Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system
Understanding the molecular pathogenesis of Clostridioides difficile has relied on the use of ermB -based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, inc...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-05, Vol.9 (1), p.8123, Article 8123 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 8123 |
container_title | Scientific reports |
container_volume | 9 |
creator | Ingle, Patrick Groothuis, Daphne Rowe, Peter Huang, He Cockayne, Alan Kuehne, Sarah A. Jiang, Weihong Gu, Yang Humphreys, Christopher M. Minton, Nigel P. |
description | Understanding the molecular pathogenesis of
Clostridioides difficile
has relied on the use of
ermB
-based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, including virulence. CRISPR-Cas9 allows the direct selection of mutants, reducing the number of subcultures and thereby minimising the likelihood of acquiring additional mutations. Accordingly, CRISPR-Cas9 was used to sequentially remove from the
C
.
difficile
630 reference strain (NCTC 13307) two
ermB
genes and
pyrE
. The genomes of the strains generated (630Δ
erm
* and 630Δ
erm
*Δ
pyrE
, respectively) contained no ancillary mutations compared to the NCTC 13307 parental strain, making these strains the preferred option where erythromycin-sensitive 630 strains are required. Intriguingly, the
cas9
gene of the plasmid used contained a proximal frameshift mutation. Despite this, the frequency of mutant isolation was high (96% and 89% for
ermB
and
pyrE
, respectively) indicating that a functional Cas9 is still being produced. Re-initiation of translation from an internal AUG start codon would produce a foreshortened protein lacking a RuvCI nucleolytic domain, effectively a ‘nickase’. The mutation allowed
cas9
to be cloned downstream of the strong P
thl
promoter. It may find application elsewhere where the use of strong, constitutive promoters is preferred. |
doi_str_mv | 10.1038/s41598-019-44458-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233077247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-c654adb60213e543b7fd6e7a47a194c7ec9f65522ecd5c7d5cec1fc578546da03</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxQdRbKn9Ai4k4MZNNH8nMxtBhloLBaXqOuQlN68pM0lNZh7Myq9u-l6t1YWBkIT7u-fmcJrmJSVvKeHduyKo7DtMaI-FELLD65PmmBEhMeOMPX10P2pOS7khdUnWC9o_b444paKTojtufp5DhGzmkCJKHhnkl3FcEeR1vs5pWm2IuEAsYQ47QGXOJuzBYUz1EVxIwUFBLngfbBgBLSXEbdWJaQcjGq4uvn65woMpPdpCTBMgcFWrImUtM0wvmmfejAVO78-T5vvHs2_DJ3z5-fxi-HCJraR0xraVwrhNSxjlIAXfKO9aUEYoQ3thFdjet1IyBtZJq-oGS72VqrpsnSH8pHl_0L1dNhM4C7FaGfVtDpPJq04m6L8rMVzrbdrpOliolleBN_cCOf1YoMx6CsXCOJoIaSmaMc47IUmvKvr6H_QmLTlWe3uKKMXEHcUOlM2plAz-4TOU6LuI9SFiXSPW-4j1WptePbbx0PI70ArwA1BqKW4h_5n9H9lfs9a1KA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233077247</pqid></control><display><type>article</type><title>Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Ingle, Patrick ; Groothuis, Daphne ; Rowe, Peter ; Huang, He ; Cockayne, Alan ; Kuehne, Sarah A. ; Jiang, Weihong ; Gu, Yang ; Humphreys, Christopher M. ; Minton, Nigel P.</creator><creatorcontrib>Ingle, Patrick ; Groothuis, Daphne ; Rowe, Peter ; Huang, He ; Cockayne, Alan ; Kuehne, Sarah A. ; Jiang, Weihong ; Gu, Yang ; Humphreys, Christopher M. ; Minton, Nigel P.</creatorcontrib><description>Understanding the molecular pathogenesis of
Clostridioides difficile
has relied on the use of
ermB
-based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, including virulence. CRISPR-Cas9 allows the direct selection of mutants, reducing the number of subcultures and thereby minimising the likelihood of acquiring additional mutations. Accordingly, CRISPR-Cas9 was used to sequentially remove from the
C
.
difficile
630 reference strain (NCTC 13307) two
ermB
genes and
pyrE
. The genomes of the strains generated (630Δ
erm
* and 630Δ
erm
*Δ
pyrE
, respectively) contained no ancillary mutations compared to the NCTC 13307 parental strain, making these strains the preferred option where erythromycin-sensitive 630 strains are required. Intriguingly, the
cas9
gene of the plasmid used contained a proximal frameshift mutation. Despite this, the frequency of mutant isolation was high (96% and 89% for
ermB
and
pyrE
, respectively) indicating that a functional Cas9 is still being produced. Re-initiation of translation from an internal AUG start codon would produce a foreshortened protein lacking a RuvCI nucleolytic domain, effectively a ‘nickase’. The mutation allowed
cas9
to be cloned downstream of the strong P
thl
promoter. It may find application elsewhere where the use of strong, constitutive promoters is preferred.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-44458-y</identifier><identifier>PMID: 31148548</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 45/70 ; 45/77 ; 631/326/325 ; 631/326/421 ; Antibiotics ; Clostridioides difficile - drug effects ; Clostridioides difficile - genetics ; Codon, Initiator ; CRISPR ; CRISPR-Cas Systems ; Culture Media ; Erythromycin ; Erythromycin - pharmacology ; Escherichia coli ; Frameshift Mutation ; Gene Deletion ; Gene Editing ; Genetic Vectors ; Genome editing ; Genome, Bacterial ; Genomes ; Humanities and Social Sciences ; Methyltransferases - genetics ; multidisciplinary ; Mutagenesis ; Mutagens ; Mutation ; Phenotype ; Phenotypes ; Plasmids - genetics ; Polymerase Chain Reaction ; Promoter Regions, Genetic ; Science ; Science (multidisciplinary) ; Translation initiation ; Virulence</subject><ispartof>Scientific reports, 2019-05, Vol.9 (1), p.8123, Article 8123</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-c654adb60213e543b7fd6e7a47a194c7ec9f65522ecd5c7d5cec1fc578546da03</citedby><cites>FETCH-LOGICAL-c511t-c654adb60213e543b7fd6e7a47a194c7ec9f65522ecd5c7d5cec1fc578546da03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544763/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544763/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31148548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ingle, Patrick</creatorcontrib><creatorcontrib>Groothuis, Daphne</creatorcontrib><creatorcontrib>Rowe, Peter</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><creatorcontrib>Cockayne, Alan</creatorcontrib><creatorcontrib>Kuehne, Sarah A.</creatorcontrib><creatorcontrib>Jiang, Weihong</creatorcontrib><creatorcontrib>Gu, Yang</creatorcontrib><creatorcontrib>Humphreys, Christopher M.</creatorcontrib><creatorcontrib>Minton, Nigel P.</creatorcontrib><title>Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Understanding the molecular pathogenesis of
Clostridioides difficile
has relied on the use of
ermB
-based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, including virulence. CRISPR-Cas9 allows the direct selection of mutants, reducing the number of subcultures and thereby minimising the likelihood of acquiring additional mutations. Accordingly, CRISPR-Cas9 was used to sequentially remove from the
C
.
difficile
630 reference strain (NCTC 13307) two
ermB
genes and
pyrE
. The genomes of the strains generated (630Δ
erm
* and 630Δ
erm
*Δ
pyrE
, respectively) contained no ancillary mutations compared to the NCTC 13307 parental strain, making these strains the preferred option where erythromycin-sensitive 630 strains are required. Intriguingly, the
cas9
gene of the plasmid used contained a proximal frameshift mutation. Despite this, the frequency of mutant isolation was high (96% and 89% for
ermB
and
pyrE
, respectively) indicating that a functional Cas9 is still being produced. Re-initiation of translation from an internal AUG start codon would produce a foreshortened protein lacking a RuvCI nucleolytic domain, effectively a ‘nickase’. The mutation allowed
cas9
to be cloned downstream of the strong P
thl
promoter. It may find application elsewhere where the use of strong, constitutive promoters is preferred.</description><subject>45/23</subject><subject>45/70</subject><subject>45/77</subject><subject>631/326/325</subject><subject>631/326/421</subject><subject>Antibiotics</subject><subject>Clostridioides difficile - drug effects</subject><subject>Clostridioides difficile - genetics</subject><subject>Codon, Initiator</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Culture Media</subject><subject>Erythromycin</subject><subject>Erythromycin - pharmacology</subject><subject>Escherichia coli</subject><subject>Frameshift Mutation</subject><subject>Gene Deletion</subject><subject>Gene Editing</subject><subject>Genetic Vectors</subject><subject>Genome editing</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Methyltransferases - genetics</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutagens</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Plasmids - genetics</subject><subject>Polymerase Chain Reaction</subject><subject>Promoter Regions, Genetic</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Translation initiation</subject><subject>Virulence</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9rFTEUxQdRbKn9Ai4k4MZNNH8nMxtBhloLBaXqOuQlN68pM0lNZh7Myq9u-l6t1YWBkIT7u-fmcJrmJSVvKeHduyKo7DtMaI-FELLD65PmmBEhMeOMPX10P2pOS7khdUnWC9o_b444paKTojtufp5DhGzmkCJKHhnkl3FcEeR1vs5pWm2IuEAsYQ47QGXOJuzBYUz1EVxIwUFBLngfbBgBLSXEbdWJaQcjGq4uvn65woMpPdpCTBMgcFWrImUtM0wvmmfejAVO78-T5vvHs2_DJ3z5-fxi-HCJraR0xraVwrhNSxjlIAXfKO9aUEYoQ3thFdjet1IyBtZJq-oGS72VqrpsnSH8pHl_0L1dNhM4C7FaGfVtDpPJq04m6L8rMVzrbdrpOliolleBN_cCOf1YoMx6CsXCOJoIaSmaMc47IUmvKvr6H_QmLTlWe3uKKMXEHcUOlM2plAz-4TOU6LuI9SFiXSPW-4j1WptePbbx0PI70ArwA1BqKW4h_5n9H9lfs9a1KA</recordid><startdate>20190531</startdate><enddate>20190531</enddate><creator>Ingle, Patrick</creator><creator>Groothuis, Daphne</creator><creator>Rowe, Peter</creator><creator>Huang, He</creator><creator>Cockayne, Alan</creator><creator>Kuehne, Sarah A.</creator><creator>Jiang, Weihong</creator><creator>Gu, Yang</creator><creator>Humphreys, Christopher M.</creator><creator>Minton, Nigel P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190531</creationdate><title>Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system</title><author>Ingle, Patrick ; Groothuis, Daphne ; Rowe, Peter ; Huang, He ; Cockayne, Alan ; Kuehne, Sarah A. ; Jiang, Weihong ; Gu, Yang ; Humphreys, Christopher M. ; Minton, Nigel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-c654adb60213e543b7fd6e7a47a194c7ec9f65522ecd5c7d5cec1fc578546da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>45/23</topic><topic>45/70</topic><topic>45/77</topic><topic>631/326/325</topic><topic>631/326/421</topic><topic>Antibiotics</topic><topic>Clostridioides difficile - drug effects</topic><topic>Clostridioides difficile - genetics</topic><topic>Codon, Initiator</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Culture Media</topic><topic>Erythromycin</topic><topic>Erythromycin - pharmacology</topic><topic>Escherichia coli</topic><topic>Frameshift Mutation</topic><topic>Gene Deletion</topic><topic>Gene Editing</topic><topic>Genetic Vectors</topic><topic>Genome editing</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Methyltransferases - genetics</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutagens</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Plasmids - genetics</topic><topic>Polymerase Chain Reaction</topic><topic>Promoter Regions, Genetic</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Translation initiation</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ingle, Patrick</creatorcontrib><creatorcontrib>Groothuis, Daphne</creatorcontrib><creatorcontrib>Rowe, Peter</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><creatorcontrib>Cockayne, Alan</creatorcontrib><creatorcontrib>Kuehne, Sarah A.</creatorcontrib><creatorcontrib>Jiang, Weihong</creatorcontrib><creatorcontrib>Gu, Yang</creatorcontrib><creatorcontrib>Humphreys, Christopher M.</creatorcontrib><creatorcontrib>Minton, Nigel P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ingle, Patrick</au><au>Groothuis, Daphne</au><au>Rowe, Peter</au><au>Huang, He</au><au>Cockayne, Alan</au><au>Kuehne, Sarah A.</au><au>Jiang, Weihong</au><au>Gu, Yang</au><au>Humphreys, Christopher M.</au><au>Minton, Nigel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-05-31</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>8123</spage><pages>8123-</pages><artnum>8123</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Understanding the molecular pathogenesis of
Clostridioides difficile
has relied on the use of
ermB
-based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, including virulence. CRISPR-Cas9 allows the direct selection of mutants, reducing the number of subcultures and thereby minimising the likelihood of acquiring additional mutations. Accordingly, CRISPR-Cas9 was used to sequentially remove from the
C
.
difficile
630 reference strain (NCTC 13307) two
ermB
genes and
pyrE
. The genomes of the strains generated (630Δ
erm
* and 630Δ
erm
*Δ
pyrE
, respectively) contained no ancillary mutations compared to the NCTC 13307 parental strain, making these strains the preferred option where erythromycin-sensitive 630 strains are required. Intriguingly, the
cas9
gene of the plasmid used contained a proximal frameshift mutation. Despite this, the frequency of mutant isolation was high (96% and 89% for
ermB
and
pyrE
, respectively) indicating that a functional Cas9 is still being produced. Re-initiation of translation from an internal AUG start codon would produce a foreshortened protein lacking a RuvCI nucleolytic domain, effectively a ‘nickase’. The mutation allowed
cas9
to be cloned downstream of the strong P
thl
promoter. It may find application elsewhere where the use of strong, constitutive promoters is preferred.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31148548</pmid><doi>10.1038/s41598-019-44458-y</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-05, Vol.9 (1), p.8123, Article 8123 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6544763 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 45/23 45/70 45/77 631/326/325 631/326/421 Antibiotics Clostridioides difficile - drug effects Clostridioides difficile - genetics Codon, Initiator CRISPR CRISPR-Cas Systems Culture Media Erythromycin Erythromycin - pharmacology Escherichia coli Frameshift Mutation Gene Deletion Gene Editing Genetic Vectors Genome editing Genome, Bacterial Genomes Humanities and Social Sciences Methyltransferases - genetics multidisciplinary Mutagenesis Mutagens Mutation Phenotype Phenotypes Plasmids - genetics Polymerase Chain Reaction Promoter Regions, Genetic Science Science (multidisciplinary) Translation initiation Virulence |
title | Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20a%20fully%20erythromycin-sensitive%20strain%20of%20Clostridioides%20difficile%20using%20a%20novel%20CRISPR-Cas9%20genome%20editing%20system&rft.jtitle=Scientific%20reports&rft.au=Ingle,%20Patrick&rft.date=2019-05-31&rft.volume=9&rft.issue=1&rft.spage=8123&rft.pages=8123-&rft.artnum=8123&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-44458-y&rft_dat=%3Cproquest_pubme%3E2233077247%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233077247&rft_id=info:pmid/31148548&rfr_iscdi=true |