Mitochondrial ncRNA targeting induces cell cycle arrest and tumor growth inhibition of MDA-MB-231 breast cancer cells through reduction of key cell cycle progression factors

The family of long noncoding mitochondrial RNAs (ncmtRNAs), comprising sense (SncmtRNA), and antisense (ASncmtRNA-1 and ASncmtRNA-2) members, are differentially expressed according to cell proliferative status; SncmtRNA is expressed in all proliferating cells, while ASncmtRNAs are expressed in norma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2019-05, Vol.10 (6), p.423-423, Article 423
Hauptverfasser: Fitzpatrick, Christopher, Bendek, Maximiliano F., Briones, Macarena, Farfán, Nicole, Silva, Valeria A., Nardocci, Gino, Montecino, Martín, Boland, Anne, Deleuze, Jean-François, Villegas, Jaime, Villota, Claudio, Silva, Verónica, Lobos-Gonzalez, Lorena, Borgna, Vincenzo, Barrey, Eric, Burzio, Luis O., Burzio, Verónica A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue 6
container_start_page 423
container_title Cell death & disease
container_volume 10
creator Fitzpatrick, Christopher
Bendek, Maximiliano F.
Briones, Macarena
Farfán, Nicole
Silva, Valeria A.
Nardocci, Gino
Montecino, Martín
Boland, Anne
Deleuze, Jean-François
Villegas, Jaime
Villota, Claudio
Silva, Verónica
Lobos-Gonzalez, Lorena
Borgna, Vincenzo
Barrey, Eric
Burzio, Luis O.
Burzio, Verónica A.
description The family of long noncoding mitochondrial RNAs (ncmtRNAs), comprising sense (SncmtRNA), and antisense (ASncmtRNA-1 and ASncmtRNA-2) members, are differentially expressed according to cell proliferative status; SncmtRNA is expressed in all proliferating cells, while ASncmtRNAs are expressed in normal proliferating cells, but is downregulated in tumor cells. ASncmtRNA knockdown with an antisense oligonucleotide induces massive apoptosis in tumor cell lines, without affecting healthy cells. Apoptotic death is preceded by proliferation blockage, suggesting that these transcripts are involved in cell cycle regulation. Here, we show that ASncmtRNA knockdown induces cell death preceded by proliferative blockage in three different human breast cancer cell lines. This effect is mediated by downregulation of the key cell cycle progression factors cyclin B1, cyclin D1, CDK1, CDK4, and survivin, the latter also constituting an essential inhibitor of apoptosis, underlying additionally the onset of apoptosis. The treatment also induces an increase in the microRNA hsa-miR-4485-3p, whose sequence maps to ASncmtRNA-2 and transfection of MDA-MB-231 cells with a mimic of this miRNA induces cyclin B1 and D1 downregulation. Other miRNAs that are upregulated include nuclear-encoded hsa-miR-5096 and hsa-miR-3609, whose mimics downregulate CDK1. Our results suggest that ASncmtRNA targeting blocks tumor cell proliferation through reduction of essential cell cycle proteins, mediated by mitochondrial and nuclear miRNAs. This work adds to the elucidation of the molecular mechanisms behind cell cycle arrest preceding tumor cell apoptosis induced by ASncmtRNA knockdown. As proof-of-concept, we show that in vivo knockdown of ASncmtRNAs results in drastic inhibition of tumor growth in a xenograft model of MDA-MB-231 subcutaneous tumors, further supporting this approach for the development of new therapeutic strategies against breast cancer.
doi_str_mv 10.1038/s41419-019-1649-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6541642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232475925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-f3412b877a99ffc56e352b41a62e61bb2bfdac634e6a2504519041027b7143a93</originalsourceid><addsrcrecordid>eNp1ks1u1DAUhSMEolXpA7BBltjAIuC_OMkGaSg_RZoBCcHachwnccnYw7VTNA_Vd6zTtGWohKXIVu53znVuTpY9J_gNwax6GzjhpM5xeojgdc4eZccUc5LzqqofH5yPstMQLnBajGFaiKfZESOE05KJ4-xqY6PXg3ctWDUip79_XaGooDfRuh5Z107aBKTNOCK916NBCsCEiJRrUZy2HlAP_k8cEjrYxkbrHfId2nxY5Zv3OWUENWBUEmjltIEbp4DiAH7qBwQm-d9pfpn9YaMd-D61CnO1Uzp6CM-yJ50agzm93U-yn58-_jg7z9ffPn85W61zXWAe845xQpuqLFVdd50uhGEFbThRghpBmoY2Xau0YNwIRZOiIHUaFqZlUxLOVM1OsneL725qtqbVxkVQo9yB3SrYS6-s_Lfi7CB7fylFwdPPoMng9WIwPJCdr9ZyfodpJSij5JIk9tVtM_C_pzRbubVhnoNyxk9B0sTxsqhpkdCXD9ALP4FLo7ihiCC4mCmyUBp8CGC6-xsQLOfsyCU7MmVHztmRLGleHH7xveIuKQmgCxBSyfUG_rb-v-s1nrXQRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232161055</pqid></control><display><type>article</type><title>Mitochondrial ncRNA targeting induces cell cycle arrest and tumor growth inhibition of MDA-MB-231 breast cancer cells through reduction of key cell cycle progression factors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Fitzpatrick, Christopher ; Bendek, Maximiliano F. ; Briones, Macarena ; Farfán, Nicole ; Silva, Valeria A. ; Nardocci, Gino ; Montecino, Martín ; Boland, Anne ; Deleuze, Jean-François ; Villegas, Jaime ; Villota, Claudio ; Silva, Verónica ; Lobos-Gonzalez, Lorena ; Borgna, Vincenzo ; Barrey, Eric ; Burzio, Luis O. ; Burzio, Verónica A.</creator><creatorcontrib>Fitzpatrick, Christopher ; Bendek, Maximiliano F. ; Briones, Macarena ; Farfán, Nicole ; Silva, Valeria A. ; Nardocci, Gino ; Montecino, Martín ; Boland, Anne ; Deleuze, Jean-François ; Villegas, Jaime ; Villota, Claudio ; Silva, Verónica ; Lobos-Gonzalez, Lorena ; Borgna, Vincenzo ; Barrey, Eric ; Burzio, Luis O. ; Burzio, Verónica A.</creatorcontrib><description>The family of long noncoding mitochondrial RNAs (ncmtRNAs), comprising sense (SncmtRNA), and antisense (ASncmtRNA-1 and ASncmtRNA-2) members, are differentially expressed according to cell proliferative status; SncmtRNA is expressed in all proliferating cells, while ASncmtRNAs are expressed in normal proliferating cells, but is downregulated in tumor cells. ASncmtRNA knockdown with an antisense oligonucleotide induces massive apoptosis in tumor cell lines, without affecting healthy cells. Apoptotic death is preceded by proliferation blockage, suggesting that these transcripts are involved in cell cycle regulation. Here, we show that ASncmtRNA knockdown induces cell death preceded by proliferative blockage in three different human breast cancer cell lines. This effect is mediated by downregulation of the key cell cycle progression factors cyclin B1, cyclin D1, CDK1, CDK4, and survivin, the latter also constituting an essential inhibitor of apoptosis, underlying additionally the onset of apoptosis. The treatment also induces an increase in the microRNA hsa-miR-4485-3p, whose sequence maps to ASncmtRNA-2 and transfection of MDA-MB-231 cells with a mimic of this miRNA induces cyclin B1 and D1 downregulation. Other miRNAs that are upregulated include nuclear-encoded hsa-miR-5096 and hsa-miR-3609, whose mimics downregulate CDK1. Our results suggest that ASncmtRNA targeting blocks tumor cell proliferation through reduction of essential cell cycle proteins, mediated by mitochondrial and nuclear miRNAs. This work adds to the elucidation of the molecular mechanisms behind cell cycle arrest preceding tumor cell apoptosis induced by ASncmtRNA knockdown. As proof-of-concept, we show that in vivo knockdown of ASncmtRNAs results in drastic inhibition of tumor growth in a xenograft model of MDA-MB-231 subcutaneous tumors, further supporting this approach for the development of new therapeutic strategies against breast cancer.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-019-1649-3</identifier><identifier>PMID: 31142736</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 13/2 ; 13/31 ; 13/89 ; 14/34 ; 14/63 ; 38/1 ; 38/39 ; 38/89 ; 38/90 ; 631/154/556 ; 631/337/384/2568 ; 631/337/384/331 ; 631/67/1347 ; 631/80/641/1655 ; 64/60 ; 82/29 ; Animals ; Antagomirs - metabolism ; Antibodies ; Antisense oligonucleotides ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Breast cancer ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; CDC2 Protein Kinase - chemistry ; CDC2 Protein Kinase - genetics ; CDC2 Protein Kinase - metabolism ; Cell Biology ; Cell Culture ; Cell cycle ; Cell Cycle Checkpoints ; Cell death ; Cell Line, Tumor ; Cell Proliferation ; Cellular Biology ; Cyclin B1 ; Cyclin B1 - genetics ; Cyclin B1 - metabolism ; Cyclin D1 ; Cyclin D1 - genetics ; Cyclin D1 - metabolism ; Cyclin-dependent kinase 4 ; Down-Regulation ; Female ; Humans ; Immunology ; Life Sciences ; Mice ; Mice, Inbred BALB C ; MicroRNAs - antagonists &amp; inhibitors ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Mitochondria ; Mitochondria - genetics ; Molecular modelling ; Non-coding RNA ; RNA Interference ; RNA, Long Noncoding - antagonists &amp; inhibitors ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; RNA, Small Interfering - metabolism ; Survivin ; Transfection ; Tumor cell lines ; Tumor cells ; Tumors ; Xenografts</subject><ispartof>Cell death &amp; disease, 2019-05, Vol.10 (6), p.423-423, Article 423</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-f3412b877a99ffc56e352b41a62e61bb2bfdac634e6a2504519041027b7143a93</citedby><cites>FETCH-LOGICAL-c504t-f3412b877a99ffc56e352b41a62e61bb2bfdac634e6a2504519041027b7143a93</cites><orcidid>0000-0002-6491-4640 ; 0000-0001-7691-8705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541642/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541642/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,27931,27932,41127,42196,51583,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31142736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02862321$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fitzpatrick, Christopher</creatorcontrib><creatorcontrib>Bendek, Maximiliano F.</creatorcontrib><creatorcontrib>Briones, Macarena</creatorcontrib><creatorcontrib>Farfán, Nicole</creatorcontrib><creatorcontrib>Silva, Valeria A.</creatorcontrib><creatorcontrib>Nardocci, Gino</creatorcontrib><creatorcontrib>Montecino, Martín</creatorcontrib><creatorcontrib>Boland, Anne</creatorcontrib><creatorcontrib>Deleuze, Jean-François</creatorcontrib><creatorcontrib>Villegas, Jaime</creatorcontrib><creatorcontrib>Villota, Claudio</creatorcontrib><creatorcontrib>Silva, Verónica</creatorcontrib><creatorcontrib>Lobos-Gonzalez, Lorena</creatorcontrib><creatorcontrib>Borgna, Vincenzo</creatorcontrib><creatorcontrib>Barrey, Eric</creatorcontrib><creatorcontrib>Burzio, Luis O.</creatorcontrib><creatorcontrib>Burzio, Verónica A.</creatorcontrib><title>Mitochondrial ncRNA targeting induces cell cycle arrest and tumor growth inhibition of MDA-MB-231 breast cancer cells through reduction of key cell cycle progression factors</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>The family of long noncoding mitochondrial RNAs (ncmtRNAs), comprising sense (SncmtRNA), and antisense (ASncmtRNA-1 and ASncmtRNA-2) members, are differentially expressed according to cell proliferative status; SncmtRNA is expressed in all proliferating cells, while ASncmtRNAs are expressed in normal proliferating cells, but is downregulated in tumor cells. ASncmtRNA knockdown with an antisense oligonucleotide induces massive apoptosis in tumor cell lines, without affecting healthy cells. Apoptotic death is preceded by proliferation blockage, suggesting that these transcripts are involved in cell cycle regulation. Here, we show that ASncmtRNA knockdown induces cell death preceded by proliferative blockage in three different human breast cancer cell lines. This effect is mediated by downregulation of the key cell cycle progression factors cyclin B1, cyclin D1, CDK1, CDK4, and survivin, the latter also constituting an essential inhibitor of apoptosis, underlying additionally the onset of apoptosis. The treatment also induces an increase in the microRNA hsa-miR-4485-3p, whose sequence maps to ASncmtRNA-2 and transfection of MDA-MB-231 cells with a mimic of this miRNA induces cyclin B1 and D1 downregulation. Other miRNAs that are upregulated include nuclear-encoded hsa-miR-5096 and hsa-miR-3609, whose mimics downregulate CDK1. Our results suggest that ASncmtRNA targeting blocks tumor cell proliferation through reduction of essential cell cycle proteins, mediated by mitochondrial and nuclear miRNAs. This work adds to the elucidation of the molecular mechanisms behind cell cycle arrest preceding tumor cell apoptosis induced by ASncmtRNA knockdown. As proof-of-concept, we show that in vivo knockdown of ASncmtRNAs results in drastic inhibition of tumor growth in a xenograft model of MDA-MB-231 subcutaneous tumors, further supporting this approach for the development of new therapeutic strategies against breast cancer.</description><subject>13/109</subject><subject>13/2</subject><subject>13/31</subject><subject>13/89</subject><subject>14/34</subject><subject>14/63</subject><subject>38/1</subject><subject>38/39</subject><subject>38/89</subject><subject>38/90</subject><subject>631/154/556</subject><subject>631/337/384/2568</subject><subject>631/337/384/331</subject><subject>631/67/1347</subject><subject>631/80/641/1655</subject><subject>64/60</subject><subject>82/29</subject><subject>Animals</subject><subject>Antagomirs - metabolism</subject><subject>Antibodies</subject><subject>Antisense oligonucleotides</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>CDC2 Protein Kinase - chemistry</subject><subject>CDC2 Protein Kinase - genetics</subject><subject>CDC2 Protein Kinase - metabolism</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cellular Biology</subject><subject>Cyclin B1</subject><subject>Cyclin B1 - genetics</subject><subject>Cyclin B1 - metabolism</subject><subject>Cyclin D1</subject><subject>Cyclin D1 - genetics</subject><subject>Cyclin D1 - metabolism</subject><subject>Cyclin-dependent kinase 4</subject><subject>Down-Regulation</subject><subject>Female</subject><subject>Humans</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>MicroRNAs - antagonists &amp; inhibitors</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Molecular modelling</subject><subject>Non-coding RNA</subject><subject>RNA Interference</subject><subject>RNA, Long Noncoding - antagonists &amp; inhibitors</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Survivin</subject><subject>Transfection</subject><subject>Tumor cell lines</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Xenografts</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1ks1u1DAUhSMEolXpA7BBltjAIuC_OMkGaSg_RZoBCcHachwnccnYw7VTNA_Vd6zTtGWohKXIVu53znVuTpY9J_gNwax6GzjhpM5xeojgdc4eZccUc5LzqqofH5yPstMQLnBajGFaiKfZESOE05KJ4-xqY6PXg3ctWDUip79_XaGooDfRuh5Z107aBKTNOCK916NBCsCEiJRrUZy2HlAP_k8cEjrYxkbrHfId2nxY5Zv3OWUENWBUEmjltIEbp4DiAH7qBwQm-d9pfpn9YaMd-D61CnO1Uzp6CM-yJ50agzm93U-yn58-_jg7z9ffPn85W61zXWAe845xQpuqLFVdd50uhGEFbThRghpBmoY2Xau0YNwIRZOiIHUaFqZlUxLOVM1OsneL725qtqbVxkVQo9yB3SrYS6-s_Lfi7CB7fylFwdPPoMng9WIwPJCdr9ZyfodpJSij5JIk9tVtM_C_pzRbubVhnoNyxk9B0sTxsqhpkdCXD9ALP4FLo7ihiCC4mCmyUBp8CGC6-xsQLOfsyCU7MmVHztmRLGleHH7xveIuKQmgCxBSyfUG_rb-v-s1nrXQRA</recordid><startdate>20190529</startdate><enddate>20190529</enddate><creator>Fitzpatrick, Christopher</creator><creator>Bendek, Maximiliano F.</creator><creator>Briones, Macarena</creator><creator>Farfán, Nicole</creator><creator>Silva, Valeria A.</creator><creator>Nardocci, Gino</creator><creator>Montecino, Martín</creator><creator>Boland, Anne</creator><creator>Deleuze, Jean-François</creator><creator>Villegas, Jaime</creator><creator>Villota, Claudio</creator><creator>Silva, Verónica</creator><creator>Lobos-Gonzalez, Lorena</creator><creator>Borgna, Vincenzo</creator><creator>Barrey, Eric</creator><creator>Burzio, Luis O.</creator><creator>Burzio, Verónica A.</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6491-4640</orcidid><orcidid>https://orcid.org/0000-0001-7691-8705</orcidid></search><sort><creationdate>20190529</creationdate><title>Mitochondrial ncRNA targeting induces cell cycle arrest and tumor growth inhibition of MDA-MB-231 breast cancer cells through reduction of key cell cycle progression factors</title><author>Fitzpatrick, Christopher ; Bendek, Maximiliano F. ; Briones, Macarena ; Farfán, Nicole ; Silva, Valeria A. ; Nardocci, Gino ; Montecino, Martín ; Boland, Anne ; Deleuze, Jean-François ; Villegas, Jaime ; Villota, Claudio ; Silva, Verónica ; Lobos-Gonzalez, Lorena ; Borgna, Vincenzo ; Barrey, Eric ; Burzio, Luis O. ; Burzio, Verónica A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-f3412b877a99ffc56e352b41a62e61bb2bfdac634e6a2504519041027b7143a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/109</topic><topic>13/2</topic><topic>13/31</topic><topic>13/89</topic><topic>14/34</topic><topic>14/63</topic><topic>38/1</topic><topic>38/39</topic><topic>38/89</topic><topic>38/90</topic><topic>631/154/556</topic><topic>631/337/384/2568</topic><topic>631/337/384/331</topic><topic>631/67/1347</topic><topic>631/80/641/1655</topic><topic>64/60</topic><topic>82/29</topic><topic>Animals</topic><topic>Antagomirs - metabolism</topic><topic>Antibodies</topic><topic>Antisense oligonucleotides</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>CDC2 Protein Kinase - chemistry</topic><topic>CDC2 Protein Kinase - genetics</topic><topic>CDC2 Protein Kinase - metabolism</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cellular Biology</topic><topic>Cyclin B1</topic><topic>Cyclin B1 - genetics</topic><topic>Cyclin B1 - metabolism</topic><topic>Cyclin D1</topic><topic>Cyclin D1 - genetics</topic><topic>Cyclin D1 - metabolism</topic><topic>Cyclin-dependent kinase 4</topic><topic>Down-Regulation</topic><topic>Female</topic><topic>Humans</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>MicroRNAs - antagonists &amp; inhibitors</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Molecular modelling</topic><topic>Non-coding RNA</topic><topic>RNA Interference</topic><topic>RNA, Long Noncoding - antagonists &amp; inhibitors</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Survivin</topic><topic>Transfection</topic><topic>Tumor cell lines</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fitzpatrick, Christopher</creatorcontrib><creatorcontrib>Bendek, Maximiliano F.</creatorcontrib><creatorcontrib>Briones, Macarena</creatorcontrib><creatorcontrib>Farfán, Nicole</creatorcontrib><creatorcontrib>Silva, Valeria A.</creatorcontrib><creatorcontrib>Nardocci, Gino</creatorcontrib><creatorcontrib>Montecino, Martín</creatorcontrib><creatorcontrib>Boland, Anne</creatorcontrib><creatorcontrib>Deleuze, Jean-François</creatorcontrib><creatorcontrib>Villegas, Jaime</creatorcontrib><creatorcontrib>Villota, Claudio</creatorcontrib><creatorcontrib>Silva, Verónica</creatorcontrib><creatorcontrib>Lobos-Gonzalez, Lorena</creatorcontrib><creatorcontrib>Borgna, Vincenzo</creatorcontrib><creatorcontrib>Barrey, Eric</creatorcontrib><creatorcontrib>Burzio, Luis O.</creatorcontrib><creatorcontrib>Burzio, Verónica A.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fitzpatrick, Christopher</au><au>Bendek, Maximiliano F.</au><au>Briones, Macarena</au><au>Farfán, Nicole</au><au>Silva, Valeria A.</au><au>Nardocci, Gino</au><au>Montecino, Martín</au><au>Boland, Anne</au><au>Deleuze, Jean-François</au><au>Villegas, Jaime</au><au>Villota, Claudio</au><au>Silva, Verónica</au><au>Lobos-Gonzalez, Lorena</au><au>Borgna, Vincenzo</au><au>Barrey, Eric</au><au>Burzio, Luis O.</au><au>Burzio, Verónica A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial ncRNA targeting induces cell cycle arrest and tumor growth inhibition of MDA-MB-231 breast cancer cells through reduction of key cell cycle progression factors</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2019-05-29</date><risdate>2019</risdate><volume>10</volume><issue>6</issue><spage>423</spage><epage>423</epage><pages>423-423</pages><artnum>423</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>The family of long noncoding mitochondrial RNAs (ncmtRNAs), comprising sense (SncmtRNA), and antisense (ASncmtRNA-1 and ASncmtRNA-2) members, are differentially expressed according to cell proliferative status; SncmtRNA is expressed in all proliferating cells, while ASncmtRNAs are expressed in normal proliferating cells, but is downregulated in tumor cells. ASncmtRNA knockdown with an antisense oligonucleotide induces massive apoptosis in tumor cell lines, without affecting healthy cells. Apoptotic death is preceded by proliferation blockage, suggesting that these transcripts are involved in cell cycle regulation. Here, we show that ASncmtRNA knockdown induces cell death preceded by proliferative blockage in three different human breast cancer cell lines. This effect is mediated by downregulation of the key cell cycle progression factors cyclin B1, cyclin D1, CDK1, CDK4, and survivin, the latter also constituting an essential inhibitor of apoptosis, underlying additionally the onset of apoptosis. The treatment also induces an increase in the microRNA hsa-miR-4485-3p, whose sequence maps to ASncmtRNA-2 and transfection of MDA-MB-231 cells with a mimic of this miRNA induces cyclin B1 and D1 downregulation. Other miRNAs that are upregulated include nuclear-encoded hsa-miR-5096 and hsa-miR-3609, whose mimics downregulate CDK1. Our results suggest that ASncmtRNA targeting blocks tumor cell proliferation through reduction of essential cell cycle proteins, mediated by mitochondrial and nuclear miRNAs. This work adds to the elucidation of the molecular mechanisms behind cell cycle arrest preceding tumor cell apoptosis induced by ASncmtRNA knockdown. As proof-of-concept, we show that in vivo knockdown of ASncmtRNAs results in drastic inhibition of tumor growth in a xenograft model of MDA-MB-231 subcutaneous tumors, further supporting this approach for the development of new therapeutic strategies against breast cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31142736</pmid><doi>10.1038/s41419-019-1649-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6491-4640</orcidid><orcidid>https://orcid.org/0000-0001-7691-8705</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2019-05, Vol.10 (6), p.423-423, Article 423
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6541642
source MEDLINE; DOAJ Directory of Open Access Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals
subjects 13/109
13/2
13/31
13/89
14/34
14/63
38/1
38/39
38/89
38/90
631/154/556
631/337/384/2568
631/337/384/331
631/67/1347
631/80/641/1655
64/60
82/29
Animals
Antagomirs - metabolism
Antibodies
Antisense oligonucleotides
Apoptosis
Biochemistry
Biomedical and Life Sciences
Breast cancer
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
CDC2 Protein Kinase - chemistry
CDC2 Protein Kinase - genetics
CDC2 Protein Kinase - metabolism
Cell Biology
Cell Culture
Cell cycle
Cell Cycle Checkpoints
Cell death
Cell Line, Tumor
Cell Proliferation
Cellular Biology
Cyclin B1
Cyclin B1 - genetics
Cyclin B1 - metabolism
Cyclin D1
Cyclin D1 - genetics
Cyclin D1 - metabolism
Cyclin-dependent kinase 4
Down-Regulation
Female
Humans
Immunology
Life Sciences
Mice
Mice, Inbred BALB C
MicroRNAs - antagonists & inhibitors
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Mitochondria
Mitochondria - genetics
Molecular modelling
Non-coding RNA
RNA Interference
RNA, Long Noncoding - antagonists & inhibitors
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RNA, Small Interfering - metabolism
Survivin
Transfection
Tumor cell lines
Tumor cells
Tumors
Xenografts
title Mitochondrial ncRNA targeting induces cell cycle arrest and tumor growth inhibition of MDA-MB-231 breast cancer cells through reduction of key cell cycle progression factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T20%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20ncRNA%20targeting%20induces%20cell%20cycle%20arrest%20and%20tumor%20growth%20inhibition%20of%20MDA-MB-231%20breast%20cancer%20cells%20through%20reduction%20of%20key%20cell%20cycle%20progression%20factors&rft.jtitle=Cell%20death%20&%20disease&rft.au=Fitzpatrick,%20Christopher&rft.date=2019-05-29&rft.volume=10&rft.issue=6&rft.spage=423&rft.epage=423&rft.pages=423-423&rft.artnum=423&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-019-1649-3&rft_dat=%3Cproquest_pubme%3E2232475925%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232161055&rft_id=info:pmid/31142736&rfr_iscdi=true