Platform for "Chemical Metabolic Switching" to Increase Sesquiterpene Content in Plants

The biosynthetic pathway of cytosolic isoprenoids bifurcates after farnesyl diphosphate into sesquiterpene and triterpene pathways. "Metabolic switching" has been used to increase sesquiterpene content in plants by suppressing the competitive triterpene pathway using transgenic technology....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant Biotechnology 2017/03/31, Vol.34(1), pp.65-69
Hauptverfasser: Kobayashi, Keiko, Kobayashi, Kanako, Yamaguchi, Haruhiko, Inoue, Yukino Miyagi, Takagi, Keiji, Fushihara, Kazuhisa, Seki, Hikaru, Suzuki, Masashi, Nagata, Noriko, Muranaka, Toshiya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 65
container_title Plant Biotechnology
container_volume 34
creator Kobayashi, Keiko
Kobayashi, Kanako
Yamaguchi, Haruhiko
Inoue, Yukino Miyagi
Takagi, Keiji
Fushihara, Kazuhisa
Seki, Hikaru
Suzuki, Masashi
Nagata, Noriko
Muranaka, Toshiya
description The biosynthetic pathway of cytosolic isoprenoids bifurcates after farnesyl diphosphate into sesquiterpene and triterpene pathways. "Metabolic switching" has been used to increase sesquiterpene content in plants by suppressing the competitive triterpene pathway using transgenic technology. To develop "metabolic switching" without using transgenic technology, we developed a model system of "chemical metabolic switching" using inhibitors of the competitive pathway. Arabidopsis plants that overexpress the amorpha-4,11-diene synthase gene were treated with squalestatin, a squalene synthase inhibitor, or terbinafine, a squalene epoxidase inhibitor. We then analyzed total sterol content as major triterpenes and amorpha-4,11-diene in the plant. Plants treated with squalestatin showed decreased total sterol content and increased amorpha-4,11-diene content. In contrast, plants treated with terbinafine showed decreased total sterol content, but amorpha-4,11-diene accumulation was quite low. These results suggest that inhibition of the enzyme just below the branch point is more effective than inhibition of enzymes far from the branch point for "chemical metabolic switching". In addition, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme of the cytosolic isoprenoid biosynthetic pathway, was upregulated in plants treated with squalestatin, suggesting that feedback regulation of 3-hydroxy-3-methylglutaryl-CoA reductase may contribute to amorpha-4,11-diene production. Here we demonstrated the effectiveness of "chemical metabolic switching" in plants.
doi_str_mv 10.5511/plantbiotechnology.17.0114a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6543698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253280977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c681t-b9086f355efbff46f645b6ff6f9540e5447ece7084fa5db5b6937bd79c32a63a3</originalsourceid><addsrcrecordid>eNptkV1rFDEUhgdRbK3-BQntjTezJpOvGQRBFquFipUqXoZM9mQny2yyTTKW_nuzHy5-3ZwknOe8OS9vVV0QPOOckNebUfvcu5DBDD6MYfkwI3KGCWH6UXVKKJO1KI_Hu3tTM97ik-pZSiuMG05w87Q6oaSRHBN8Wn2_GXW2Ia5RKeh8PsDaGT2iT5B1H0Zn0O29y2ZwfnmOckBX3kTQCdAtpLvJZYgb8IDmwWfwGTmPbrbrpefVE6vHBC8O51n17fL91_nH-vrzh6v5u-vaiJbkuu9wKyzlHGxvLRNWMN4La4XtOMPAGZNgQOKWWc0Xfel1VPYL2RnaaEE1Pave7nU3U7-GhSlLRD2qTXRrHR9U0E792fFuUMvwQwnOqOjaIvDqIBDD3QQpq7VLBsbiAsKUVNNw2rS4k7KgF3-hqzBFX-wp0raMSiHlVvDNnjIxpBTBHpchWG0DVP8GqIhUuwDL9Mvf_RxnfyVWgC97YJWyXsIR0DE7M8L_xClTZFcOnxxZM-iowNOfkPy9jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884376778</pqid></control><display><type>article</type><title>Platform for "Chemical Metabolic Switching" to Increase Sesquiterpene Content in Plants</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kobayashi, Keiko ; Kobayashi, Kanako ; Yamaguchi, Haruhiko ; Inoue, Yukino Miyagi ; Takagi, Keiji ; Fushihara, Kazuhisa ; Seki, Hikaru ; Suzuki, Masashi ; Nagata, Noriko ; Muranaka, Toshiya</creator><creatorcontrib>Kobayashi, Keiko ; Kobayashi, Kanako ; Yamaguchi, Haruhiko ; Inoue, Yukino Miyagi ; Takagi, Keiji ; Fushihara, Kazuhisa ; Seki, Hikaru ; Suzuki, Masashi ; Nagata, Noriko ; Muranaka, Toshiya</creatorcontrib><description>The biosynthetic pathway of cytosolic isoprenoids bifurcates after farnesyl diphosphate into sesquiterpene and triterpene pathways. "Metabolic switching" has been used to increase sesquiterpene content in plants by suppressing the competitive triterpene pathway using transgenic technology. To develop "metabolic switching" without using transgenic technology, we developed a model system of "chemical metabolic switching" using inhibitors of the competitive pathway. Arabidopsis plants that overexpress the amorpha-4,11-diene synthase gene were treated with squalestatin, a squalene synthase inhibitor, or terbinafine, a squalene epoxidase inhibitor. We then analyzed total sterol content as major triterpenes and amorpha-4,11-diene in the plant. Plants treated with squalestatin showed decreased total sterol content and increased amorpha-4,11-diene content. In contrast, plants treated with terbinafine showed decreased total sterol content, but amorpha-4,11-diene accumulation was quite low. These results suggest that inhibition of the enzyme just below the branch point is more effective than inhibition of enzymes far from the branch point for "chemical metabolic switching". In addition, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme of the cytosolic isoprenoid biosynthetic pathway, was upregulated in plants treated with squalestatin, suggesting that feedback regulation of 3-hydroxy-3-methylglutaryl-CoA reductase may contribute to amorpha-4,11-diene production. Here we demonstrated the effectiveness of "chemical metabolic switching" in plants.</description><identifier>ISSN: 1342-4580</identifier><identifier>EISSN: 1347-6114</identifier><identifier>DOI: 10.5511/plantbiotechnology.17.0114a</identifier><identifier>PMID: 31275010</identifier><language>eng</language><publisher>Japan: Japanese Society for Plant Cell and Molecular Biology</publisher><subject>Artemisia ; Bifurcations ; chemical metabolic switching ; Enzymes ; Feedback ; Inhibition ; Inhibitors ; isoprenoid ; Metabolism ; mevalonate pathway ; Plants (botany) ; Reductase ; Squalene ; Squalene epoxidase ; Squalene epoxidase inhibitor ; squalestatin ; Sterols ; Switching ; Technology utilization ; Terbinafine ; Terpenes ; Transgenic plants ; Triterpenes</subject><ispartof>Plant Biotechnology, 2017/03/31, Vol.34(1), pp.65-69</ispartof><rights>2017 by Japanese Society for Plant Cell and Molecular Biology</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><rights>2017 The Japanese Society for Plant Cell and Molecular Biology 2017 The Japanese Society for Plant Cell and Molecular Biology</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c681t-b9086f355efbff46f645b6ff6f9540e5447ece7084fa5db5b6937bd79c32a63a3</citedby><cites>FETCH-LOGICAL-c681t-b9086f355efbff46f645b6ff6f9540e5447ece7084fa5db5b6937bd79c32a63a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543698/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543698/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1876,4009,27902,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31275010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kobayashi, Keiko</creatorcontrib><creatorcontrib>Kobayashi, Kanako</creatorcontrib><creatorcontrib>Yamaguchi, Haruhiko</creatorcontrib><creatorcontrib>Inoue, Yukino Miyagi</creatorcontrib><creatorcontrib>Takagi, Keiji</creatorcontrib><creatorcontrib>Fushihara, Kazuhisa</creatorcontrib><creatorcontrib>Seki, Hikaru</creatorcontrib><creatorcontrib>Suzuki, Masashi</creatorcontrib><creatorcontrib>Nagata, Noriko</creatorcontrib><creatorcontrib>Muranaka, Toshiya</creatorcontrib><title>Platform for "Chemical Metabolic Switching" to Increase Sesquiterpene Content in Plants</title><title>Plant Biotechnology</title><addtitle>Plant Biotechnol (Tokyo)</addtitle><description>The biosynthetic pathway of cytosolic isoprenoids bifurcates after farnesyl diphosphate into sesquiterpene and triterpene pathways. "Metabolic switching" has been used to increase sesquiterpene content in plants by suppressing the competitive triterpene pathway using transgenic technology. To develop "metabolic switching" without using transgenic technology, we developed a model system of "chemical metabolic switching" using inhibitors of the competitive pathway. Arabidopsis plants that overexpress the amorpha-4,11-diene synthase gene were treated with squalestatin, a squalene synthase inhibitor, or terbinafine, a squalene epoxidase inhibitor. We then analyzed total sterol content as major triterpenes and amorpha-4,11-diene in the plant. Plants treated with squalestatin showed decreased total sterol content and increased amorpha-4,11-diene content. In contrast, plants treated with terbinafine showed decreased total sterol content, but amorpha-4,11-diene accumulation was quite low. These results suggest that inhibition of the enzyme just below the branch point is more effective than inhibition of enzymes far from the branch point for "chemical metabolic switching". In addition, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme of the cytosolic isoprenoid biosynthetic pathway, was upregulated in plants treated with squalestatin, suggesting that feedback regulation of 3-hydroxy-3-methylglutaryl-CoA reductase may contribute to amorpha-4,11-diene production. Here we demonstrated the effectiveness of "chemical metabolic switching" in plants.</description><subject>Artemisia</subject><subject>Bifurcations</subject><subject>chemical metabolic switching</subject><subject>Enzymes</subject><subject>Feedback</subject><subject>Inhibition</subject><subject>Inhibitors</subject><subject>isoprenoid</subject><subject>Metabolism</subject><subject>mevalonate pathway</subject><subject>Plants (botany)</subject><subject>Reductase</subject><subject>Squalene</subject><subject>Squalene epoxidase</subject><subject>Squalene epoxidase inhibitor</subject><subject>squalestatin</subject><subject>Sterols</subject><subject>Switching</subject><subject>Technology utilization</subject><subject>Terbinafine</subject><subject>Terpenes</subject><subject>Transgenic plants</subject><subject>Triterpenes</subject><issn>1342-4580</issn><issn>1347-6114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkV1rFDEUhgdRbK3-BQntjTezJpOvGQRBFquFipUqXoZM9mQny2yyTTKW_nuzHy5-3ZwknOe8OS9vVV0QPOOckNebUfvcu5DBDD6MYfkwI3KGCWH6UXVKKJO1KI_Hu3tTM97ik-pZSiuMG05w87Q6oaSRHBN8Wn2_GXW2Ia5RKeh8PsDaGT2iT5B1H0Zn0O29y2ZwfnmOckBX3kTQCdAtpLvJZYgb8IDmwWfwGTmPbrbrpefVE6vHBC8O51n17fL91_nH-vrzh6v5u-vaiJbkuu9wKyzlHGxvLRNWMN4La4XtOMPAGZNgQOKWWc0Xfel1VPYL2RnaaEE1Pave7nU3U7-GhSlLRD2qTXRrHR9U0E792fFuUMvwQwnOqOjaIvDqIBDD3QQpq7VLBsbiAsKUVNNw2rS4k7KgF3-hqzBFX-wp0raMSiHlVvDNnjIxpBTBHpchWG0DVP8GqIhUuwDL9Mvf_RxnfyVWgC97YJWyXsIR0DE7M8L_xClTZFcOnxxZM-iowNOfkPy9jw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Kobayashi, Keiko</creator><creator>Kobayashi, Kanako</creator><creator>Yamaguchi, Haruhiko</creator><creator>Inoue, Yukino Miyagi</creator><creator>Takagi, Keiji</creator><creator>Fushihara, Kazuhisa</creator><creator>Seki, Hikaru</creator><creator>Suzuki, Masashi</creator><creator>Nagata, Noriko</creator><creator>Muranaka, Toshiya</creator><general>Japanese Society for Plant Cell and Molecular Biology</general><general>Japan Science and Technology Agency</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2017</creationdate><title>Platform for "Chemical Metabolic Switching" to Increase Sesquiterpene Content in Plants</title><author>Kobayashi, Keiko ; Kobayashi, Kanako ; Yamaguchi, Haruhiko ; Inoue, Yukino Miyagi ; Takagi, Keiji ; Fushihara, Kazuhisa ; Seki, Hikaru ; Suzuki, Masashi ; Nagata, Noriko ; Muranaka, Toshiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c681t-b9086f355efbff46f645b6ff6f9540e5447ece7084fa5db5b6937bd79c32a63a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artemisia</topic><topic>Bifurcations</topic><topic>chemical metabolic switching</topic><topic>Enzymes</topic><topic>Feedback</topic><topic>Inhibition</topic><topic>Inhibitors</topic><topic>isoprenoid</topic><topic>Metabolism</topic><topic>mevalonate pathway</topic><topic>Plants (botany)</topic><topic>Reductase</topic><topic>Squalene</topic><topic>Squalene epoxidase</topic><topic>Squalene epoxidase inhibitor</topic><topic>squalestatin</topic><topic>Sterols</topic><topic>Switching</topic><topic>Technology utilization</topic><topic>Terbinafine</topic><topic>Terpenes</topic><topic>Transgenic plants</topic><topic>Triterpenes</topic><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Keiko</creatorcontrib><creatorcontrib>Kobayashi, Kanako</creatorcontrib><creatorcontrib>Yamaguchi, Haruhiko</creatorcontrib><creatorcontrib>Inoue, Yukino Miyagi</creatorcontrib><creatorcontrib>Takagi, Keiji</creatorcontrib><creatorcontrib>Fushihara, Kazuhisa</creatorcontrib><creatorcontrib>Seki, Hikaru</creatorcontrib><creatorcontrib>Suzuki, Masashi</creatorcontrib><creatorcontrib>Nagata, Noriko</creatorcontrib><creatorcontrib>Muranaka, Toshiya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant Biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Keiko</au><au>Kobayashi, Kanako</au><au>Yamaguchi, Haruhiko</au><au>Inoue, Yukino Miyagi</au><au>Takagi, Keiji</au><au>Fushihara, Kazuhisa</au><au>Seki, Hikaru</au><au>Suzuki, Masashi</au><au>Nagata, Noriko</au><au>Muranaka, Toshiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Platform for "Chemical Metabolic Switching" to Increase Sesquiterpene Content in Plants</atitle><jtitle>Plant Biotechnology</jtitle><addtitle>Plant Biotechnol (Tokyo)</addtitle><date>2017</date><risdate>2017</risdate><volume>34</volume><issue>1</issue><spage>65</spage><epage>69</epage><pages>65-69</pages><issn>1342-4580</issn><eissn>1347-6114</eissn><abstract>The biosynthetic pathway of cytosolic isoprenoids bifurcates after farnesyl diphosphate into sesquiterpene and triterpene pathways. "Metabolic switching" has been used to increase sesquiterpene content in plants by suppressing the competitive triterpene pathway using transgenic technology. To develop "metabolic switching" without using transgenic technology, we developed a model system of "chemical metabolic switching" using inhibitors of the competitive pathway. Arabidopsis plants that overexpress the amorpha-4,11-diene synthase gene were treated with squalestatin, a squalene synthase inhibitor, or terbinafine, a squalene epoxidase inhibitor. We then analyzed total sterol content as major triterpenes and amorpha-4,11-diene in the plant. Plants treated with squalestatin showed decreased total sterol content and increased amorpha-4,11-diene content. In contrast, plants treated with terbinafine showed decreased total sterol content, but amorpha-4,11-diene accumulation was quite low. These results suggest that inhibition of the enzyme just below the branch point is more effective than inhibition of enzymes far from the branch point for "chemical metabolic switching". In addition, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme of the cytosolic isoprenoid biosynthetic pathway, was upregulated in plants treated with squalestatin, suggesting that feedback regulation of 3-hydroxy-3-methylglutaryl-CoA reductase may contribute to amorpha-4,11-diene production. Here we demonstrated the effectiveness of "chemical metabolic switching" in plants.</abstract><cop>Japan</cop><pub>Japanese Society for Plant Cell and Molecular Biology</pub><pmid>31275010</pmid><doi>10.5511/plantbiotechnology.17.0114a</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1342-4580
ispartof Plant Biotechnology, 2017/03/31, Vol.34(1), pp.65-69
issn 1342-4580
1347-6114
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6543698
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Artemisia
Bifurcations
chemical metabolic switching
Enzymes
Feedback
Inhibition
Inhibitors
isoprenoid
Metabolism
mevalonate pathway
Plants (botany)
Reductase
Squalene
Squalene epoxidase
Squalene epoxidase inhibitor
squalestatin
Sterols
Switching
Technology utilization
Terbinafine
Terpenes
Transgenic plants
Triterpenes
title Platform for "Chemical Metabolic Switching" to Increase Sesquiterpene Content in Plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Platform%20for%20%22Chemical%20Metabolic%20Switching%22%20to%20Increase%20Sesquiterpene%20Content%20in%20Plants&rft.jtitle=Plant%20Biotechnology&rft.au=Kobayashi,%20Keiko&rft.date=2017&rft.volume=34&rft.issue=1&rft.spage=65&rft.epage=69&rft.pages=65-69&rft.issn=1342-4580&rft.eissn=1347-6114&rft_id=info:doi/10.5511/plantbiotechnology.17.0114a&rft_dat=%3Cproquest_pubme%3E2253280977%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884376778&rft_id=info:pmid/31275010&rfr_iscdi=true