Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots
This paper presents the development and validation of a polymer optical-fiber strain-gauge sensor based on the light-coupling principle to measure axial deformation of elastic tendons incorporated in soft actuators for wearable assistive robots. An analytical model was proposed and further validated...
Gespeichert in:
Veröffentlicht in: | Materials 2019-05, Vol.12 (9), p.1443 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1443 |
container_title | Materials |
container_volume | 12 |
creator | Casas, Jonathan Leal-Junior, Arnaldo Díaz, Camilo R Frizera, Anselmo Múnera, Marcela Cifuentes, Carlos A |
description | This paper presents the development and validation of a polymer optical-fiber strain-gauge sensor based on the light-coupling principle to measure axial deformation of elastic tendons incorporated in soft actuators for wearable assistive robots. An analytical model was proposed and further validated with experiment tests, showing correlation with a coefficient of R = 0.998 between experiment and theoretical data, and reaching a maximum axial displacement range of 15 mm and no significant hysteresis. Furthermore, experiment tests were carried out attaching the validated sensor to the elastic tendon. Results of three experiment tests show the sensor's capability to measure the tendon's response under tensile axial stress, finding 20.45% of hysteresis in the material's response between the stretching and recovery phase. Based on these results, there is evidence of the potential that the fiber-optical strain sensor presents for future applications in the characterization of such tendons and identification of dynamic models that allow the understanding of the material's response to the development of more efficient interaction-control strategies. |
doi_str_mv | 10.3390/ma12091443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6539067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232130627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-10ebcba5c5899460878882286812a1c0f3ca21523203e1ffde8bf9c661cf67193</originalsourceid><addsrcrecordid>eNpdkVFLHTEQhUOxVFFf-gPKQl9EWM0k2dzkpSCiVrhgUUsfQzZ3chvZTa7JruC_b0RrtYGQDPNxciaHkM9AjzjX9Hi0wKgGIfgHsgNayxa0EFtv7ttkv5Q7WhfnoJj-RLY50E4pATvEL21eY3tt4xqbH2l4HDE3V5spODu056Gv1c2UbYjthZ0rcoOxpNz4us8GWyrX3GJcpViaEJtfaLPtB2xOSgm1-YDNderTVPbIR2-Hgvsv5y75eX52e_q9XV5dXJ6eLFsnqJxaoNi73nauU1oLSdVCKcWYkgqYBUc9d5ZBxzijHMH7FareayclOC8XoPku-fasu5n7EVcOYzU_mE0Oo82PJtlg3ndi-G3W6cHIrn6mXFSBgxeBnO5nLJMZQ3E4DDZimoth9W3gVLIn9Ot_6F2ac6zjGdYJJTsKglXq8JlyOZWS0b-aAWqeEjT_Eqzwl7f2X9G_efE_pTSVrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548650142</pqid></control><display><type>article</type><title>Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Casas, Jonathan ; Leal-Junior, Arnaldo ; Díaz, Camilo R ; Frizera, Anselmo ; Múnera, Marcela ; Cifuentes, Carlos A</creator><creatorcontrib>Casas, Jonathan ; Leal-Junior, Arnaldo ; Díaz, Camilo R ; Frizera, Anselmo ; Múnera, Marcela ; Cifuentes, Carlos A</creatorcontrib><description>This paper presents the development and validation of a polymer optical-fiber strain-gauge sensor based on the light-coupling principle to measure axial deformation of elastic tendons incorporated in soft actuators for wearable assistive robots. An analytical model was proposed and further validated with experiment tests, showing correlation with a coefficient of R = 0.998 between experiment and theoretical data, and reaching a maximum axial displacement range of 15 mm and no significant hysteresis. Furthermore, experiment tests were carried out attaching the validated sensor to the elastic tendon. Results of three experiment tests show the sensor's capability to measure the tendon's response under tensile axial stress, finding 20.45% of hysteresis in the material's response between the stretching and recovery phase. Based on these results, there is evidence of the potential that the fiber-optical strain sensor presents for future applications in the characterization of such tendons and identification of dynamic models that allow the understanding of the material's response to the development of more efficient interaction-control strategies.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12091443</identifier><identifier>PMID: 31058841</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Actuators ; Ankle ; Axial stress ; Behavior ; Deformation ; Deformation wear ; Design ; Dynamic models ; Elastic deformation ; Fiber optics ; Hysteresis ; Mechanical properties ; Polymers ; Robotics ; Robots ; Sensors ; Service robots ; Strain gauges ; Tendons ; Wearable computers ; Wearable technology</subject><ispartof>Materials, 2019-05, Vol.12 (9), p.1443</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-10ebcba5c5899460878882286812a1c0f3ca21523203e1ffde8bf9c661cf67193</citedby><cites>FETCH-LOGICAL-c406t-10ebcba5c5899460878882286812a1c0f3ca21523203e1ffde8bf9c661cf67193</cites><orcidid>0000-0001-9657-5076 ; 0000-0002-0687-3967 ; 0000-0002-6942-865X ; 0000-0003-4248-7913 ; 0000-0002-9075-0619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539067/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539067/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31058841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Casas, Jonathan</creatorcontrib><creatorcontrib>Leal-Junior, Arnaldo</creatorcontrib><creatorcontrib>Díaz, Camilo R</creatorcontrib><creatorcontrib>Frizera, Anselmo</creatorcontrib><creatorcontrib>Múnera, Marcela</creatorcontrib><creatorcontrib>Cifuentes, Carlos A</creatorcontrib><title>Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This paper presents the development and validation of a polymer optical-fiber strain-gauge sensor based on the light-coupling principle to measure axial deformation of elastic tendons incorporated in soft actuators for wearable assistive robots. An analytical model was proposed and further validated with experiment tests, showing correlation with a coefficient of R = 0.998 between experiment and theoretical data, and reaching a maximum axial displacement range of 15 mm and no significant hysteresis. Furthermore, experiment tests were carried out attaching the validated sensor to the elastic tendon. Results of three experiment tests show the sensor's capability to measure the tendon's response under tensile axial stress, finding 20.45% of hysteresis in the material's response between the stretching and recovery phase. Based on these results, there is evidence of the potential that the fiber-optical strain sensor presents for future applications in the characterization of such tendons and identification of dynamic models that allow the understanding of the material's response to the development of more efficient interaction-control strategies.</description><subject>Actuators</subject><subject>Ankle</subject><subject>Axial stress</subject><subject>Behavior</subject><subject>Deformation</subject><subject>Deformation wear</subject><subject>Design</subject><subject>Dynamic models</subject><subject>Elastic deformation</subject><subject>Fiber optics</subject><subject>Hysteresis</subject><subject>Mechanical properties</subject><subject>Polymers</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Service robots</subject><subject>Strain gauges</subject><subject>Tendons</subject><subject>Wearable computers</subject><subject>Wearable technology</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVFLHTEQhUOxVFFf-gPKQl9EWM0k2dzkpSCiVrhgUUsfQzZ3chvZTa7JruC_b0RrtYGQDPNxciaHkM9AjzjX9Hi0wKgGIfgHsgNayxa0EFtv7ttkv5Q7WhfnoJj-RLY50E4pATvEL21eY3tt4xqbH2l4HDE3V5spODu056Gv1c2UbYjthZ0rcoOxpNz4us8GWyrX3GJcpViaEJtfaLPtB2xOSgm1-YDNderTVPbIR2-Hgvsv5y75eX52e_q9XV5dXJ6eLFsnqJxaoNi73nauU1oLSdVCKcWYkgqYBUc9d5ZBxzijHMH7FareayclOC8XoPku-fasu5n7EVcOYzU_mE0Oo82PJtlg3ndi-G3W6cHIrn6mXFSBgxeBnO5nLJMZQ3E4DDZimoth9W3gVLIn9Ot_6F2ac6zjGdYJJTsKglXq8JlyOZWS0b-aAWqeEjT_Eqzwl7f2X9G_efE_pTSVrA</recordid><startdate>20190503</startdate><enddate>20190503</enddate><creator>Casas, Jonathan</creator><creator>Leal-Junior, Arnaldo</creator><creator>Díaz, Camilo R</creator><creator>Frizera, Anselmo</creator><creator>Múnera, Marcela</creator><creator>Cifuentes, Carlos A</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9657-5076</orcidid><orcidid>https://orcid.org/0000-0002-0687-3967</orcidid><orcidid>https://orcid.org/0000-0002-6942-865X</orcidid><orcidid>https://orcid.org/0000-0003-4248-7913</orcidid><orcidid>https://orcid.org/0000-0002-9075-0619</orcidid></search><sort><creationdate>20190503</creationdate><title>Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots</title><author>Casas, Jonathan ; Leal-Junior, Arnaldo ; Díaz, Camilo R ; Frizera, Anselmo ; Múnera, Marcela ; Cifuentes, Carlos A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-10ebcba5c5899460878882286812a1c0f3ca21523203e1ffde8bf9c661cf67193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Ankle</topic><topic>Axial stress</topic><topic>Behavior</topic><topic>Deformation</topic><topic>Deformation wear</topic><topic>Design</topic><topic>Dynamic models</topic><topic>Elastic deformation</topic><topic>Fiber optics</topic><topic>Hysteresis</topic><topic>Mechanical properties</topic><topic>Polymers</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Service robots</topic><topic>Strain gauges</topic><topic>Tendons</topic><topic>Wearable computers</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casas, Jonathan</creatorcontrib><creatorcontrib>Leal-Junior, Arnaldo</creatorcontrib><creatorcontrib>Díaz, Camilo R</creatorcontrib><creatorcontrib>Frizera, Anselmo</creatorcontrib><creatorcontrib>Múnera, Marcela</creatorcontrib><creatorcontrib>Cifuentes, Carlos A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casas, Jonathan</au><au>Leal-Junior, Arnaldo</au><au>Díaz, Camilo R</au><au>Frizera, Anselmo</au><au>Múnera, Marcela</au><au>Cifuentes, Carlos A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-05-03</date><risdate>2019</risdate><volume>12</volume><issue>9</issue><spage>1443</spage><pages>1443-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper presents the development and validation of a polymer optical-fiber strain-gauge sensor based on the light-coupling principle to measure axial deformation of elastic tendons incorporated in soft actuators for wearable assistive robots. An analytical model was proposed and further validated with experiment tests, showing correlation with a coefficient of R = 0.998 between experiment and theoretical data, and reaching a maximum axial displacement range of 15 mm and no significant hysteresis. Furthermore, experiment tests were carried out attaching the validated sensor to the elastic tendon. Results of three experiment tests show the sensor's capability to measure the tendon's response under tensile axial stress, finding 20.45% of hysteresis in the material's response between the stretching and recovery phase. Based on these results, there is evidence of the potential that the fiber-optical strain sensor presents for future applications in the characterization of such tendons and identification of dynamic models that allow the understanding of the material's response to the development of more efficient interaction-control strategies.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31058841</pmid><doi>10.3390/ma12091443</doi><orcidid>https://orcid.org/0000-0001-9657-5076</orcidid><orcidid>https://orcid.org/0000-0002-0687-3967</orcidid><orcidid>https://orcid.org/0000-0002-6942-865X</orcidid><orcidid>https://orcid.org/0000-0003-4248-7913</orcidid><orcidid>https://orcid.org/0000-0002-9075-0619</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2019-05, Vol.12 (9), p.1443 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6539067 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Actuators Ankle Axial stress Behavior Deformation Deformation wear Design Dynamic models Elastic deformation Fiber optics Hysteresis Mechanical properties Polymers Robotics Robots Sensors Service robots Strain gauges Tendons Wearable computers Wearable technology |
title | Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Range%20Polymer%20Optical-Fiber%20Strain-Gauge%20Sensor%20for%20Elastic%20Tendons%20in%20Wearable%20Assistive%20Robots&rft.jtitle=Materials&rft.au=Casas,%20Jonathan&rft.date=2019-05-03&rft.volume=12&rft.issue=9&rft.spage=1443&rft.pages=1443-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12091443&rft_dat=%3Cproquest_pubme%3E2232130627%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548650142&rft_id=info:pmid/31058841&rfr_iscdi=true |