Platform for "Chemical Metabolic Switching" to Increase Sesquiterpene Content in Plants
The biosynthetic pathway of cytosolic isoprenoids bifurcates after farnesyl diphosphate into sesquiterpene and triterpene pathways. "Metabolic switching" has been used to increase sesquiterpene content in plants by suppressing the competitive triterpene pathway using transgenic technology....
Gespeichert in:
Veröffentlicht in: | Plant Biotechnology 2017/03/31, Vol.34(1), pp.65-69 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Plant Biotechnology |
container_volume | 34 |
creator | Kobayashi, Keiko Kobayashi, Kanako Yamaguchi, Haruhiko Inoue, Yukino Miyagi Takagi, Keiji Fushihara, Kazuhisa Seki, Hikaru Suzuki, Masashi Nagata, Noriko Muranaka, Toshiya |
description | The biosynthetic pathway of cytosolic isoprenoids bifurcates after farnesyl diphosphate into sesquiterpene and triterpene pathways. "Metabolic switching" has been used to increase sesquiterpene content in plants by suppressing the competitive triterpene pathway using transgenic technology. To develop "metabolic switching" without using transgenic technology, we developed a model system of "chemical metabolic switching" using inhibitors of the competitive pathway. Arabidopsis plants that overexpress the amorpha-4,11-diene synthase gene were treated with squalestatin, a squalene synthase inhibitor, or terbinafine, a squalene epoxidase inhibitor. We then analyzed total sterol content as major triterpenes and amorpha-4,11-diene in the plant. Plants treated with squalestatin showed decreased total sterol content and increased amorpha-4,11-diene content. In contrast, plants treated with terbinafine showed decreased total sterol content, but amorpha-4,11-diene accumulation was quite low. These results suggest that inhibition of the enzyme just below the branch point is more effective than inhibition of enzymes far from the branch point for "chemical metabolic switching". In addition, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme of the cytosolic isoprenoid biosynthetic pathway, was upregulated in plants treated with squalestatin, suggesting that feedback regulation of 3-hydroxy-3-methylglutaryl-CoA reductase may contribute to amorpha-4,11-diene production. Here we demonstrated the effectiveness of "chemical metabolic switching" in plants. |
doi_str_mv | 10.5511/plantbiotechnology.17.0114a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6543698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253280977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c681t-b9086f355efbff46f645b6ff6f9540e5447ece7084fa5db5b6937bd79c32a63a3</originalsourceid><addsrcrecordid>eNptkV1rFDEUhgdRbK3-BQntjTezJpOvGQRBFquFipUqXoZM9mQny2yyTTKW_nuzHy5-3ZwknOe8OS9vVV0QPOOckNebUfvcu5DBDD6MYfkwI3KGCWH6UXVKKJO1KI_Hu3tTM97ik-pZSiuMG05w87Q6oaSRHBN8Wn2_GXW2Ia5RKeh8PsDaGT2iT5B1H0Zn0O29y2ZwfnmOckBX3kTQCdAtpLvJZYgb8IDmwWfwGTmPbrbrpefVE6vHBC8O51n17fL91_nH-vrzh6v5u-vaiJbkuu9wKyzlHGxvLRNWMN4La4XtOMPAGZNgQOKWWc0Xfel1VPYL2RnaaEE1Pave7nU3U7-GhSlLRD2qTXRrHR9U0E792fFuUMvwQwnOqOjaIvDqIBDD3QQpq7VLBsbiAsKUVNNw2rS4k7KgF3-hqzBFX-wp0raMSiHlVvDNnjIxpBTBHpchWG0DVP8GqIhUuwDL9Mvf_RxnfyVWgC97YJWyXsIR0DE7M8L_xClTZFcOnxxZM-iowNOfkPy9jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884376778</pqid></control><display><type>article</type><title>Platform for "Chemical Metabolic Switching" to Increase Sesquiterpene Content in Plants</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kobayashi, Keiko ; Kobayashi, Kanako ; Yamaguchi, Haruhiko ; Inoue, Yukino Miyagi ; Takagi, Keiji ; Fushihara, Kazuhisa ; Seki, Hikaru ; Suzuki, Masashi ; Nagata, Noriko ; Muranaka, Toshiya</creator><creatorcontrib>Kobayashi, Keiko ; Kobayashi, Kanako ; Yamaguchi, Haruhiko ; Inoue, Yukino Miyagi ; Takagi, Keiji ; Fushihara, Kazuhisa ; Seki, Hikaru ; Suzuki, Masashi ; Nagata, Noriko ; Muranaka, Toshiya</creatorcontrib><description>The biosynthetic pathway of cytosolic isoprenoids bifurcates after farnesyl diphosphate into sesquiterpene and triterpene pathways. "Metabolic switching" has been used to increase sesquiterpene content in plants by suppressing the competitive triterpene pathway using transgenic technology. To develop "metabolic switching" without using transgenic technology, we developed a model system of "chemical metabolic switching" using inhibitors of the competitive pathway. Arabidopsis plants that overexpress the amorpha-4,11-diene synthase gene were treated with squalestatin, a squalene synthase inhibitor, or terbinafine, a squalene epoxidase inhibitor. We then analyzed total sterol content as major triterpenes and amorpha-4,11-diene in the plant. Plants treated with squalestatin showed decreased total sterol content and increased amorpha-4,11-diene content. In contrast, plants treated with terbinafine showed decreased total sterol content, but amorpha-4,11-diene accumulation was quite low. These results suggest that inhibition of the enzyme just below the branch point is more effective than inhibition of enzymes far from the branch point for "chemical metabolic switching". In addition, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme of the cytosolic isoprenoid biosynthetic pathway, was upregulated in plants treated with squalestatin, suggesting that feedback regulation of 3-hydroxy-3-methylglutaryl-CoA reductase may contribute to amorpha-4,11-diene production. Here we demonstrated the effectiveness of "chemical metabolic switching" in plants.</description><identifier>ISSN: 1342-4580</identifier><identifier>EISSN: 1347-6114</identifier><identifier>DOI: 10.5511/plantbiotechnology.17.0114a</identifier><identifier>PMID: 31275010</identifier><language>eng</language><publisher>Japan: Japanese Society for Plant Cell and Molecular Biology</publisher><subject>Artemisia ; Bifurcations ; chemical metabolic switching ; Enzymes ; Feedback ; Inhibition ; Inhibitors ; isoprenoid ; Metabolism ; mevalonate pathway ; Plants (botany) ; Reductase ; Squalene ; Squalene epoxidase ; Squalene epoxidase inhibitor ; squalestatin ; Sterols ; Switching ; Technology utilization ; Terbinafine ; Terpenes ; Transgenic plants ; Triterpenes</subject><ispartof>Plant Biotechnology, 2017/03/31, Vol.34(1), pp.65-69</ispartof><rights>2017 by Japanese Society for Plant Cell and Molecular Biology</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><rights>2017 The Japanese Society for Plant Cell and Molecular Biology 2017 The Japanese Society for Plant Cell and Molecular Biology</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c681t-b9086f355efbff46f645b6ff6f9540e5447ece7084fa5db5b6937bd79c32a63a3</citedby><cites>FETCH-LOGICAL-c681t-b9086f355efbff46f645b6ff6f9540e5447ece7084fa5db5b6937bd79c32a63a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543698/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543698/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1876,4009,27902,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31275010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kobayashi, Keiko</creatorcontrib><creatorcontrib>Kobayashi, Kanako</creatorcontrib><creatorcontrib>Yamaguchi, Haruhiko</creatorcontrib><creatorcontrib>Inoue, Yukino Miyagi</creatorcontrib><creatorcontrib>Takagi, Keiji</creatorcontrib><creatorcontrib>Fushihara, Kazuhisa</creatorcontrib><creatorcontrib>Seki, Hikaru</creatorcontrib><creatorcontrib>Suzuki, Masashi</creatorcontrib><creatorcontrib>Nagata, Noriko</creatorcontrib><creatorcontrib>Muranaka, Toshiya</creatorcontrib><title>Platform for "Chemical Metabolic Switching" to Increase Sesquiterpene Content in Plants</title><title>Plant Biotechnology</title><addtitle>Plant Biotechnol (Tokyo)</addtitle><description>The biosynthetic pathway of cytosolic isoprenoids bifurcates after farnesyl diphosphate into sesquiterpene and triterpene pathways. "Metabolic switching" has been used to increase sesquiterpene content in plants by suppressing the competitive triterpene pathway using transgenic technology. To develop "metabolic switching" without using transgenic technology, we developed a model system of "chemical metabolic switching" using inhibitors of the competitive pathway. Arabidopsis plants that overexpress the amorpha-4,11-diene synthase gene were treated with squalestatin, a squalene synthase inhibitor, or terbinafine, a squalene epoxidase inhibitor. We then analyzed total sterol content as major triterpenes and amorpha-4,11-diene in the plant. Plants treated with squalestatin showed decreased total sterol content and increased amorpha-4,11-diene content. In contrast, plants treated with terbinafine showed decreased total sterol content, but amorpha-4,11-diene accumulation was quite low. These results suggest that inhibition of the enzyme just below the branch point is more effective than inhibition of enzymes far from the branch point for "chemical metabolic switching". In addition, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme of the cytosolic isoprenoid biosynthetic pathway, was upregulated in plants treated with squalestatin, suggesting that feedback regulation of 3-hydroxy-3-methylglutaryl-CoA reductase may contribute to amorpha-4,11-diene production. Here we demonstrated the effectiveness of "chemical metabolic switching" in plants.</description><subject>Artemisia</subject><subject>Bifurcations</subject><subject>chemical metabolic switching</subject><subject>Enzymes</subject><subject>Feedback</subject><subject>Inhibition</subject><subject>Inhibitors</subject><subject>isoprenoid</subject><subject>Metabolism</subject><subject>mevalonate pathway</subject><subject>Plants (botany)</subject><subject>Reductase</subject><subject>Squalene</subject><subject>Squalene epoxidase</subject><subject>Squalene epoxidase inhibitor</subject><subject>squalestatin</subject><subject>Sterols</subject><subject>Switching</subject><subject>Technology utilization</subject><subject>Terbinafine</subject><subject>Terpenes</subject><subject>Transgenic plants</subject><subject>Triterpenes</subject><issn>1342-4580</issn><issn>1347-6114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkV1rFDEUhgdRbK3-BQntjTezJpOvGQRBFquFipUqXoZM9mQny2yyTTKW_nuzHy5-3ZwknOe8OS9vVV0QPOOckNebUfvcu5DBDD6MYfkwI3KGCWH6UXVKKJO1KI_Hu3tTM97ik-pZSiuMG05w87Q6oaSRHBN8Wn2_GXW2Ia5RKeh8PsDaGT2iT5B1H0Zn0O29y2ZwfnmOckBX3kTQCdAtpLvJZYgb8IDmwWfwGTmPbrbrpefVE6vHBC8O51n17fL91_nH-vrzh6v5u-vaiJbkuu9wKyzlHGxvLRNWMN4La4XtOMPAGZNgQOKWWc0Xfel1VPYL2RnaaEE1Pave7nU3U7-GhSlLRD2qTXRrHR9U0E792fFuUMvwQwnOqOjaIvDqIBDD3QQpq7VLBsbiAsKUVNNw2rS4k7KgF3-hqzBFX-wp0raMSiHlVvDNnjIxpBTBHpchWG0DVP8GqIhUuwDL9Mvf_RxnfyVWgC97YJWyXsIR0DE7M8L_xClTZFcOnxxZM-iowNOfkPy9jw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Kobayashi, Keiko</creator><creator>Kobayashi, Kanako</creator><creator>Yamaguchi, Haruhiko</creator><creator>Inoue, Yukino Miyagi</creator><creator>Takagi, Keiji</creator><creator>Fushihara, Kazuhisa</creator><creator>Seki, Hikaru</creator><creator>Suzuki, Masashi</creator><creator>Nagata, Noriko</creator><creator>Muranaka, Toshiya</creator><general>Japanese Society for Plant Cell and Molecular Biology</general><general>Japan Science and Technology Agency</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2017</creationdate><title>Platform for "Chemical Metabolic Switching" to Increase Sesquiterpene Content in Plants</title><author>Kobayashi, Keiko ; Kobayashi, Kanako ; Yamaguchi, Haruhiko ; Inoue, Yukino Miyagi ; Takagi, Keiji ; Fushihara, Kazuhisa ; Seki, Hikaru ; Suzuki, Masashi ; Nagata, Noriko ; Muranaka, Toshiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c681t-b9086f355efbff46f645b6ff6f9540e5447ece7084fa5db5b6937bd79c32a63a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artemisia</topic><topic>Bifurcations</topic><topic>chemical metabolic switching</topic><topic>Enzymes</topic><topic>Feedback</topic><topic>Inhibition</topic><topic>Inhibitors</topic><topic>isoprenoid</topic><topic>Metabolism</topic><topic>mevalonate pathway</topic><topic>Plants (botany)</topic><topic>Reductase</topic><topic>Squalene</topic><topic>Squalene epoxidase</topic><topic>Squalene epoxidase inhibitor</topic><topic>squalestatin</topic><topic>Sterols</topic><topic>Switching</topic><topic>Technology utilization</topic><topic>Terbinafine</topic><topic>Terpenes</topic><topic>Transgenic plants</topic><topic>Triterpenes</topic><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Keiko</creatorcontrib><creatorcontrib>Kobayashi, Kanako</creatorcontrib><creatorcontrib>Yamaguchi, Haruhiko</creatorcontrib><creatorcontrib>Inoue, Yukino Miyagi</creatorcontrib><creatorcontrib>Takagi, Keiji</creatorcontrib><creatorcontrib>Fushihara, Kazuhisa</creatorcontrib><creatorcontrib>Seki, Hikaru</creatorcontrib><creatorcontrib>Suzuki, Masashi</creatorcontrib><creatorcontrib>Nagata, Noriko</creatorcontrib><creatorcontrib>Muranaka, Toshiya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant Biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Keiko</au><au>Kobayashi, Kanako</au><au>Yamaguchi, Haruhiko</au><au>Inoue, Yukino Miyagi</au><au>Takagi, Keiji</au><au>Fushihara, Kazuhisa</au><au>Seki, Hikaru</au><au>Suzuki, Masashi</au><au>Nagata, Noriko</au><au>Muranaka, Toshiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Platform for "Chemical Metabolic Switching" to Increase Sesquiterpene Content in Plants</atitle><jtitle>Plant Biotechnology</jtitle><addtitle>Plant Biotechnol (Tokyo)</addtitle><date>2017</date><risdate>2017</risdate><volume>34</volume><issue>1</issue><spage>65</spage><epage>69</epage><pages>65-69</pages><issn>1342-4580</issn><eissn>1347-6114</eissn><abstract>The biosynthetic pathway of cytosolic isoprenoids bifurcates after farnesyl diphosphate into sesquiterpene and triterpene pathways. "Metabolic switching" has been used to increase sesquiterpene content in plants by suppressing the competitive triterpene pathway using transgenic technology. To develop "metabolic switching" without using transgenic technology, we developed a model system of "chemical metabolic switching" using inhibitors of the competitive pathway. Arabidopsis plants that overexpress the amorpha-4,11-diene synthase gene were treated with squalestatin, a squalene synthase inhibitor, or terbinafine, a squalene epoxidase inhibitor. We then analyzed total sterol content as major triterpenes and amorpha-4,11-diene in the plant. Plants treated with squalestatin showed decreased total sterol content and increased amorpha-4,11-diene content. In contrast, plants treated with terbinafine showed decreased total sterol content, but amorpha-4,11-diene accumulation was quite low. These results suggest that inhibition of the enzyme just below the branch point is more effective than inhibition of enzymes far from the branch point for "chemical metabolic switching". In addition, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme of the cytosolic isoprenoid biosynthetic pathway, was upregulated in plants treated with squalestatin, suggesting that feedback regulation of 3-hydroxy-3-methylglutaryl-CoA reductase may contribute to amorpha-4,11-diene production. Here we demonstrated the effectiveness of "chemical metabolic switching" in plants.</abstract><cop>Japan</cop><pub>Japanese Society for Plant Cell and Molecular Biology</pub><pmid>31275010</pmid><doi>10.5511/plantbiotechnology.17.0114a</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1342-4580 |
ispartof | Plant Biotechnology, 2017/03/31, Vol.34(1), pp.65-69 |
issn | 1342-4580 1347-6114 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6543698 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Artemisia Bifurcations chemical metabolic switching Enzymes Feedback Inhibition Inhibitors isoprenoid Metabolism mevalonate pathway Plants (botany) Reductase Squalene Squalene epoxidase Squalene epoxidase inhibitor squalestatin Sterols Switching Technology utilization Terbinafine Terpenes Transgenic plants Triterpenes |
title | Platform for "Chemical Metabolic Switching" to Increase Sesquiterpene Content in Plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Platform%20for%20%22Chemical%20Metabolic%20Switching%22%20to%20Increase%20Sesquiterpene%20Content%20in%20Plants&rft.jtitle=Plant%20Biotechnology&rft.au=Kobayashi,%20Keiko&rft.date=2017&rft.volume=34&rft.issue=1&rft.spage=65&rft.epage=69&rft.pages=65-69&rft.issn=1342-4580&rft.eissn=1347-6114&rft_id=info:doi/10.5511/plantbiotechnology.17.0114a&rft_dat=%3Cproquest_pubme%3E2253280977%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884376778&rft_id=info:pmid/31275010&rfr_iscdi=true |