKO9aUEYoQ3thFdjet1IyBtZJq-oGS72VqrpsnSH8pHl_0L1dNhM4C7FaGfVtDpPJq04m6L8rMVzrbdrpOliolleBN_cCOf1YoMx6CsXCOJoIaSmaMc47IUmvKvr6H_QmLTlWe3uKKMXEHcUOlM2plAz-4TOU6LuI9SFiXSPW-4j1WptePbbx0PI70ArwA1BqKW4h_5n9H9lfs9a1KA</recordid><startdate>20190531</startdate><enddate>20190531</enddate><creator>Ingle, Patrick</creator><creator>Groothuis, Daphne</creator><creator>Rowe, Peter</creator><creator>Huang, He</creator><creator>Cockayne, Alan</creator><creator>Kuehne, Sarah A.</creator><creator>Jiang, Weihong</creator><creator>Gu, Yang</creator><creator>Humphreys, Christopher M.</creator><creator>Minton, Nigel P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190531</creationdate><title>Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system</title><author>Ingle, Patrick ; Groothuis, Daphne ; Rowe, Peter ; Huang, He ; Cockayne, Alan ; Kuehne, Sarah A. ; Jiang, Weihong ; Gu, Yang ; Humphreys, Christopher M. ; Minton, Nigel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-c654adb60213e543b7fd6e7a47a194c7ec9f65522ecd5c7d5cec1fc578546da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>45/23</topic><topic>45/70</topic><topic>45/77</topic><topic>631/326/325</topic><topic>631/326/421</topic><topic>Antibiotics</topic><topic>Clostridioides difficile - drug effects</topic><topic>Clostridioides difficile - genetics</topic><topic>Codon, Initiator</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Culture Media</topic><topic>Erythromycin</topic><topic>Erythromycin - pharmacology</topic><topic>Escherichia coli</topic><topic>Frameshift Mutation</topic><topic>Gene Deletion</topic><topic>Gene Editing</topic><topic>Genetic Vectors</topic><topic>Genome editing</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Methyltransferases - genetics</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutagens</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Plasmids - genetics</topic><topic>Polymerase Chain Reaction</topic><topic>Promoter Regions, Genetic</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Translation initiation</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ingle, Patrick</creatorcontrib><creatorcontrib>Groothuis, Daphne</creatorcontrib><creatorcontrib>Rowe, Peter</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><creatorcontrib>Cockayne, Alan</creatorcontrib><creatorcontrib>Kuehne, Sarah A.</creatorcontrib><creatorcontrib>Jiang, Weihong</creatorcontrib><creatorcontrib>Gu, Yang</creatorcontrib><creatorcontrib>Humphreys, Christopher M.</creatorcontrib><creatorcontrib>Minton, Nigel P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ingle, Patrick</au><au>Groothuis, Daphne</au><au>Rowe, Peter</au><au>Huang, He</au><au>Cockayne, Alan</au><au>Kuehne, Sarah A.</au><au>Jiang, Weihong</au><au>Gu, Yang</au><au>Humphreys, Christopher M.</au><au>Minton, Nigel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-05-31</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>8123</spage><pages>8123-</pages><artnum>8123</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Understanding the molecular pathogenesis of Clostridioides difficile has relied on the use of ermB -based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, including virulence. CRISPR-Cas9 allows the direct selection of mutants, reducing the number of subcultures and thereby minimising the likelihood of acquiring additional mutations. Accordingly, CRISPR-Cas9 was used to sequentially remove from the C . difficile 630 reference strain (NCTC 13307) two ermB genes and pyrE . The genomes of the strains generated (630Δ erm * and 630Δ erm *Δ pyrE , respectively) contained no ancillary mutations compared to the NCTC 13307 parental strain, making these strains the preferred option where erythromycin-sensitive 630 strains are required. Intriguingly, the cas9 gene of the plasmid used contained a proximal frameshift mutation. Despite this, the frequency of mutant isolation was high (96% and 89% for ermB and pyrE , respectively) indicating that a functional Cas9 is still being produced. Re-initiation of translation from an internal AUG start codon would produce a foreshortened protein lacking a RuvCI nucleolytic domain, effectively a ‘nickase’. The mutation allowed cas9 to be cloned downstream of the strong P thl promoter. It may find application elsewhere where the use of strong, constitutive promoters is preferred.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31148548</pmid><doi>10.1038/s41598-019-44458-y</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-05, Vol.9 (1), p.8123, Article 8123
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544763
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 45/23
45/70
45/77
631/326/325
631/326/421
Antibiotics
Clostridioides difficile - drug effects
Clostridioides difficile - genetics
Codon, Initiator
CRISPR
CRISPR-Cas Systems
Culture Media
Erythromycin
Erythromycin - pharmacology
Escherichia coli
Frameshift Mutation
Gene Deletion
Gene Editing
Genetic Vectors
Genome editing
Genome, Bacterial
Genomes
Humanities and Social Sciences
Methyltransferases - genetics
multidisciplinary
Mutagenesis
Mutagens
Mutation
Phenotype
Phenotypes
Plasmids - genetics
Polymerase Chain Reaction
Promoter Regions, Genetic
Science
Science (multidisciplinary)
Translation initiation
Virulence
title Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20a%20fully%20erythromycin-sensitive%20strain%20of%20Clostridioides%20difficile%20using%20a%20novel%20CRISPR-Cas9%20genome%20editing%20system&rft.jtitle=Scientific%20reports&rft.au=Ingle,%20Patrick&rft.date=2019-05-31&rft.volume=9&rft.issue=1&rft.spage=8123&rft.pages=8123-&rft.artnum=8123&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-44458-y&rft_dat=%3Cproquest_pubme%3E2233077247%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233077247&rft_id=info:pmid/31148548&rfr_iscdi=true