Dissecting the Functional Consequences of De Novo DNA Methylation Dynamics in Human Motor Neuron Differentiation and Physiology

The somatic DNA methylation (DNAme) landscape is established early in development but remains highly dynamic within focal regions that overlap with gene regulatory elements. The significance of these dynamic changes, particularly in the central nervous system, remains unresolved. Here, we utilize a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell stem cell 2018-04, Vol.22 (4), p.559-574.e9
Hauptverfasser: Ziller, Michael J., Ortega, Juan A., Quinlan, Katharina A., Santos, David P., Gu, Hongcang, Martin, Eric J., Galonska, Christina, Pop, Ramona, Maidl, Susanne, Di Pardo, Alba, Huang, Mei, Meltzer, Herbert Y., Gnirke, Andreas, Heckman, C.J., Meissner, Alexander, Kiskinis, Evangelos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 574.e9
container_issue 4
container_start_page 559
container_title Cell stem cell
container_volume 22
creator Ziller, Michael J.
Ortega, Juan A.
Quinlan, Katharina A.
Santos, David P.
Gu, Hongcang
Martin, Eric J.
Galonska, Christina
Pop, Ramona
Maidl, Susanne
Di Pardo, Alba
Huang, Mei
Meltzer, Herbert Y.
Gnirke, Andreas
Heckman, C.J.
Meissner, Alexander
Kiskinis, Evangelos
description The somatic DNA methylation (DNAme) landscape is established early in development but remains highly dynamic within focal regions that overlap with gene regulatory elements. The significance of these dynamic changes, particularly in the central nervous system, remains unresolved. Here, we utilize a powerful human embryonic stem cell differentiation model for the generation of motor neurons (MNs) in combination with genetic mutations in the de novo DNAme machinery. We quantitatively dissect the role of DNAme in directing somatic cell fate with high-resolution genome-wide bisulfite-, bulk-, and single-cell-RNA sequencing. We find defects in neuralization and MN differentiation in DNMT3A knockouts (KO) that can be rescued by the targeting of DNAme to key developmental loci using catalytically inactive dCas9. We also find decreased dendritic arborization and altered electrophysiological properties in DNMT3A KO MNs. Our work provides a list of DNMT3A-regulated targets and a mechanistic link between de novo DNAme, cellular differentiation, and human MN function. [Display omitted] •DNMT3A KO alters the fate of ESC-derived neural cells by modulating transcription factor expression•Single-cell RNA-seq reveals induction of floor plate cells in DNMT3A KO cultures•Targeted DNA methylation editing of PAX6/ARX gene regulatory elements rescues differentiation defects•Lack of DNMT3A impairs morphology and physiological activity of MNs Kiskinis and colleagues demonstrate that DNA methylation dynamics play a central role in the differentiation of human pluripotent stem cells toward highly specialized motor neurons. Through a combination of molecular and functional analysis they identify key transcriptional mediators of these effects and link DNA methylation to neuronal patterning and function.
doi_str_mv 10.1016/j.stem.2018.02.012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6535433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590918301061</els_id><sourcerecordid>2015409441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-b70ac79f18f58a6073a8bdd579928f7e9ce09114791e1edac417b1c08389127f3</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhkVpadK0L9BD0bEXOxrbWllQCmE3aQLJJof2LLTyeFeLLaWSveBTXr0ym4bm0pMk5ptfw3yEfAaWA4PF-T6PA_Z5waDOWZEzKN6QU6gFz6QQ4m26y7LKuGTyhHyIcc8YF8DEe3JSSM6hZHBKnlY2RjSDdVs67JBejS49vNMdXXoX8feIzmCkvqUrpGt_8HS1vqB3OOymTs8kXU1O99ZEah29Hnvt6J0ffKBrHMNctm2LAd1gj7h2DX3YTdH6zm-nj-Rdq7uIn57PM_Lr6vLn8jq7vf9xs7y4zQwvYMg2gmkjZAt1y2u9YKLU9aZpuJCyqFuB0iCTAJWQgICNNhWIDRhWl7WEQrTlGfl-zH0cNz02Js0TdKceg-11mJTXVr2uOLtTW39QC17yqixTwNfngODTUuKgehsNdp126MeokgVeMVlVkNDiiJrgYwzYvnwDTM3m1F7N5uaeWrFCJXOp6cu_A760_FWVgG9HANOaDhaDisbOchobkkDVePu__D8iLKzt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015409441</pqid></control><display><type>article</type><title>Dissecting the Functional Consequences of De Novo DNA Methylation Dynamics in Human Motor Neuron Differentiation and Physiology</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ziller, Michael J. ; Ortega, Juan A. ; Quinlan, Katharina A. ; Santos, David P. ; Gu, Hongcang ; Martin, Eric J. ; Galonska, Christina ; Pop, Ramona ; Maidl, Susanne ; Di Pardo, Alba ; Huang, Mei ; Meltzer, Herbert Y. ; Gnirke, Andreas ; Heckman, C.J. ; Meissner, Alexander ; Kiskinis, Evangelos</creator><creatorcontrib>Ziller, Michael J. ; Ortega, Juan A. ; Quinlan, Katharina A. ; Santos, David P. ; Gu, Hongcang ; Martin, Eric J. ; Galonska, Christina ; Pop, Ramona ; Maidl, Susanne ; Di Pardo, Alba ; Huang, Mei ; Meltzer, Herbert Y. ; Gnirke, Andreas ; Heckman, C.J. ; Meissner, Alexander ; Kiskinis, Evangelos</creatorcontrib><description>The somatic DNA methylation (DNAme) landscape is established early in development but remains highly dynamic within focal regions that overlap with gene regulatory elements. The significance of these dynamic changes, particularly in the central nervous system, remains unresolved. Here, we utilize a powerful human embryonic stem cell differentiation model for the generation of motor neurons (MNs) in combination with genetic mutations in the de novo DNAme machinery. We quantitatively dissect the role of DNAme in directing somatic cell fate with high-resolution genome-wide bisulfite-, bulk-, and single-cell-RNA sequencing. We find defects in neuralization and MN differentiation in DNMT3A knockouts (KO) that can be rescued by the targeting of DNAme to key developmental loci using catalytically inactive dCas9. We also find decreased dendritic arborization and altered electrophysiological properties in DNMT3A KO MNs. Our work provides a list of DNMT3A-regulated targets and a mechanistic link between de novo DNAme, cellular differentiation, and human MN function. [Display omitted] •DNMT3A KO alters the fate of ESC-derived neural cells by modulating transcription factor expression•Single-cell RNA-seq reveals induction of floor plate cells in DNMT3A KO cultures•Targeted DNA methylation editing of PAX6/ARX gene regulatory elements rescues differentiation defects•Lack of DNMT3A impairs morphology and physiological activity of MNs Kiskinis and colleagues demonstrate that DNA methylation dynamics play a central role in the differentiation of human pluripotent stem cells toward highly specialized motor neurons. Through a combination of molecular and functional analysis they identify key transcriptional mediators of these effects and link DNA methylation to neuronal patterning and function.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2018.02.012</identifier><identifier>PMID: 29551301</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biocatalysis ; Cell Differentiation - genetics ; cell fate ; DNA (Cytosine-5-)-Methyltransferases - deficiency ; DNA (Cytosine-5-)-Methyltransferases - metabolism ; DNA methylation ; DNA Methylation - genetics ; DNMT3A ; epigenetics ; ESCs ; Humans ; motor neurons ; Motor Neurons - cytology ; Motor Neurons - metabolism ; neurogenesis ; spinal cord development</subject><ispartof>Cell stem cell, 2018-04, Vol.22 (4), p.559-574.e9</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-b70ac79f18f58a6073a8bdd579928f7e9ce09114791e1edac417b1c08389127f3</citedby><cites>FETCH-LOGICAL-c521t-b70ac79f18f58a6073a8bdd579928f7e9ce09114791e1edac417b1c08389127f3</cites><orcidid>0000-0001-8342-8616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.stem.2018.02.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29551301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ziller, Michael J.</creatorcontrib><creatorcontrib>Ortega, Juan A.</creatorcontrib><creatorcontrib>Quinlan, Katharina A.</creatorcontrib><creatorcontrib>Santos, David P.</creatorcontrib><creatorcontrib>Gu, Hongcang</creatorcontrib><creatorcontrib>Martin, Eric J.</creatorcontrib><creatorcontrib>Galonska, Christina</creatorcontrib><creatorcontrib>Pop, Ramona</creatorcontrib><creatorcontrib>Maidl, Susanne</creatorcontrib><creatorcontrib>Di Pardo, Alba</creatorcontrib><creatorcontrib>Huang, Mei</creatorcontrib><creatorcontrib>Meltzer, Herbert Y.</creatorcontrib><creatorcontrib>Gnirke, Andreas</creatorcontrib><creatorcontrib>Heckman, C.J.</creatorcontrib><creatorcontrib>Meissner, Alexander</creatorcontrib><creatorcontrib>Kiskinis, Evangelos</creatorcontrib><title>Dissecting the Functional Consequences of De Novo DNA Methylation Dynamics in Human Motor Neuron Differentiation and Physiology</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>The somatic DNA methylation (DNAme) landscape is established early in development but remains highly dynamic within focal regions that overlap with gene regulatory elements. The significance of these dynamic changes, particularly in the central nervous system, remains unresolved. Here, we utilize a powerful human embryonic stem cell differentiation model for the generation of motor neurons (MNs) in combination with genetic mutations in the de novo DNAme machinery. We quantitatively dissect the role of DNAme in directing somatic cell fate with high-resolution genome-wide bisulfite-, bulk-, and single-cell-RNA sequencing. We find defects in neuralization and MN differentiation in DNMT3A knockouts (KO) that can be rescued by the targeting of DNAme to key developmental loci using catalytically inactive dCas9. We also find decreased dendritic arborization and altered electrophysiological properties in DNMT3A KO MNs. Our work provides a list of DNMT3A-regulated targets and a mechanistic link between de novo DNAme, cellular differentiation, and human MN function. [Display omitted] •DNMT3A KO alters the fate of ESC-derived neural cells by modulating transcription factor expression•Single-cell RNA-seq reveals induction of floor plate cells in DNMT3A KO cultures•Targeted DNA methylation editing of PAX6/ARX gene regulatory elements rescues differentiation defects•Lack of DNMT3A impairs morphology and physiological activity of MNs Kiskinis and colleagues demonstrate that DNA methylation dynamics play a central role in the differentiation of human pluripotent stem cells toward highly specialized motor neurons. Through a combination of molecular and functional analysis they identify key transcriptional mediators of these effects and link DNA methylation to neuronal patterning and function.</description><subject>Biocatalysis</subject><subject>Cell Differentiation - genetics</subject><subject>cell fate</subject><subject>DNA (Cytosine-5-)-Methyltransferases - deficiency</subject><subject>DNA (Cytosine-5-)-Methyltransferases - metabolism</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>DNMT3A</subject><subject>epigenetics</subject><subject>ESCs</subject><subject>Humans</subject><subject>motor neurons</subject><subject>Motor Neurons - cytology</subject><subject>Motor Neurons - metabolism</subject><subject>neurogenesis</subject><subject>spinal cord development</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFq3DAQhkVpadK0L9BD0bEXOxrbWllQCmE3aQLJJof2LLTyeFeLLaWSveBTXr0ym4bm0pMk5ptfw3yEfAaWA4PF-T6PA_Z5waDOWZEzKN6QU6gFz6QQ4m26y7LKuGTyhHyIcc8YF8DEe3JSSM6hZHBKnlY2RjSDdVs67JBejS49vNMdXXoX8feIzmCkvqUrpGt_8HS1vqB3OOymTs8kXU1O99ZEah29Hnvt6J0ffKBrHMNctm2LAd1gj7h2DX3YTdH6zm-nj-Rdq7uIn57PM_Lr6vLn8jq7vf9xs7y4zQwvYMg2gmkjZAt1y2u9YKLU9aZpuJCyqFuB0iCTAJWQgICNNhWIDRhWl7WEQrTlGfl-zH0cNz02Js0TdKceg-11mJTXVr2uOLtTW39QC17yqixTwNfngODTUuKgehsNdp126MeokgVeMVlVkNDiiJrgYwzYvnwDTM3m1F7N5uaeWrFCJXOp6cu_A760_FWVgG9HANOaDhaDisbOchobkkDVePu__D8iLKzt</recordid><startdate>20180405</startdate><enddate>20180405</enddate><creator>Ziller, Michael J.</creator><creator>Ortega, Juan A.</creator><creator>Quinlan, Katharina A.</creator><creator>Santos, David P.</creator><creator>Gu, Hongcang</creator><creator>Martin, Eric J.</creator><creator>Galonska, Christina</creator><creator>Pop, Ramona</creator><creator>Maidl, Susanne</creator><creator>Di Pardo, Alba</creator><creator>Huang, Mei</creator><creator>Meltzer, Herbert Y.</creator><creator>Gnirke, Andreas</creator><creator>Heckman, C.J.</creator><creator>Meissner, Alexander</creator><creator>Kiskinis, Evangelos</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8342-8616</orcidid></search><sort><creationdate>20180405</creationdate><title>Dissecting the Functional Consequences of De Novo DNA Methylation Dynamics in Human Motor Neuron Differentiation and Physiology</title><author>Ziller, Michael J. ; Ortega, Juan A. ; Quinlan, Katharina A. ; Santos, David P. ; Gu, Hongcang ; Martin, Eric J. ; Galonska, Christina ; Pop, Ramona ; Maidl, Susanne ; Di Pardo, Alba ; Huang, Mei ; Meltzer, Herbert Y. ; Gnirke, Andreas ; Heckman, C.J. ; Meissner, Alexander ; Kiskinis, Evangelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-b70ac79f18f58a6073a8bdd579928f7e9ce09114791e1edac417b1c08389127f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocatalysis</topic><topic>Cell Differentiation - genetics</topic><topic>cell fate</topic><topic>DNA (Cytosine-5-)-Methyltransferases - deficiency</topic><topic>DNA (Cytosine-5-)-Methyltransferases - metabolism</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>DNMT3A</topic><topic>epigenetics</topic><topic>ESCs</topic><topic>Humans</topic><topic>motor neurons</topic><topic>Motor Neurons - cytology</topic><topic>Motor Neurons - metabolism</topic><topic>neurogenesis</topic><topic>spinal cord development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziller, Michael J.</creatorcontrib><creatorcontrib>Ortega, Juan A.</creatorcontrib><creatorcontrib>Quinlan, Katharina A.</creatorcontrib><creatorcontrib>Santos, David P.</creatorcontrib><creatorcontrib>Gu, Hongcang</creatorcontrib><creatorcontrib>Martin, Eric J.</creatorcontrib><creatorcontrib>Galonska, Christina</creatorcontrib><creatorcontrib>Pop, Ramona</creatorcontrib><creatorcontrib>Maidl, Susanne</creatorcontrib><creatorcontrib>Di Pardo, Alba</creatorcontrib><creatorcontrib>Huang, Mei</creatorcontrib><creatorcontrib>Meltzer, Herbert Y.</creatorcontrib><creatorcontrib>Gnirke, Andreas</creatorcontrib><creatorcontrib>Heckman, C.J.</creatorcontrib><creatorcontrib>Meissner, Alexander</creatorcontrib><creatorcontrib>Kiskinis, Evangelos</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziller, Michael J.</au><au>Ortega, Juan A.</au><au>Quinlan, Katharina A.</au><au>Santos, David P.</au><au>Gu, Hongcang</au><au>Martin, Eric J.</au><au>Galonska, Christina</au><au>Pop, Ramona</au><au>Maidl, Susanne</au><au>Di Pardo, Alba</au><au>Huang, Mei</au><au>Meltzer, Herbert Y.</au><au>Gnirke, Andreas</au><au>Heckman, C.J.</au><au>Meissner, Alexander</au><au>Kiskinis, Evangelos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissecting the Functional Consequences of De Novo DNA Methylation Dynamics in Human Motor Neuron Differentiation and Physiology</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2018-04-05</date><risdate>2018</risdate><volume>22</volume><issue>4</issue><spage>559</spage><epage>574.e9</epage><pages>559-574.e9</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>The somatic DNA methylation (DNAme) landscape is established early in development but remains highly dynamic within focal regions that overlap with gene regulatory elements. The significance of these dynamic changes, particularly in the central nervous system, remains unresolved. Here, we utilize a powerful human embryonic stem cell differentiation model for the generation of motor neurons (MNs) in combination with genetic mutations in the de novo DNAme machinery. We quantitatively dissect the role of DNAme in directing somatic cell fate with high-resolution genome-wide bisulfite-, bulk-, and single-cell-RNA sequencing. We find defects in neuralization and MN differentiation in DNMT3A knockouts (KO) that can be rescued by the targeting of DNAme to key developmental loci using catalytically inactive dCas9. We also find decreased dendritic arborization and altered electrophysiological properties in DNMT3A KO MNs. Our work provides a list of DNMT3A-regulated targets and a mechanistic link between de novo DNAme, cellular differentiation, and human MN function. [Display omitted] •DNMT3A KO alters the fate of ESC-derived neural cells by modulating transcription factor expression•Single-cell RNA-seq reveals induction of floor plate cells in DNMT3A KO cultures•Targeted DNA methylation editing of PAX6/ARX gene regulatory elements rescues differentiation defects•Lack of DNMT3A impairs morphology and physiological activity of MNs Kiskinis and colleagues demonstrate that DNA methylation dynamics play a central role in the differentiation of human pluripotent stem cells toward highly specialized motor neurons. Through a combination of molecular and functional analysis they identify key transcriptional mediators of these effects and link DNA methylation to neuronal patterning and function.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29551301</pmid><doi>10.1016/j.stem.2018.02.012</doi><orcidid>https://orcid.org/0000-0001-8342-8616</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-5909
ispartof Cell stem cell, 2018-04, Vol.22 (4), p.559-574.e9
issn 1934-5909
1875-9777
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6535433
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Biocatalysis
Cell Differentiation - genetics
cell fate
DNA (Cytosine-5-)-Methyltransferases - deficiency
DNA (Cytosine-5-)-Methyltransferases - metabolism
DNA methylation
DNA Methylation - genetics
DNMT3A
epigenetics
ESCs
Humans
motor neurons
Motor Neurons - cytology
Motor Neurons - metabolism
neurogenesis
spinal cord development
title Dissecting the Functional Consequences of De Novo DNA Methylation Dynamics in Human Motor Neuron Differentiation and Physiology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissecting%20the%20Functional%20Consequences%20of%20De%20Novo%20DNA%20Methylation%20Dynamics%20in%20Human%20Motor%20Neuron%20Differentiation%20and%20Physiology&rft.jtitle=Cell%20stem%20cell&rft.au=Ziller,%20Michael%20J.&rft.date=2018-04-05&rft.volume=22&rft.issue=4&rft.spage=559&rft.epage=574.e9&rft.pages=559-574.e9&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2018.02.012&rft_dat=%3Cproquest_pubme%3E2015409441%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015409441&rft_id=info:pmid/29551301&rft_els_id=S1934590918301061&rfr_iscdi=true