Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots

This paper presents the development and validation of a polymer optical-fiber strain-gauge sensor based on the light-coupling principle to measure axial deformation of elastic tendons incorporated in soft actuators for wearable assistive robots. An analytical model was proposed and further validated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2019-05, Vol.12 (9), p.1443
Hauptverfasser: Casas, Jonathan, Leal-Junior, Arnaldo, Díaz, Camilo R, Frizera, Anselmo, Múnera, Marcela, Cifuentes, Carlos A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1443
container_title Materials
container_volume 12
creator Casas, Jonathan
Leal-Junior, Arnaldo
Díaz, Camilo R
Frizera, Anselmo
Múnera, Marcela
Cifuentes, Carlos A
description This paper presents the development and validation of a polymer optical-fiber strain-gauge sensor based on the light-coupling principle to measure axial deformation of elastic tendons incorporated in soft actuators for wearable assistive robots. An analytical model was proposed and further validated with experiment tests, showing correlation with a coefficient of R = 0.998 between experiment and theoretical data, and reaching a maximum axial displacement range of 15 mm and no significant hysteresis. Furthermore, experiment tests were carried out attaching the validated sensor to the elastic tendon. Results of three experiment tests show the sensor's capability to measure the tendon's response under tensile axial stress, finding 20.45% of hysteresis in the material's response between the stretching and recovery phase. Based on these results, there is evidence of the potential that the fiber-optical strain sensor presents for future applications in the characterization of such tendons and identification of dynamic models that allow the understanding of the material's response to the development of more efficient interaction-control strategies.
doi_str_mv 10.3390/ma12091443
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6539067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232130627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-10ebcba5c5899460878882286812a1c0f3ca21523203e1ffde8bf9c661cf67193</originalsourceid><addsrcrecordid>eNpdkVFLHTEQhUOxVFFf-gPKQl9EWM0k2dzkpSCiVrhgUUsfQzZ3chvZTa7JruC_b0RrtYGQDPNxciaHkM9AjzjX9Hi0wKgGIfgHsgNayxa0EFtv7ttkv5Q7WhfnoJj-RLY50E4pATvEL21eY3tt4xqbH2l4HDE3V5spODu056Gv1c2UbYjthZ0rcoOxpNz4us8GWyrX3GJcpViaEJtfaLPtB2xOSgm1-YDNderTVPbIR2-Hgvsv5y75eX52e_q9XV5dXJ6eLFsnqJxaoNi73nauU1oLSdVCKcWYkgqYBUc9d5ZBxzijHMH7FareayclOC8XoPku-fasu5n7EVcOYzU_mE0Oo82PJtlg3ndi-G3W6cHIrn6mXFSBgxeBnO5nLJMZQ3E4DDZimoth9W3gVLIn9Ot_6F2ac6zjGdYJJTsKglXq8JlyOZWS0b-aAWqeEjT_Eqzwl7f2X9G_efE_pTSVrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548650142</pqid></control><display><type>article</type><title>Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Casas, Jonathan ; Leal-Junior, Arnaldo ; Díaz, Camilo R ; Frizera, Anselmo ; Múnera, Marcela ; Cifuentes, Carlos A</creator><creatorcontrib>Casas, Jonathan ; Leal-Junior, Arnaldo ; Díaz, Camilo R ; Frizera, Anselmo ; Múnera, Marcela ; Cifuentes, Carlos A</creatorcontrib><description>This paper presents the development and validation of a polymer optical-fiber strain-gauge sensor based on the light-coupling principle to measure axial deformation of elastic tendons incorporated in soft actuators for wearable assistive robots. An analytical model was proposed and further validated with experiment tests, showing correlation with a coefficient of R = 0.998 between experiment and theoretical data, and reaching a maximum axial displacement range of 15 mm and no significant hysteresis. Furthermore, experiment tests were carried out attaching the validated sensor to the elastic tendon. Results of three experiment tests show the sensor's capability to measure the tendon's response under tensile axial stress, finding 20.45% of hysteresis in the material's response between the stretching and recovery phase. Based on these results, there is evidence of the potential that the fiber-optical strain sensor presents for future applications in the characterization of such tendons and identification of dynamic models that allow the understanding of the material's response to the development of more efficient interaction-control strategies.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12091443</identifier><identifier>PMID: 31058841</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Actuators ; Ankle ; Axial stress ; Behavior ; Deformation ; Deformation wear ; Design ; Dynamic models ; Elastic deformation ; Fiber optics ; Hysteresis ; Mechanical properties ; Polymers ; Robotics ; Robots ; Sensors ; Service robots ; Strain gauges ; Tendons ; Wearable computers ; Wearable technology</subject><ispartof>Materials, 2019-05, Vol.12 (9), p.1443</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-10ebcba5c5899460878882286812a1c0f3ca21523203e1ffde8bf9c661cf67193</citedby><cites>FETCH-LOGICAL-c406t-10ebcba5c5899460878882286812a1c0f3ca21523203e1ffde8bf9c661cf67193</cites><orcidid>0000-0001-9657-5076 ; 0000-0002-0687-3967 ; 0000-0002-6942-865X ; 0000-0003-4248-7913 ; 0000-0002-9075-0619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539067/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539067/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31058841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Casas, Jonathan</creatorcontrib><creatorcontrib>Leal-Junior, Arnaldo</creatorcontrib><creatorcontrib>Díaz, Camilo R</creatorcontrib><creatorcontrib>Frizera, Anselmo</creatorcontrib><creatorcontrib>Múnera, Marcela</creatorcontrib><creatorcontrib>Cifuentes, Carlos A</creatorcontrib><title>Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This paper presents the development and validation of a polymer optical-fiber strain-gauge sensor based on the light-coupling principle to measure axial deformation of elastic tendons incorporated in soft actuators for wearable assistive robots. An analytical model was proposed and further validated with experiment tests, showing correlation with a coefficient of R = 0.998 between experiment and theoretical data, and reaching a maximum axial displacement range of 15 mm and no significant hysteresis. Furthermore, experiment tests were carried out attaching the validated sensor to the elastic tendon. Results of three experiment tests show the sensor's capability to measure the tendon's response under tensile axial stress, finding 20.45% of hysteresis in the material's response between the stretching and recovery phase. Based on these results, there is evidence of the potential that the fiber-optical strain sensor presents for future applications in the characterization of such tendons and identification of dynamic models that allow the understanding of the material's response to the development of more efficient interaction-control strategies.</description><subject>Actuators</subject><subject>Ankle</subject><subject>Axial stress</subject><subject>Behavior</subject><subject>Deformation</subject><subject>Deformation wear</subject><subject>Design</subject><subject>Dynamic models</subject><subject>Elastic deformation</subject><subject>Fiber optics</subject><subject>Hysteresis</subject><subject>Mechanical properties</subject><subject>Polymers</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Service robots</subject><subject>Strain gauges</subject><subject>Tendons</subject><subject>Wearable computers</subject><subject>Wearable technology</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVFLHTEQhUOxVFFf-gPKQl9EWM0k2dzkpSCiVrhgUUsfQzZ3chvZTa7JruC_b0RrtYGQDPNxciaHkM9AjzjX9Hi0wKgGIfgHsgNayxa0EFtv7ttkv5Q7WhfnoJj-RLY50E4pATvEL21eY3tt4xqbH2l4HDE3V5spODu056Gv1c2UbYjthZ0rcoOxpNz4us8GWyrX3GJcpViaEJtfaLPtB2xOSgm1-YDNderTVPbIR2-Hgvsv5y75eX52e_q9XV5dXJ6eLFsnqJxaoNi73nauU1oLSdVCKcWYkgqYBUc9d5ZBxzijHMH7FareayclOC8XoPku-fasu5n7EVcOYzU_mE0Oo82PJtlg3ndi-G3W6cHIrn6mXFSBgxeBnO5nLJMZQ3E4DDZimoth9W3gVLIn9Ot_6F2ac6zjGdYJJTsKglXq8JlyOZWS0b-aAWqeEjT_Eqzwl7f2X9G_efE_pTSVrA</recordid><startdate>20190503</startdate><enddate>20190503</enddate><creator>Casas, Jonathan</creator><creator>Leal-Junior, Arnaldo</creator><creator>Díaz, Camilo R</creator><creator>Frizera, Anselmo</creator><creator>Múnera, Marcela</creator><creator>Cifuentes, Carlos A</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9657-5076</orcidid><orcidid>https://orcid.org/0000-0002-0687-3967</orcidid><orcidid>https://orcid.org/0000-0002-6942-865X</orcidid><orcidid>https://orcid.org/0000-0003-4248-7913</orcidid><orcidid>https://orcid.org/0000-0002-9075-0619</orcidid></search><sort><creationdate>20190503</creationdate><title>Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots</title><author>Casas, Jonathan ; Leal-Junior, Arnaldo ; Díaz, Camilo R ; Frizera, Anselmo ; Múnera, Marcela ; Cifuentes, Carlos A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-10ebcba5c5899460878882286812a1c0f3ca21523203e1ffde8bf9c661cf67193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Ankle</topic><topic>Axial stress</topic><topic>Behavior</topic><topic>Deformation</topic><topic>Deformation wear</topic><topic>Design</topic><topic>Dynamic models</topic><topic>Elastic deformation</topic><topic>Fiber optics</topic><topic>Hysteresis</topic><topic>Mechanical properties</topic><topic>Polymers</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Service robots</topic><topic>Strain gauges</topic><topic>Tendons</topic><topic>Wearable computers</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casas, Jonathan</creatorcontrib><creatorcontrib>Leal-Junior, Arnaldo</creatorcontrib><creatorcontrib>Díaz, Camilo R</creatorcontrib><creatorcontrib>Frizera, Anselmo</creatorcontrib><creatorcontrib>Múnera, Marcela</creatorcontrib><creatorcontrib>Cifuentes, Carlos A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casas, Jonathan</au><au>Leal-Junior, Arnaldo</au><au>Díaz, Camilo R</au><au>Frizera, Anselmo</au><au>Múnera, Marcela</au><au>Cifuentes, Carlos A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-05-03</date><risdate>2019</risdate><volume>12</volume><issue>9</issue><spage>1443</spage><pages>1443-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper presents the development and validation of a polymer optical-fiber strain-gauge sensor based on the light-coupling principle to measure axial deformation of elastic tendons incorporated in soft actuators for wearable assistive robots. An analytical model was proposed and further validated with experiment tests, showing correlation with a coefficient of R = 0.998 between experiment and theoretical data, and reaching a maximum axial displacement range of 15 mm and no significant hysteresis. Furthermore, experiment tests were carried out attaching the validated sensor to the elastic tendon. Results of three experiment tests show the sensor's capability to measure the tendon's response under tensile axial stress, finding 20.45% of hysteresis in the material's response between the stretching and recovery phase. Based on these results, there is evidence of the potential that the fiber-optical strain sensor presents for future applications in the characterization of such tendons and identification of dynamic models that allow the understanding of the material's response to the development of more efficient interaction-control strategies.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31058841</pmid><doi>10.3390/ma12091443</doi><orcidid>https://orcid.org/0000-0001-9657-5076</orcidid><orcidid>https://orcid.org/0000-0002-0687-3967</orcidid><orcidid>https://orcid.org/0000-0002-6942-865X</orcidid><orcidid>https://orcid.org/0000-0003-4248-7913</orcidid><orcidid>https://orcid.org/0000-0002-9075-0619</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2019-05, Vol.12 (9), p.1443
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6539067
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Actuators
Ankle
Axial stress
Behavior
Deformation
Deformation wear
Design
Dynamic models
Elastic deformation
Fiber optics
Hysteresis
Mechanical properties
Polymers
Robotics
Robots
Sensors
Service robots
Strain gauges
Tendons
Wearable computers
Wearable technology
title Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Range%20Polymer%20Optical-Fiber%20Strain-Gauge%20Sensor%20for%20Elastic%20Tendons%20in%20Wearable%20Assistive%20Robots&rft.jtitle=Materials&rft.au=Casas,%20Jonathan&rft.date=2019-05-03&rft.volume=12&rft.issue=9&rft.spage=1443&rft.pages=1443-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12091443&rft_dat=%3Cproquest_pubme%3E2232130627%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548650142&rft_id=info:pmid/31058841&rfr_iscdi=true